A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery
Abstract
:1. Introduction
2. Method and Materials
2.1. Existing Indices and Potential Forms for Forest Anomalies Detection
2.2. Determining the Form of Forest Anomaly Comprehensive Index (FACI) by LESS
2.3. Satellite and In Situ Data
2.4. Accuracy Assessment Indicators
3. Results
3.1. Threshold Determination
3.2. Accuracy Evaluation and Comparison
3.3. Application of FACI-Based Forest Anomaly Detection
3.4. The Reliability of the Determined Threshold
3.5. The Effectiveness of FACI in Other Regions
4. Discussion
4.1. The Advantages of FACI in Multi-Type Forest Anomaly Detection
4.2. The Limitation of the FACI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miura, S.; Amacher, M.; Hofer, T.; San-Miguel-Ayanz, J.; Ernawati; Thackway, R. Protective functions and ecosystem services of global forests in the past quarter-century. For. Ecol. Manag. 2015, 352, 35–46. [Google Scholar] [CrossRef]
- Romijn, E.; Lantican, C.B.; Herold, M.; Lindquist, E.; Ochieng, R.; Wijaya, A.; Murdiyarso, D.; Verchot, L. Assessing change in national forest monitoring capacities of 99 tropical countries. Forest Ecol. Manag. 2015, 352, 109–123. [Google Scholar] [CrossRef]
- Reyer, C.P.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. ERL 2017, 12, 34027. [Google Scholar] [CrossRef] [PubMed]
- Hirschmugl, M.; Gallaun, H.; Dees, M.; Datta, P.; Deutscher, J.; Koutsias, N.; Schardt, M. Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation Data: A Review. Curr. For. Rep. 2017, 3, 32–45. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires and global change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Miletić, B.R.; Matović, B.; Orlović, S.; Gutalj, M.; Đorem, T.; Marinković, G.; Simović, S.; Dugalić, M.; Stojanović, D.B. Quantifying Forest Cover Loss as a Response to Drought and Dieback of Norway Spruce and Evaluating Sensitivity of Various Vegetation Indices Using Remote Sensing. Forests 2024, 15, 662. [Google Scholar] [CrossRef]
- Gvozdenac, S.; Dedić, B.; Mikić, S.; Ovuka, J.; Miladinović, D. Impact of climate change on integrated pest management strategies. In Climate Change and Agriculture: Perspectives, Sustainability and Resilience; Wiley: Hoboken, NJ, USA, 2022; pp. 311–372. [Google Scholar]
- Zhang, Q.; Zhu, J.; Huang, Y.; Yuan, Q.; Zhang, L. Beyond being wise after the event: Combining spatial, temporal and spectral information for Himawari-8 early-stage wildfire detection. Int. J. Appl. Earth Obs. Geoinf. Geoinf. 2023, 124, 103506. [Google Scholar] [CrossRef]
- Wei, H.; Jia, K.; Wang, Q.; Cao, B.; Qi, J.; Zhao, W.; Yang, J. Real-time remote sensing detection framework of the earth’s surface anomalies based on a priori knowledge base. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103429. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J.-Stars 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Wei, H.; Jia, K.; Wang, Q.; Cao, B.; Qi, J.; Zhao, W.; Yan, K. A remote sensing index for the detection of multi-type water quality anomalies in complex geographical environments. Int. J. Digit. Earth 2024, 17, 2313695. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhao, B.; Chanussot, J.; Hong, D.; Yao, J.; Gao, L. Progress and Challenges in Intelligent Remote Sensing Satellite Systems. IEEE J.-Stars 2022, 15, 1814–1822. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Yang, F.; Dai, R. Internet intelligent remote sensing scientific experimental satellite LuoJia3-01. Geo-Spat. Inf. Sci. 2023, 26, 257–261. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, Y.; Liu, G.; Yang, J.; Tian, L.; Li, H. Distributed space remote sensing and multi-satellite cooperative on-board processing. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 551–556. [Google Scholar]
- Huang, D.; Li, X.; Zheng, X.; Wei, W.; Zhang, Q.; Guo, F. Evaluation and Application of On-Orbit Calibration of the Automated Vicarious Calibration System. IEEE Trans. Geosci. Remote Sens. Sens. 2023, 61, 1001115. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Zou, Y.; Chen, H. Assessment and Correction of the On-Orbit Radiometric Calibration in FY-3D MERSI-2 Thermal Infrared Channels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Wu, H.; Chen, G.; Bai, Y.; Peng, Y.; Ba, Q.; Huang, S.; Zhong, X.; Sun, H.; Zhang, L.; Feng, F. On-Orbit Geometric Calibration and Accuracy Validation of the Jilin1-KF01B Wide-Field Camera. Remote Sens. 2024, 16, 3893. [Google Scholar] [CrossRef]
- Sui, H.; Liu, C.; Liu, J.; Zheng, X.; Li, H.; Yu, S.; Li, Q. Reflection and Exploration of Rapid Remote Sensing Emergency Response for Typical Natural Disasters. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1137–1145. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Cai, P.; Chen, G.; Li, X.; Zhu, K. Research progress on remote sensing monitoring of pine wilt disease. Trans. Chin. Soc. Agric. Eng. 2022, 38, 184–194. [Google Scholar]
- Kim, S.; Lee, W.; Lim, C.; Kim, M.; Kafatos, M.; Lee, S.; Lee, S. Hyperspectral Analysis of Pine Wilt Disease to Determine an Optimal Detection Index. Forests 2018, 9, 115. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Hethcoat, M.G.; Carreiras, J.M.B.; Edwards, D.P.; Bryant, R.G.; Quegan, S. Detecting tropical selective logging with C-band SAR data may require a time series approach. Remote Sens. Environ. 2021, 259, 112411. [Google Scholar] [CrossRef]
- Mantas, V.; Fonseca, L.; Baltazar, E.; Canhoto, J.; Abrantes, I. Detection of Tree Decline (Pinus pinaster Aiton) in European Forests Using Sentinel-2 Data. Remote Sens. 2022, 14, 2028. [Google Scholar] [CrossRef]
- Yu, R.; Huo, L.; Huang, H.; Yuan, Y.; Gao, B.; Liu, Y.; Yu, L.; Li, H.; Yang, L.; Ren, L. Early detection of pine wilt disease tree candidates using time-series of spectral signatures. Front. Plant Sci. 2022, 13, 1000093. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Timing of red-edge and shortwave infrared reflectance critical for early stress detection induced by bark beetle (Ips typographus, L.) attack. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101900. [Google Scholar] [CrossRef]
- Asner, G.; Keller, M.; Pereira, R.; Zweede, J.; Silva, J. Canopy damage and recovery after selective logging in Amazonia: Field and satellite studies. Ecol. Appl. 2004, 14, 280–298. [Google Scholar] [CrossRef]
- Masiliūnas, D. Evaluating the potential of Sentinel-2 and landsat image time series for detecting selective logging in the Amazon. 2017. Available online: https://www.cifor-icraf.org/knowledge/publication/8115/ (accessed on 11 October 2017).
- Asner, G.P.; Knapp, D.E.; Balaji, A.; Páez-Acosta, G. Automated mapping of tropical deforestation and forest degradation: CLASlite. J. Appl. Remote Sens. 2009, 3, 33543. [Google Scholar] [CrossRef]
- Pałaś, K.; Zawadzki, J. Sentinel-2 Imagery Processing for Tree Logging Observations on the Białowieża Forest World Heritage Site. Forests 2020, 11, 857. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, H.; Duan, S.B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Rev. Geophys. 2023, 61, e2022R–e2777R. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.W.; de Souza Filho, C.R.; Wright, R.; Sabatino, G.; Correa Pabon, R. HOTMAP: Global hot target detection at moderate spatial resolution. Remote Sens. Environ. 2016, 177, 78–88. [Google Scholar] [CrossRef]
- Wu, W.; Liu, Y.; Rogers, B.M.; Xu, W.; Dong, Y.; Lu, W. Monitoring gas flaring in Texas using time-series sentinel-2 MSI and landsat-8 OLI images. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103075. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, W.; Xu, B.; Xu, W.; Wu, W. Detecting high-temperature anomalies from Sentinel-2 MSI images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 174–193. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Yin, T.; Yan, G.; Gastellu-Etchegorry, J.; Li, L.; Zhang, W.; Mu, X.; Norford, L.K. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sens. Environ. 2019, 221, 695–706. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Sun, Z.; Han, S.; Feng, H.; Jiang, J.; Xu, W.; Li, Z.; Yang, G.; et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Comput. Electron. Agric. 2022, 202, 107401. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Guo, D.; Yan, G. A large-scale emulation system for realistic three-dimensional (3-D) forest simulation. IEEE J.-Stars 2017, 10, 4834–4843. [Google Scholar] [CrossRef]
- Candotti, A.; De Giglio, M.; Dubbini, M.; Tomelleri, E. A Sentinel-2 Based Multi-Temporal Monitoring Framework for Wind and Bark Beetle Detection and Damage Mapping. Remote Sens. 2022, 14, 6105. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Beuchle, R.; Shimabukuro, Y.E.; Aragão, L.E.O.C.; Arai, E.; Simonetti, D.; Achard, F. An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 70–80. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Du, M.; Chen, Q.; Liu, Y. A Novel Spectral Index for Rapid Dust-Proof Net Mapping Based on Sentinel-2 Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Na, S.; Xiang, Z.; Mu, B.; Zhao, J.; Liu, N. Land cover classification combined with fractional vegetation cover. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 917–925. [Google Scholar]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Foit, J.; Čermák, V.; Gaar, V.; Hradil, K.; Nový, V.; Rolincová, P. New insights into the life history of Monochamus galloprovincialis can enhance surveillance strategies for the pinewood nematode. J. Pest Sci. 2019, 92, 1203–1215. [Google Scholar] [CrossRef]
- Huang, J.; Xi, X.; Ding, X.; Ye, J. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers. J. Nanjing For. Univ. 2019, 43, 25. [Google Scholar]
- Yang, Y.; Yuan, X.; Li, B.; Sun, R.; Wang, Q. Characteristics and significance of the remnant evergreen broad-leaved forest in the urban area of Chongqing, China. Biodivers. Sci. 2007, 15, 247. [Google Scholar]
- Feng, Y.; Jian, W.; Ding, X.; Ye, J. Genetic Diversity and Population Structure of Bursaphelenchus xylophilus in Guangdong, Guangxi, and Jiangsu Provinces in China. Forests 2024, 15, 934. [Google Scholar] [CrossRef]
- Cimtay, Y.; Ozbay, B.; Yilmaz, G.N.; Bozdemir, E. A New Vegetation Index in Short-Wave Infrared Region of Electromagnetic Spectrum. IEEE Access 2021, 9, 148535–148545. [Google Scholar] [CrossRef]
- Bárta, V.; Hanuš, J.; Dobrovolný, L.; Homolová, L. Comparison of field survey and remote sensing techniques for detection of bark beetle-infested trees. For. Ecol. Manag. 2022, 506, 119984. [Google Scholar] [CrossRef]
- Li, N.; Huo, L.; Zhang, X. Classification of pine wilt disease at different infection stages by diagnostic hyperspectral bands. Ecol. Indic. 2022, 142, 109198. [Google Scholar] [CrossRef]
- Yu, R.; Ren, L.; Luo, Y. Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery. For. Ecosyst. 2021, 8, 44. [Google Scholar] [CrossRef]
- Tang, X.; Bratley, K.H.; Cho, K.; Bullock, E.L.; Olofsson, P.; Woodcock, C.E. Near real-time monitoring of tropical forest disturbance by fusion of Landsat, Sentinel-2, and Sentinel-1 data. Remote Sens. Environ. 2023, 294, 113626. [Google Scholar] [CrossRef]
- Decuyper, M.; Chávez, R.O.; Lohbeck, M.; Lastra, J.A.; Tsendbazar, N.; Hackländer, J.; Herold, M.; Vågen, T. Continuous monitoring of forest change dynamics with satellite time series. Remote Sens. Environ. 2022, 269, 112829. [Google Scholar] [CrossRef]
- Mazzeo, G.; Falconieri, A.; Filizzola, C.; Genzano, N.; Pergola, N.; Marchese, F. Wildfire Detection and Mapping by Satellite with an Enhanced Configuration of the Normalized Hotspot Indices: Results From Sentinel-2 and Landsat 8/9 Data Integration. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–21. [Google Scholar] [CrossRef]
- Schiller, C.; Költzow, J.; Schwarz, S.; Schiefer, F.; Fassnacht, F.E. Forest disturbance detection in Central Europe using transformers and Sentinel-2 time series. Remote Sens. Environ. 2024, 315, 114475. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote Sens. Environ. 2021, 252, 112167. [Google Scholar] [CrossRef]
- Tao, H.; Li, C.; Cheng, C.; Jiang, L.; Hu, H. Progress in remote sensing monitoring for pine wilt disease induced tree mortality: A review. For. Res. 2020, 33, 172–183. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, G.A.; Feng, J.; Calvo-Polanco, M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2010, 114, 899–910. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961. [Google Scholar] [CrossRef]
- European, C.; Directorate-General, F.E.; Atzberger, C.; Zeug, G.; Defourny, P.; Aragão, L.; Hammarström, L.; Immitzer, M. Monitoring of Forests Through Remote Sensing: Final Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Gašparović, M.; Klobučar, D. Mapping Floods in Lowland Forest Using Sentinel-1 and Sentinel-2 Data and an Object-Based Approach. Forests 2021, 12, 553. [Google Scholar] [CrossRef]
- Bech, J.; Pineda, N.; Rigo, T.; Aran, M. Remote sensing analysis of a Mediterranean thundersnow and low-altitude heavy snowfall event. Atmos. Res. 2013, 123, 305–322. [Google Scholar] [CrossRef]
Index | Equation | Anomaly Event | References |
---|---|---|---|
NDVI | pest | [27,42] | |
NDWI | pest | [21,28,42] | |
SAVI | deforestation | [32,43] | |
BSI | deforestation | [30,32] | |
TAI | fire | [36,37] |
Type | HH * | PT | DF | FE | Total | UA (%) | |
---|---|---|---|---|---|---|---|
FACI OA (%): 88.3 Kappa: 0.84 | HH | 89 | 3 | 0 | 0 | 92 | 96.7 |
PT | 1 | 70 | 16 | 0 | 87 | 80.5 | |
DF | 0 | 17 | 74 | 5 | 96 | 77.1 | |
FE | 0 | 0 | 0 | 85 | 85 | 100 | |
Total | 90 | 90 | 90 | 90 | 360 | ||
PA (%) | 98.9 | 77.8 | 82.2 | 94.4 | |||
NDVI OA (%): 71.4 Kappa: 0.61 | HH | 85 | 6 | 1 | 1 | 93 | 91.4 |
PT | 5 | 59 | 23 | 0 | 87 | 67.8 | |
DF | 0 | 20 | 44 | 20 | 84 | 52.4 | |
FE | 0 | 5 | 22 | 69 | 96 | 71.9 | |
Total | 90 | 90 | 90 | 90 | 360 | ||
PA (%) | 94.4 | 65.6 | 48.9 | 76.7 | |||
NDWI OA (%): 76.7 Kappa: 0.68 | HH | 88 | 6 | 0 | 0 | 94 | 93.6 |
PT | 2 | 54 | 41 | 1 | 98 | 55.1 | |
DF | 0 | 26 | 49 | 4 | 79 | 62.0 | |
FE | 0 | 4 | 0 | 85 | 89 | 95.5 | |
Total | 90 | 90 | 90 | 90 | 360 | ||
PA (%) | 97.8 | 60.0 | 54.4 | 94.4 | |||
SAVI OA (%): 66.7 Kappa: 0.56 | HH | 86 | 6 | 1 | 0 | 93 | 92.5 |
PT | 4 | 48 | 40 | 5 | 97 | 49.5 | |
DF | 0 | 23 | 33 | 12 | 68 | 48.5 | |
FE | 0 | 13 | 16 | 73 | 102 | 71.6 | |
Total | 90 | 90 | 90 | 90 | 360 | ||
PA (%) | 95.6 | 53.3 | 36.7 | 81.1 | |||
BSI OA (%): 75.83 Kappa: 0.67 | HH | 89 | 9 | 0 | 1 | 99 | 89.9 |
PT | 1 | 47 | 13 | 0 | 61 | 77.0 | |
DF | 0 | 34 | 75 | 27 | 136 | 55.1 | |
FE | 0 | 0 | 2 | 62 | 64 | 96.9 | |
Total | 90 | 90 | 90 | 90 | 360 | ||
PA (%) | 98.9 | 52.2 | 83.3 | 68.9 | |||
TAI OA (%): 74.2 Kappa: 0.66 | HH | 55 | 37 | 1 | 0 | 93 | 59.1 |
PT | 20 | 40 | 3 | 0 | 63 | 63.5 | |
DF | 15 | 13 | 86 | 4 | 118 | 72.9 | |
FE | 0 | 0 | 0 | 86 | 86 | 100 | |
Total | 90 | 90 | 90 | 90 | 360 | ||
PA (%) | 61.1 | 44.4 | 95.6 | 95.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, D.; Cao, B.; Wang, Q.; Qi, J.; Jia, K.; Zhao, W.; Yan, K. A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery. Forests 2025, 16, 497. https://doi.org/10.3390/f16030497
Liang D, Cao B, Wang Q, Qi J, Jia K, Zhao W, Yan K. A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery. Forests. 2025; 16(3):497. https://doi.org/10.3390/f16030497
Chicago/Turabian StyleLiang, Dalin, Biao Cao, Qiao Wang, Jianbo Qi, Kun Jia, Wenzhi Zhao, and Kai Yan. 2025. "A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery" Forests 16, no. 3: 497. https://doi.org/10.3390/f16030497
APA StyleLiang, D., Cao, B., Wang, Q., Qi, J., Jia, K., Zhao, W., & Yan, K. (2025). A New Remote Sensing Index for the Detection of Multi-Type Forest Anomalies Based on Sentinel-2 Imagery. Forests, 16(3), 497. https://doi.org/10.3390/f16030497