Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas: The Metropolitan City of Rome and the Castelporziano Presidential Estate
2.2. Classification of Remotely Sensed Data
2.3. Temporal Schedule
2.4. Remotely Sensed Leaf Area Index
2.5. Air PM10 Concentrations
2.6. PM10 Deposition
2.7. Monetary Evaluation
3. Results
3.1. Land Cover Map of the Metropolitan City of Rome
3.2. LAI and PM10 Removal Efficiency by Vegetation in the MC of Rome
3.3. Study Case: Contribution of Castelporziano Presidential Estate Peri-Urban Forest to Air Quality Improvement
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Environment Agency (EEA). Air Quality in Europe—2015 Report; EEA Report No 5/2015; European Environment Agency: Copenhagen, Denmark, 2015. [Google Scholar]
- European Commission, Directorate-General for Research and Innovation. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities. Final Report of the Horizon 2020 Expert Group on ‘Nature-Based Solutions and Re-Naturing Cities’. Available online: http://bookshop.europa.eu/en/towards-an-eu-research-and-innovation-policy-agenda-for-nature-based-solutions-re-naturing-cities-pbKI0215162/ (assessed on 23 March 2016).
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, A.R.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-Based Solutions for Europe’s Sustainable Development. Conserv. Lett. 2015. [Google Scholar] [CrossRef]
- MA, Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Manes, F.; Incerti, G.; Salvatori, E.; Vitale, M.; Ricotta, C.; Costanza, R. Urban ecosystem services: Tree diversity and stability of tropospheric ozone removal. Ecol. Appl. 2012, 22, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, M.; van Poppel, M.; van Kamp, I.; Andrusaityte, S.; Balseviciene, B.; Cirach, M.; Danileviciute, A.; Ellis, N.; Hurst, G.; Masterson, D.; et al. Visiting green space is associated with mental health and vitality: A cross-sectional study in four European cities. Health Place 2016, 38, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Bolund, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kazmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Sung, C.Y. Mitigating surface urban heat island by a tree protection policy: A case study of The Woodland, Texas, USA. Urban For. Urban Green. 2013, 12, 474–480. [Google Scholar] [CrossRef]
- Coronel, A.S.; Feldman, S.R.; Jozami, E.; Facundo, K.; Piacentini, R.D.; Dubbeling, M.; Escobedo, F.J. Effects of urban green areas on air temperature in a medium-sized Argentinian city. AIMS Environ. Sci. 2015, 2, 803–826. [Google Scholar]
- Lee, A.C.K.; Maheswaran, R. The health benefits of urban green spaces: A review of the evidence. J. Public Health 2011, 33, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Manes, F.; Silli, V.; Salvatori, E.; Incerti, G.; Galante, G.; Fusaro, L.; Perrino, C. Urban ecosystem services: Tree diversity and stability of PM10 removal in the metropolitan area of Rome. Ann. Bot. 2014, 4, 19–26. [Google Scholar]
- Manes, F.; Marando, F.; Capotorti, G.; Blasi, C.; Salvatori, E.; Fusaro, L.; Ciancarella, L.; Mircea, M.; Marchetti, M.; Chirici, G.; et al. Regulating Ecosystem Services of forests in ten Italian metropolitan Cities: Air quality improvement by PM10 and O3 removal. Ecol. Indic. 2016, 67, 425–440. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Kroeger, T.; Escobedo, F.J.; Hernandez, J.L.; Varela, S.; Delphin, S.; Delphin, S.; Fisher, J.R.B.; Waldron, J. Reforestation as a novel abatement and compliance measure for ground-level ozone. Proc. Natl. Acad. Sci. USA 2014, 111, E4204–E4213. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Baumgardner, D.; Varela, S.; Escobedo, F.J.; Chacalo, A.; Ochoa, C. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis. Environ. Pollut. 2012, 163, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Baró, F.; Chaparro, L.; Gomez-Baggethun, E.; Langemeyer, J.; David, J.; Terradas, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. Ambio 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.; Potchter, O.; Schnell, I. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel. Environ. Pollut. 2014, 195, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Niemelä, J.; Saarela, S.R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Lafortezza, R.; Davies, C.; Sanesi, G.; Konijnendijk, C.C. Green Infrastructure as a tool to support spatial planning in European urban regions. iForest Biogeosci. For. 2013, 6, 102. [Google Scholar] [CrossRef]
- Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Attorre, F.; Francesconi, F.; Pepponi, L.; Provantini, R.; Bruno, F. Spatio-temporal analyses of parks and gardens of Rome. Stud. Hist. Gard. Des. Landsc. 2003, 23, 293–306. [Google Scholar] [CrossRef]
- Demo Istat. Available online: http://demo.istat.it/bilmens2016gen/index.html (accessed on 19 July 2016).
- ISPRA. Available online: http://www.isprambiente.gov.it/files/pubblicazioni/rapporti/Rapporto_218_15.pdf (accessed on 30 March 2016).
- Capotorti, G.; Del Vico, E.; Lattanzi, E.; Tilia, A.; Celesti-Grapow, L. Exploring biodiversity in a metropolitan area in the Mediterranean region: The urban and suburban flora of Rome (Italy). Plant Biosyst. 2013, 147, 174–185. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Marchese, M.; Marta, M.; Bologna, M.A.; Bombi, P.; Bonaiutoc, M.; Bonnesc, M.; Carrusc, G.; Cifelli, F.; et al. Interdisciplinary research for the proposal of the Urban Biosphere Reserve of Rome Municipality. Plant Biosyst. 2008, 142, 305–312. [Google Scholar] [CrossRef]
- Salvati, L.; Tombolini, I. Cropland vs. forests: Landscape composition and land-use changes in Peri-urban Rome (1949–2008). WSEAS Trans. Environ. Dev. 2013, 9, 278–289. [Google Scholar]
- Pignatti, S.; Capanna, E.; Porceddu, E. Castelporziano, Research and Conservation in a Mediterranean Forest Ecosystem: Presentation of the Volume. Rend. Lincei 2015, 26, 265–266. [Google Scholar] [CrossRef]
- Manes, F.; Grignetti, A.; Tinelli, A.; Lenz, R.; Ciccioli, P. General features of the Castelporziano test site. Atmos. Environ. 1997, 31, 19–25. [Google Scholar] [CrossRef]
- Congedo, L.; Macchi, S. Investigating the relationship between land cover and vulnerability to climate change in the Dar es Salaam. 2013. Available online: http://www. planning4adaptation. eu/Docs/events/WorkShopII/WorkingPaper_Activity2_1_complete.pdf (accessed on 29 March 2016).
- Declercq, F.A.N. Interpolation methods for scattered sample data: Accuracy, spatial patterns, processing time. Cartogr. Geogr. Inform. 1996, 23, 128–144. [Google Scholar] [CrossRef]
- Moore, K.; Neugebauer, R.; Lurmann, F.; Hall, J.; Brajer, V.; Alcorn, S.; Tager, I. Ambient ozone concentrations cause increased hospitalizations for asthma in children: An 18-year study in Southern California. Environ. Health Perspect. 2008, 116, 1063. [Google Scholar] [CrossRef] [PubMed]
- Babak, O.; Deutsch, C.V. Statistical approach to inverse distance interpolation. Stoch. Env. Res. Risk Assess 2009, 23, 543–553. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, R.K.; Talbott, E.O.; Zborowski, J.V.; Rager, J.; Arena, V.C.; Volz, C.D. PM10 air pollution exposure during pregnancy and term low birth weight in Allegheny County, PA, 1994–2000. Int. Arch. Occup. Environ. Health 2011, 84, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J. Air pollution removal by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; McPherson, E.G., Nowak, D.J., Rowntree, R.A., Eds.; General Technical Report NE-186; USDA Forest Service: Radnor, PA, USA, 1994; pp. 63–81. [Google Scholar]
- Yang, J.; McBride, J.; Zhoub, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Lovett, G.M. Atmospheric deposition of nutrients and pollutants in North America: An ecological perspective. Ecol. Appl. 1994, 4, 629–650. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Nowak, D.J. Spatial heterogeneity and air pollution removal by an urban forest. Landsc. Urban Plan. 2009, 90, 102–110. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Kroll, C.N.; Nowak, D.J. I-Tree Eco Dry Deposition Model Descriptions; United States Forest Service: Syracuse, NY, USA, 2015. [Google Scholar]
- European Environment Agency (EEA). Costs of Air Pollution from European Industrial Facilities 2008–2012—An Updated Assessment; EEA Technical report No 20/2014; European Environment Agency: Copenhagen, Denmark, 2014. [Google Scholar]
- Bickel, P.; Friedrich, R. ExternE: Externalities of Energy: Methodology 2005 Update; European Commission: Luxembourg, Luxembourg, 2005. [Google Scholar]
- Currie, B.A.; Bass, B. Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst. 2008, 11, 409–422. [Google Scholar] [CrossRef]
- Silli, V.; Salvatori, E.; Manes, F. Removal of airborne particulate matter by vegetation in an urban park in the city of Rome (Italy): An ecosystem services perspective. Ann. Bot. 2015, 5, 53–62. [Google Scholar]
- ISPRA. Available online: http://www.isprambiente.gov.it/public_files/XI-Rapporto-sulla-qualit%C3%A0-ambiente-urbano-2-mar.pdf (accessed on 30 March 2016).
- Cavanagh, J.A.E.; Zawar-Reza, P.; Wilson, J.G. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban For. Urban Green. 2009, 8, 21–30. [Google Scholar] [CrossRef]
- Yang, K.L. Spatial and seasonal variation of PM10 mass concentrations in Taiwan. Atmos. Environ. 2002, 36, 3403–3411. [Google Scholar] [CrossRef]
- Cattani, G.; di Bucchianico, A.D.M.; Dina, D.; Inglessis, M.; Notaro, C.; Settimo, G.; Viviano, G.; Marconi, A. Evaluation of the temporal variation of air quality in Rome, Italy from 1999 to 2008. Ann. Ist. Super. Sanità 2010, 46, 242–253. [Google Scholar] [PubMed]
- Fusaro, L.; Salvatori, E.; Mereu, S.; Silli, V.; Bernardini, A.; Tinelli, A.; Manes, F. Researches in Castelporziano test site: Ecophysiological studies on Mediterranean vegetation in a changing environment. Rend. Lincei 2015, 26, 473–481. [Google Scholar] [CrossRef]
- Attorre, F.; Bruno, M.; Francesconi, F.; Valenti, R.; Bruno, F. Landscape changes of Rome through tree-lined roads. Landsc. Urban Plan. 2003, 49, 115–128. [Google Scholar] [CrossRef]
- Fusaro, L.; Salvatori, E.; Mereu, S.; Marando, F.; Scassellati, E.; Abbate, G.; Manes, F. Urban and peri-urban forests in the metropolitan area of Rome: Ecophysiological response of Quercus ilex L. in two Green Infrastructures in an Ecosystem Services perspective. Urban For. Urban Green. 2015, 14, 1147–1156. [Google Scholar] [CrossRef]
- Manes, F.; De Santis, F.; Giannini, M.A.; Vazzana, C.; Capogna, F.; Allegrini, I. Integrated ambient ozone evaluation by passive samplers and clover biomonitoring mini-stations. Sci. Total Environ. 2003, 308, 133–141. [Google Scholar] [CrossRef]
- Manes, F.; Astorino, G.; Vitale, M.; Loreto, F. Morpho-functional characteristics of Quercus ilex L. leaves of different age and their ecophysiological behaviour during different seasons. Plant Biosyst. 1997, 131, 149–158. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.M. An overview of particulate dry deposition: Measuring methods, deposition velocity and controlling factors. Int. J. Environ. Sci. Technol. 2016, 13, 387–402. [Google Scholar] [CrossRef]
- Sprintsin, M.; Karnieli, A.; Berliner, P.; Rotenberg, E.; Yakir, D.; Cohen, S. Evaluating the performance of the MODIS Leaf Area Index (LAI) product over a Mediterranean dryland planted forest. Int. J. Remote Sens. 2009, 30, 5061–5069. [Google Scholar] [CrossRef]
- Siemens Annual Report 2009. Available online: http://www.siemens.com/annual-report_2009 (accessed on 30 March 2016).
Physiognomic-Structural Categories of Vegetation | Functional Groups |
---|---|
Conifers prevailing and broadleaved species (Pinus pinea, Quercus spp.) | Conifers |
Reafforestation with Italian stone pine (Pinus pinea) | |
Holm oak prevailing (Quercus ilex) | Evergreen broadleaves |
Mediterranean maquis | |
Deciduous woods prevailing (Quercus cerris, Q. frainetto, Q. pubescens, Carpinus spp.) | Deciduous broadleaves |
Chestnut woods (Castanea sativa) | |
Beech woods (Fagus sylvatica) |
Monitoring Station | Class | Annual Mean Concentration Value (µg·m−3) | Annual Range (µg·m−3) |
---|---|---|---|
Francia | Urban traffic | 32 | 84 |
Magna Grecia | Urban traffic | 31 | 72 |
Ciampino | Urban traffic | 32 | 117 |
Fermi | Urban traffic | 31 | 66 |
Tiburtina | Urban traffic | 34 | 93 |
Civitavecchia Villa Albani | Urban traffic | 23 | 63 |
Arenula | Urban background | 29 | 85 |
Cinecittà | Urban background | 35 | 104 |
Civitavecchia | Urban background | 20 | 44 |
Villa Ada | Urban background | 26 | 66 |
Bufalotta | Urban background | 29 | 78 |
Cipro | Urban background | 28 | 75 |
Guidonia | Peri-urban traffic | 28 | 72 |
Cavaliere | Peri-urban background | 27 | 63 |
Malagrotta | Peri-urban background | 24 | 65 |
Colleferro-Oberdan | Industrial/peri-urban background | 30 | 101 |
Colleferro-Europa | Industrial/peri-urban background | 34 | 151 |
Civ. porto | Industrial | 23 | 56 |
Allumiere | Rural background | 10 | 31 |
Castel di Guido | Rural background | 22 | 44 |
Mean PM10 Concentrations (µg·m−3) | Mean LAI (m2·m−2) | |||||
---|---|---|---|---|---|---|
Deciduous | Evergreen | Conifers | Deciduous | Evergreen | Conifers | |
Spring | 23.19 ± 1.04 | 23.18 ± 1.10 | 23.47 ± 0.91 | 3.22 ± 0.76 | 2.92 ± 0.94 | 2.58 ± 1.01 |
Summer | 24.49 ± 0.32 | 24.34 ± 0.67 | 24.23 ± 0.83 | 3.84 ± 1.31 | 3.04 ± 1.37 | 2.65 ± 1.35 |
Autumn | 20.00 ± 1.71 * | 34.24 ± 6.15 | 33.54 ± 3.95 | 2.33 ± 1.04 * | 1.88 ± 1.04 | 2.00 ± 1.20 |
Winter | 33.79 ± 7.54 | 32.71 ± 4.81 | 1.26 ± 0.83 | 1.54 ± 1.11 |
Deciduous | Evergreen | Conifers | |||||||
---|---|---|---|---|---|---|---|---|---|
Mg | Mg·ha−1 | Value (€ 106) | Mg | Mg·ha−1 | Value (€ 106) | Mg | Mg·ha−1 | Value (€ 106) | |
Spring | 2008.56 | 0.022 | 46.18 | 392.94 | 0.019 | 9.03 | 45.48 | 0.015 | 1.05 |
Summer | 3213.52 | 0.035 | 73.88 | 489.85 | 0.023 | 11.26 | 54.03 | 0.018 | 1.24 |
Autumn | 351.78 * | 0.004 * | 8.09 | 278.26 | 0.013 | 6.40 | 43.57 | 0.015 | 1.00 |
Winter | 132.11 | 0.006 | 3.04 | 26.80 | 0.009 | 0.62 | |||
Total | 5573.86 | 0.060 | 128.14 | 1293.16 | 0.061 | 29.73 | 169.88 | 0.058 | 3.91 |
Mean PM10 Concentrations (µg·m−3) | Mean LAI (m2·m−2) | |||||
---|---|---|---|---|---|---|
Deciduous | Evergreen | Conifers | Deciduous | Evergreen | Conifers | |
Spring | 23.58 ± 0.13 | 23.52 ± 0.14 | 23.57 ± 0.14 | 3.88 ± 0.91 | 3.49 ± 0.93 | 3.50 ± 0.77 |
Summer | 24.23 ± 0.12 | 24.16 ± 0.13 | 24.22 ± 0.13 | 4.25 ± 1.11 | 3.56 ± 1.17 | 3.63 ± 0.97 |
Autumn | 19.53 ± 0.21 * | 32.37 ± 0.50 | 32.49 ± 0.46 | 3.99 ± 1.12 * | 3.05 ± 1.02 | 3.46 ± 0.90 |
Winter | 30.95 ± 0.54 | 31.11 ± 0.51 | 2.13 ± 0.89 | 2.63 ± 0.84 |
Deciduous | Evergreen | Conifers | |||||||
---|---|---|---|---|---|---|---|---|---|
Mg | Mg·ha−1 | Value (€ 106) | Mg | Mg·ha−1 | Value (€ 106) | Mg | Mg·ha−1 | Value (€ 106) | |
Spring | 60.74 | 0.032 | 1.40 | 53.18 | 0.026 | 1.22 | 19.48 | 0.026 | 0.45 |
Summer | 75.90 | 0.040 | 1.75 | 58.87 | 0.029 | 1.35 | 22.02 | 0.029 | 0.51 |
Autumn | 18.68 * | 0.010 * | 0.43 * | 56.06 | 0.028 | 1.29 | 25.80 | 0.034 | 0.59 |
Winter | 27.18 | 0.013 | 0.62 | 14.55 | 0.019 | 0.33 | |||
Total | 155.32 | 0.08 | 3.57 | 195.28 | 0.10 | 4.49 | 81.85 | 0.11 | 1.88 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marando, F.; Salvatori, E.; Fusaro, L.; Manes, F. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests 2016, 7, 150. https://doi.org/10.3390/f7070150
Marando F, Salvatori E, Fusaro L, Manes F. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests. 2016; 7(7):150. https://doi.org/10.3390/f7070150
Chicago/Turabian StyleMarando, Federica, Elisabetta Salvatori, Lina Fusaro, and Fausto Manes. 2016. "Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome" Forests 7, no. 7: 150. https://doi.org/10.3390/f7070150