Anthropogenic and Biophysical Factors Associated with Vegetation Restoration in Changting, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection and Pre-Processing of Variables
2.2.1. Fractional Vegetation Coverage (FVC)
2.2.2. Explanatory Factors
Topographic Factors
Climatic Factors
Urbanization
Social-Economic Factors
2.3. Application of Statistical Models
2.3.1. Linear Trend Analysis
2.3.2. Models and Computing Procedures
Multiple Linear Regression
Random Forest
3. Results
3.1. Vegetation Coverage Dynamic Change
3.2. Variable Importance Measurement
3.2.1. Multiple Linear Regression
3.2.2. Random Forest
3.3. Model Fitting Comparison
3.4. Partial Dependence for Important Variables
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Piao, S.L.; Fang, J.Y.; Zhou, L.M.; Guo, Q.H.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Piao, S.L.; Mohammat, A.; Fang, J.Y.; Cai, Q.; Feng, J.M. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Fitter, A.H.; Fitter, R.S.R. Rapid changes in flowering time in British plants. Science 2002, 296, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Nemani, R.R.; Keeling, C.D.; Hirofumi, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.E.; Beurs, K.M.D.; Marshall, M. Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years. Remote Sens. Environ. 2012, 126, 174–183. [Google Scholar] [CrossRef]
- Schulz, J.J.; Luis, C.; Rey-Benayas, J.M.; Boris, S. Factors influencing vegetation cover change in Mediterranean Central Chile (1975–2008). Appl. Veg. Sci. 2011, 14, 571–582. [Google Scholar] [CrossRef]
- Harini, N. Drivers of reforestation in human-dominated forests. Proc. Natl. Acad. Sci. USA 2007, 104, 15218–15223. [Google Scholar] [Green Version]
- Wang, C.; Yang, Y.; Zhang, Y. Economic development, rural livelihoods, and ecological restoration: Evidence from China. Ambio J. Hum. Environ. 2011, 40, 78–87. [Google Scholar] [CrossRef]
- Sasaki, N.; Takahara, H. Late Holocene human impact on the vegetation around Mizorogaike Pond in northern Kyoto Basin, Japan: A comparison of pollen and charcoal records with archaeological and historical data. J. Archaeol. Sci. 2011, 38, 1199–1208. [Google Scholar] [CrossRef]
- Olson, K.C.; Sindelar, B.W. Response of Vegetation of the Northern Great Plains to Precipitation Amount and Grazing Intensity. J. Range Manag. 1985, 38, 357–361. [Google Scholar] [CrossRef]
- Dai, S.P.; Zhang, B.; Wang, H.J.; Wang, Y.M.; Guo, L.X.; Wang, X.M. Vegetation cover change and the driving factors over northwest China. J. Arid Land 2011, 3, 25–33. [Google Scholar]
- Wang, C.; Yang, Y.; Zhang, Y. Cost-effective targeting soil and water conservation: A case study of Changting county in southeast China. Land Degrad. Dev. 2016, 27, 387–394. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, L.; Qiu, Y.; Ji, L.; Tian, F. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 2013, 8, 56–73. [Google Scholar] [CrossRef]
- Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Yang, X.; Zhong, B.; Xie, X. Soil Erosion and Conservation in Red-Soil Hill Area; China Agricultural Press: Beijing, China, 2005. [Google Scholar]
- Chen, Z. Desertification induced by water erosion and its combat of Hetian town in Changding County, Fujian province. Prog. Geogr. 1998, 64, 834–841. [Google Scholar]
- Zeng, J.; Zhong, B. Historical changes in strategies to control soil and water erosion in Changting County. Fujian Soil Water Conserv. 2002, 14, 37–39. [Google Scholar]
- Zhou, W.; Wang, X.; Wu, Z.; Liu, Y. Spatio-temporal variation of the soil and water loss in Changting County of granite red soil eroded area of southern China from 1988 to 2013. Sci. Soil Water Conserv. 2016, 14, 49–58. [Google Scholar]
- Echeverria, C.; Coomes, D.; Salas, J.; Rey-Benayas, J.M.; Lara, A.; Newton, A. Rapid deforestation and fragmentation of Chilean Temperate Forests. Biol. Conserv. 2006, 130, 481–494. [Google Scholar] [CrossRef]
- Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Predicting spatial patterns of fire on a southern California landscape. Int. J. Wildl. Fire 2008, 17, 602–613. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Tigabu, M.; Yang, X.; Lin, F.; Liang, H.; Wang, G.; Fetting, C.J.; Martin, T.A. Spatial modelling of fire drivers in urban-forest ecosystems in China. Forests 2017, 8, 180. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; Wilgen, B.W.V.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in southern Africa. Glob. Chang. Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. Mach. Learn. 2011, 45, 157–176. [Google Scholar]
- Cao, S.; Zhong, B.; Yue, H.; Zeng, H.; Zeng, J. Development and testing of a sustainable environmental restoration policy on eradicating the poverty trap in China’s Changting County. Proc. Natl. Acad. Sci. USA 2009, 106, 10712–10716. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Zhang, Y. Rural household livelihood change, fuel wood substitution, and hilly ecosystem restoration: Evidence from China. Renew. Sustain. Energy Rev. 2012, 16, 2475–2482. [Google Scholar] [CrossRef]
- Purevdor, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Si, H.; Lai, Q.; Ma, Q. Dynamics of fractional vegetation coverage and its relationship with climate and human activities in Inner Mongolia, China. Remote Sens. 2016, 8, 776. [Google Scholar] [CrossRef]
- Gutam, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR Data for use in numerical weather prediction models. Int. J. Remote Sens. 1997, 19, 1533–1543. [Google Scholar]
- Liu, C.L.; Fan, R.H.; Wu, J.J.; Yan, F. Temporal lag of grassland vegetation growth response to precipitation in Xilinguolemeng. J. Arid Land 2009, 32, 512–518. [Google Scholar]
- Dai, L.; Zhang, L.; Wang, K.; Wang, R.L. Response of Vegetation to Climate Change in the Drylands of East Asia. Earth Environ. Sci. 2014, 17, 682–691. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Chen, X.; Hu, B.; Yu, R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Glob. Chang. Biol. 2005, 11, 1118–1130. [Google Scholar] [CrossRef]
- Chang, C.T.; Wang, H.C.; Huang, C. Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia. Environ. Res. Lett. 2013, 8, 925–932. [Google Scholar] [CrossRef]
- Luck, G.W.; Smallbone, L.T.; O’Brien, R. Socio-economics and vegetation change in urban ecosystems: Patterns in space and time. Ecosystems 2009, 12, 604–620. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef]
- Han, G.F.; Xu, J.H. Influence of population and economic development on vegetation—A case study in Chongqing city. Resour. Environ. Yangtze Basin 2008, 17, 785–792. [Google Scholar]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Feidas, H.; Makrogiannis, T.; Borasenta, E. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor. Appl. Climatol. 2004, 79, 185–208. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Guo, F.T.; Selvalakshmi, S.; Lin, F.F.; Wang, G.Y.; Wang, W.H.; Su, Z.W.; Liu, A.Q. Geospatial information on geographical and human factors improved anthropogenic fire occurrence modeling in the Chinese boreal forest. Can. J. For. Res. 2016, 46, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhang, L.J. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in northeastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Gromping, U. Relative Importance for Linear Regression in R: The Package relaimpo. J. Stat. Softw. 2006, 17, 925–933. [Google Scholar] [CrossRef]
- Lindeman, R.H.; Merenda, P.F.; Gold, R.Z. Introduction to Bivariate and Multivariate Analysis; Scott Foresman: Glenview, IL, USA, 1980; Volume 76, pp. 375–380. [Google Scholar]
- Mikelbank, B.A. Quantitative Geography: Perspectives on Spatial Data Analysis, by A. S. Fotheringham, C. Brunsdon, and M. Charlton. Geogr. Anal. 2001, 33, 370–372. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dube, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Ahmed, F.B.; Ismail, R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. J. Remote Sens. 2013, 34, 712–728. [Google Scholar] [CrossRef]
- Marston, C.G.; Danson, F.M.; Armitage, R.P.; Giraudoux, P.; Pleydell, D.R.J.; Wang, Q.; Qui, J.M.; Craig, P.S. A random forest approach for predicting the presence of Echinococcus multilocularis intermediate host Ochotona spp. presence in relation to landscape characteristics in western China. Appl. Geogr. 2014, 55, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.J.; Tibshirani, R.J.; Friedman, J.H. The Elements of Statistical Learning; Springer: New York, NY, USA, 2000. [Google Scholar]
- Cutler, D.R.; Edwards, T.J.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Shi, H.D.; Wang, X.R. Impact of Climate Change and Human Activities on Vegetation Coverage in the Mongolian Plateau. Arid Zone Res. 2014, 31, 604–610. [Google Scholar]
- Li, S.; Yang, S.; Liu, X.; Liu, Y.; Shi, M. NDVI-Based Analysis on the Influence of Climate Change and Human Activities on Vegetation Restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Chen, A.; Wang, H.; Wang, Q. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China. Remote Sens. 2015, 7, 9998–10016. [Google Scholar] [CrossRef] [Green Version]
- Swemmer, A.M.; Knapp, A.K.; Snyman, H.A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 2007, 95, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Sherry, R.; Arnone, J.A., III; Johnson, D.W.; Schimel, D.S.; Verburg, P.S.; Wallace, L.L.; Luo, Y.Q. Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob. Chang. Biol. 2008, 14, 2923–2936. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.J.; Cai, Y.L. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environ. Geol. 2008, 54, 1185–1195. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Zhou, L.; Myneni, R.B.; Tucker, C.J.; Slayback, D.; Shabanov, N.V.; Pinzon, J. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett. 2003, 30, 2147–2151. [Google Scholar] [CrossRef]
- Nie, Q.; Xu, J. The relationship between vegetation coverage and climate elements in Yellow River Basin, China. PeerJ. 2013. [Google Scholar] [CrossRef]
- Nkonya, E.; Gerber, N.; Baumgartner, P.; Braun, V.J.; Pinto, D.A.; Graw, V.; Kato, E.; Kloos, J.; Walter, T. The Economics of Desertification, Land Degradation, and Drought toward an Integrated Global Assessment. Social Science Electronic Publishing. 2011. Available online: https://ideas.repec.org/p/ags/ubzefd/109326.html (accessed on 20 May 2018).
- Xin, Z.B.; Xu, J.X. Spatial and temporal evolution of vegetation cover in the Loess Plateau and its response to climate change. Prog. Nat. Sci. 2007, 17, 770–778. [Google Scholar]
- Mehrjardi, R.T.; Akbarzadeh, A.; Biniyaz, M.; Mahmoodi, S.; Chahouki, M.A.Z. Studying the effect of elevation and edaphic variables on vegetation composition in Khezrabad 579 rangelands using principal component analysis (PCA). Analele Univ. Oradea Fascicula Biologie 2009, 16, 155–161. [Google Scholar]
- Volařík, D. Application of digital elevation model for mapping vegetation tiers. J. For. Sci. 2010, 56, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt-Römermann, M.; Stadler, J. Functional traits and local environment predict vegetation responses to disturbance: A pan-European multi-site experiment. J. Ecol. 2011, 99, 777–787. [Google Scholar] [CrossRef]
- Pozzi, F.; Small, C. Vegetation and population density in urban and suburban areas in the USA. In Proceedings of the Third International Symposium of Remote Sensing of Urban Areas, Istanbul, Turkey, 11–13 June 2002; Volume 3, pp. 489–496. [Google Scholar]
- Traore, S.S.; Forkuo, E.K.; Pierre, C.S.; Landmann, T.T. Assessing the inter-relationship between vegetation productivity, rainfall, population and land cover over the Bani River Basin in Mali (West Africa). IOSR J. Eng. 2015, 5, 10–18. [Google Scholar]
- Bonan, G.B. Effects of Land Use on the Climate of the United States. Clim. Chang. 1997, 37, 449–486. [Google Scholar] [CrossRef]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change-current and new directions. Landsc. Ecol. 2004, 19, 857–868. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P.; Rui, L.I. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 2012, 27, 120–127. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; Liu, J.; He, B.; Lei, T.; Wang, Q. Increasing terrestrial vegetation activity of ecological restoration program in the Beijing–Tianjin Sand Source Region of China. Ecol. Eng. 2013, 52, 37–50. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Wang, K.; Xiao, L. Is forest restoration in the southwest china karst promoted mainly by climate change or human-induced factors? Remote Sens. 2014, 6, 9895–9910. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Minimum/Maximum | Unite | Code | Resolution/Scale | Source and Reference |
---|---|---|---|---|---|---|
Topographic | Elevation | 253/1270 | m | Elev | Raster/25 m | National Administration of Surveying, Mapping and Geoinformation of China, 2002 |
Slope | 0/34 | ° | slope | Raster/25 m | ||
North | 0/90 | % | North | Raster/25 m | ||
West | 0/100 | % | West | Raster/25 m | ||
East | 0/71 | % | East | Raster/25 m | ||
South | 0/50 | % | South | Raster/25 m | ||
Climatic | Average temperature (the year) | 13/20 | °C | Tem1_avg | Raster/1 km | A Statistical Downscaling Approach of NCEP/NCAR Reanalysis Temperature Data (J). Journal of Geo-Information Science, 2013, 15 (6). |
Average precipitation (the year) | 93/383 | mm | Pre1_avg | Raster/1 km | ||
Average relative humidity (the year) | 76/97 | % | Rhm1_avg | Raster/1 km | ||
Average temperature (one year prior to the year) | 13/20 | °C | Tem0_avg | Raster/1 km | ||
Average precipitation (one year prior to the year) | 93/380 | mm | Pre0_avg | Raster/1 km | ||
Urbanization | Density road | 0/665,506 | m/km2 | Den_road | Vector/1:250,000 | National Administration of Surveying, Mapping and Geoinformation of China, 2002 |
Density river | 0/578,622 | m/km2 | Den_river | Vector/1:250,000 | ||
Density settlement | 0/1,000,000 | m2/km2 | Den_settlement | Vector/1:250,000 | ||
Demographic | Density of population | 0/12,944 | Person/km2 | Den_Pop | Raster/1 km | Data Sharing Infrastructure of Earth System Science (http://www.geodata.cn/Portal/index.jsp), 2010 |
Economic | Per capital GDP | 0/8938 | RMB/km2 | CGDP | Raster/1 km | |
sown area of the crops | 54/338 | ha | Crop area | Global data | Fujian Provincial Burean of Statistics (http://www.stats-fj.gov.cn/) | |
local fiscal expenditure | 16,296/113,395 | RMB | Fis_expenditure | Global data | ||
Water conservation activities income | 20/71 | Million RMB | Income for conservation | Global data | Development and testing of a sustainable environmental restoration policy on eradicating the poverty trap in China’s Changting County, 2007 |
Type of FVC Change | Percentage of Each Change Type (%) | Average θslope |
---|---|---|
Decrease | 7.10 | −0.0073 |
No change | 5.04 | 0.0007 |
Increase | 87.86 | 0.1423 |
Variable | p-Value Min | p-Value Max | No. Sample Sig. | VIF | Lmg (%) |
---|---|---|---|---|---|
Crop area | <0.0001 | <0.0001 | 5 | 1.278 | 25.822 |
Fis_expenditure | <0.0001 | <0.0001 | 5 | 1.355 | 18.352 |
tem0_avg | <0.0001 | <0.0001 | 5 | 5.830 | 16.731 |
slope | <0.0001 | <0.0001 | 5 | 2.058 | 11.352 |
pre0_avg | <0.0001 | 0.210 | 2 | 1.810 | 9.059 |
Elev | <0.0001 | <0.0001 | 5 | 6.468 | 6.025 |
Tem1_avg | <0.0001 | <0.0001 | 5 | 5.912 | 6.024 |
Rhm1_avg | <0.0001 | 0.365 | 1 | 2.368 | 1.472 |
Den_Pop | <0.0001 | 0.092 | 4 | 1.702 | 1.390 |
Pre1_avg | <0.0001 | <0.0001 | 5 | 2.520 | 1.214 |
CGDP | <0.0001 | <0.0001 | 5 | 1.770 | 1.016 |
Den_road | <0.0001 | 0.383 | 4 | 1.174 | 0.731 |
Den_settlement | 0.129339 | 0.293 | 0 | 1.298 | 0.339 |
Den_river | <0.0001 | <0.0001 | 5 | 1.015 | 0.338 |
West | 0.005747 | 0.408 | 3 | 2.921 | 0.043 |
East | 0.139433 | 0.980 | 0 | 2.840 | 0.042 |
North | 0.0482 | 0.532 | 1 | 2.550 | 0.032 |
South | 0.058775 | 0.777 | 0 | 2.253 | 0.019 |
Variables | Estimate | Std. Error | t Value | Pr (>|t|) | Lmg (%) |
---|---|---|---|---|---|
Intercept | 0.4963 | 0.0006 | 844.3940 | p < 0.001 | |
Crop area | −0.0815 | 0.0007 | −123.7490 | p < 0.001 | 25.63 |
Fis_expenditure | 0.0767 | 0.0006 | 121.8950 | p < 0.001 | 24.24 |
tem0_avg | −0.1354 | 0.0019 | −72.7350 | p < 0.001 | 15.53 |
slope | 0.0472 | 0.0009 | 55.4600 | p < 0.001 | 11.27 |
pre0_avg | −0.0020 | 0.0008 | −2.3890 | 0.0169 | 8.78 |
Elev | −0.0478 | 0.0016 | −29.4130 | p < 0.001 | 5.89 |
Tem1_avg | 0.0362 | 0.0019 | 19.4110 | p < 0.001 | 5.69 |
Den_Pop | −0.0034 | 0.0007 | −4.5470 | p < 0.001 | 1.52 |
CGDP | −0.00032 | 0.00001 | −16.432 | p < 0.001 | 1.32 |
Variables | Average Mean Decrease in Accuracy (%) |
---|---|
slope | 151.427 |
Den_Pop | 136.401 |
CGDP | 131.357 |
Tem1_avg | 114.534 |
tem0_avg | 105.845 |
Elev | 85.919 |
Rhm1_avg | 83.622 |
Crop area | 79.045 |
Pre1_avg | 79.031 |
pre0_avg | 61.388 |
Income for conservation | 53.236 |
Fis_expenditure | 50.524 |
Sample | Adjusted R2 | Variance Explained (%) | Correlation Obs vs. Pre |
---|---|---|---|
Sample 1 | 0.7355 | 73.57 | 0.858 |
Sample 2 | 0.7067 | 70.7 | 0.841 |
Sample 3 | 0.7089 | 70.92 | 0.842 |
Sample 4 | 0.7035 | 70.37 | 0.839 |
Sample 5 | 0.7037 | 70.39 | 0.839 |
Sample | Variance Explained (%) | Mean Squared | Correlation Obs vs. Pre |
---|---|---|---|
Sample 1 | 89.15 | 0.003916185 | 0.938 |
Sample 2 | 87.79 | 0.00458418 | 0.932 |
Sample 3 | 88.00 | 0.004492208 | 0.946 |
Sample 4 | 87.74 | 0.004550245 | 0.928 |
Sample 5 | 87.75 | 0.0045971 | 0.937 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ma, X.; Moazzam Nizami, S.; Tian, C.; Guo, F. Anthropogenic and Biophysical Factors Associated with Vegetation Restoration in Changting, China. Forests 2018, 9, 306. https://doi.org/10.3390/f9060306
Wang W, Ma X, Moazzam Nizami S, Tian C, Guo F. Anthropogenic and Biophysical Factors Associated with Vegetation Restoration in Changting, China. Forests. 2018; 9(6):306. https://doi.org/10.3390/f9060306
Chicago/Turabian StyleWang, Wenhui, Xiangqing Ma, Syed Moazzam Nizami, Chao Tian, and Futao Guo. 2018. "Anthropogenic and Biophysical Factors Associated with Vegetation Restoration in Changting, China" Forests 9, no. 6: 306. https://doi.org/10.3390/f9060306