Exploring the Roles of Local Mobility Patterns, Socioeconomic Conditions, and Lockdown Policies in Shaping the Patterns of COVID-19 Spread
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Santiago Metropolitan Region Mobility Patterns
3.2. Considering the Impact of Restriction Measures on Mobility by Using the Mobility Index
3.3. Urban Public Transport Seeded the COVID-19 Pandemic across the Santiago Metropolitan Region
3.4. The Role of Confinement Measures in the Local Evolution of the Pandemic
3.5. Assessment of the Timely Lifting of Quarantine Measures through Augmented Synthetic Control Method
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MR | Metropolitan Region of Santiago de Chile |
DTW | Dynamic Time Warping |
CVI | Cluster Validity Indices |
PCR | Polymerase Chain Reaction |
ASCM | Augmented Synthetic Control Method |
Appendix A. Timeline of Major Events Related to Confinement Measures for Communes in the Metropolitan Region of Santiago from 26 March 2020 to 28 September 2020
Appendix B. Regression Coefficients
Coefficients: | ||||
Estimate | Std. Error | t value Pr(>|t|) | ||
(Intercept) | -175.865 | 43.281 | -4.063 0.000354 *** | |
MobIn | 22.627 | 2.272 | 9.957 1.06e-10 *** | |
MobOut | 6.989 | 6.385 | 1.095 0.283061 | |
Flow | 51.454 | 12.228 | 4.208 0.000240 *** | |
Score | 1.210 | 0.483 | 2.506 0.018292 * | |
MobOut:Flow | -7.276 | 1.738 | -4.186 0.000255 *** | |
--- | ||||
Signif. codes: | 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘~’ 1 | |||
Residual standard error: 25.67 on 28 degrees of freedom | ||||
Multiple R-squared: 0.8574, Adjusted R-squared: 0.832 | ||||
F-statistic: 33.68 on 5 and 28 DF, p-value: 5.178e-11 |
References
- Chang, S.; Pierson, E.; Koh, P.W. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 2021, 589, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Hackl, J.; Dubernet, T. Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models. Future Internet 2019, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Dorn, A.V.; Cooney, R.E.; Sabin, M.L. COVID-19 exacerbating inequalities in the US. Lancet 2020, 395, 1243–1244. [Google Scholar] [CrossRef]
- Badr, H.S. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1247–1254. [Google Scholar] [CrossRef]
- Chu, I.Y.-H.; Prima, A.; Heidi, J.L.; Leesa, L. Social consequences of mass quarantine during epidemics: A systematic review with implications for the COVID-19 response. J. Travel Med. 2020, 27, taaa192. [Google Scholar] [CrossRef]
- Kraemer, M.U.G. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Buckee, C.O. Aggregated mobility data could help fight COVID-19. Science 2020, 368, 145–146. [Google Scholar] [CrossRef] [Green Version]
- Glaeser, E.L.; Gorback, C.S.; Redding, S.J. How Much does COVID-19 Increase with Mobility? Evidence from New York and Four Other U.S. Cities; Working Paper 27519; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Engle, S.; Stromme, J.; Zhou, A. Staying at Home: Mobility Effects of COVID-19. Available online: https://voxeu.org/article/staying-home-mobility-effects-covid-19 (accessed on 26 April 2021).
- Bajardi, P.; Poletto, C.; Ramasco, J.J.; Tizzoni, M.; Colizza, V.; Vespignani, A. Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PLoS ONE 2011, 6, e16591. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Qian, L.X.; Hu, J.Q. COVID-19 Pandemic with Human Mobility Across Countries. J. Oper. Res. Soc. China 2020. [Google Scholar] [CrossRef]
- Grantz, K.H.; Meredith, H.R.; Cummings, D.A.T. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nat. Commun. 2020, 11, 4961. [Google Scholar] [CrossRef]
- Gozzi, N.; Tizzoni, M.; Chinazzi, M.; Ferres, L.; Vespignani, A.; Perra, N. Estimating the effect of social inequalities in the mitigation of COVID-19 across communities in Santiago de Chile. medRxiv 2020, 8, 20204750. [Google Scholar] [CrossRef]
- Tatem, A.J. Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malar. J. 2014, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Peak, C.M. Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: Use of mobile phone data. Int. J. Epidemiol. 2018, 47, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Oliver, N. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv. 2020, 6, eabc0764. [Google Scholar] [CrossRef] [PubMed]
- Pollina, E.; Busvine, D. European mobile operators share data for coronavirus fight. Reuters 2020, 37, 1. [Google Scholar]
- Blondel, V.D.; Decuyper, A.; Krings, G. A survey of results on mobile phone datasets analysis. EPJ Data Sci. 2015, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Kimberley, C.; Haosheng, H.; Horn, C.; Kasanicky, I.; Weibel, R. Inferring fine-grained transport modes from mobile phone cellular signaling data. Comput. Environ. Urban Syst. 2019, 77, 101348. [Google Scholar] [CrossRef]
- Bachir, D.; Khodabandelou, G.; Gauthier, V.; El Yacoubi, M.; Puchinger, J. Inferring dynamic origin-destination flows by transport mode using mobile phone data. Transport. Res. Part C Emerg. Technol. 2019, 101, 254–275. [Google Scholar] [CrossRef] [Green Version]
- Silm, S.; Järv, O.; Masso, A. Tracing human mobilities through mobile phones. In Handbook of Research Methods and Applications for Mobilities; Büschner, M., Freudendal-Pedersen, M., Kesselring, S., Kristensen, N.G., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2020; pp. 303–323. [Google Scholar]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Chinazzi, M. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Dehning, J.; Zierenberg, J.; Spitzner, F.P.; Wibral, M.J.; Pinheiro, J.; Wilczek, M.; Priesemann, V. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 2020. [Google Scholar] [CrossRef]
- Eichner, M.; Schwehm, M.; Wilson, N.; Baker, M.G. Small Islands and Pandemic Influenza: Potential Benefits and Limitations of Travel Volume Reduction as a Border Control Measure. BMC Infect. Dis. 2009. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Ajala, O.A. Do lock-downs and testing help in curving COVID-19 transmission? COVID Economics. CEPR 2020, 13, 138–156. [Google Scholar]
- Cetron, M.; Landwirth, J. Public health and ethical considerations in planning for quarantine. Yale J. Biol. Med. 2005, 78, 329. [Google Scholar] [PubMed]
- Onishi, N. As Ebola Grips Liberia’s Capital, a Quarantine Sows Social Chaos. Available online: https://www.nytimes.com/2014/08/29/world/africa/in-liberias-capital-an-ebola-outbreak-like-no-other.html (accessed on 26 April 2021).
- Arino, J.; Jordan, R.; Van den Driessche, P. Quarantine in a multi-species epidemic model with spatial dynamics. Math. Biosci. 2007, 206, 46–60. [Google Scholar] [CrossRef]
- Epstein, J.M.; Goedecke, D.M.; Yu, F.; Morris, R.J.; Wagener, D.K.; Bobashev, G.V. Controlling pandemic flu: The value of international air travel restrictions. PLoS ONE 2007, 2, e401. [Google Scholar] [CrossRef] [PubMed]
- Colizza, V.; Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 2008, 251, 450–467. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, B.; Castillo-Chavez, C.; Perrings, C. Mobility restrictions for the control of epidemics: When do they work? PLoS ONE 2020, 15, e0235731. [Google Scholar] [CrossRef] [PubMed]
- Poom, A.; Järv, O.; Zook, M.; Toivonen, T. COVID-19 is spatial: Ensuring that mobile Big Data is used for social good. Big Data Soc. 2020. [Google Scholar] [CrossRef]
- Google Local Mobility Reports. Available online: https://www.google.com/covid19/mobility/ (accessed on 9 April 2021).
- Moovitap Public Transit Statistics by Country and City. Available online: https://moovitapp.com/insights/en/Moovit_Insights_Public_Transit_Index-countries (accessed on 9 April 2021).
- Apple Mobility Trends Reports. Available online: https://covid19.apple.com/mobility (accessed on 9 April 2021).
- What Can Traffic Data Tell Us about the Impact of the Coronavirus? Available online: https://www.tomtom.com/blog/moving-world/covid-19-traffic/ (accessed on 9 April 2021).
- de Salud, M. MINSAL. Decimoséptimo Informe Epidemiológico Enfermedad por COVID-19. Departamento de Epidemiología. Available online: https://www.minsal.cl/wp-content/uploads/2020/05/Informe_EPI_15-05-20.pdf (accessed on 26 April 2021).
- World Health Organization. COVID-19 Strategic Preparedness and Response Plan: Country Preparedness and Response Status for COVID-19; WHO: Geneva, Swizterland, 9 June 2020; Available online: https://www.who.int/publications/i/item/updated-country-preparedness-and-response-status-for-covid-19-as-of-9-june-2020 (accessed on 26 April 2021).
- Step by Step Plan Government of Chile. Available online: https://www.gob.cl/coronavirus/pasoapaso/ (accessed on 9 April 2021).
- Available online: https://interactives.lowyinstitute.org/features/covid-performance/ (accessed on 26 April 2021).
- Grandata. Available online: https://covid.grandata.com (accessed on 26 April 2021).
- COVID-19 Data, Ministry of Sciences of Chile. Available online: https://github.com/MinCiencia/Datos-COVID19/blob/master/output/producto1/Covid-19.csv (accessed on 26 April 2021).
- Available online: http://www.dtpm.gob.cl/index.php/documentos/matrices-de-viaje (accessed on 26 April 2021).
- Mobility and COVID-19 Data, Ministry of Sciences of Chile. Available online: https://github.com/MinCiencia/Datos-COVID19/tree/master/output/producto33 (accessed on 26 April 2021).
- Universidad del Desarrollo. Indice de Mobilidad Pandemia COVID-19. Technical Report Instituto Data Science; Universidad del Desarrollo and Telefonica: Loreto Bravo, Chile, 2020. [Google Scholar]
- Centro de Inteligencia Territorial 2012; Universidad Adolfo Ibanez: Santiago, Chile, 2012.
- H3 Geospatial Indexing System. Available online: https://h3geo.org/docs (accessed on 9 April 2021).
- Munizaga, M.A.; Palma, C. Estimation of a disaggregate multimodal public transport Origin–Destination matrix from passive smartcard data from Santiago, Chile. Transport. Res. Part C Emerg. Technol. 2012, 24, 9–18. [Google Scholar] [CrossRef]
- Gschwender, A.; Munizaga, M.; Simonetti, C. Using smart card and GPS data for policy and planning: The case of Transantiago. Res. Transport. Econ. 2016, 59, 242–249. [Google Scholar] [CrossRef]
- Set of Authorized, in Santiago, Cell-Phone Antennas. Available online: http://datos.gob.cl/dataset/2019 (accessed on 26 April 2021).
- Available online: https://www.subtel.gob.cl/estudios-y-estadisticas/telefonia/ (accessed on 26 April 2021).
- Available online: http://datascience.udd.cl/movilidad/ (accessed on 9 April 2021).
- Aghabozorgi, S.; Ali Seyed, S.; Teh, Y.W. Time-Series Clustering? A Decade Review. Inform. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Johnpaul, C.; Prasad, M.V.; Nickolas, S.; Gangadharan, G. Trendlets: A novel probabilistic representational structures for clustering the time series data. Expert Syst. Appl. 2020, 145, 113119. [Google Scholar] [CrossRef]
- Paparrizos, J.; Gravano, L. Fast and accurate time-series clustering. ACM Trans. Database Syst. 2017, 42, 8:1–8:49. [Google Scholar] [CrossRef]
- Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, J.; Keogh, E. Searching and mining trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 262–270. [Google Scholar] [CrossRef] [Green Version]
- Giorgino, T.; Tormene, P. dtw: Dynamic Time Warping Algorithms. Available online: http://CRAN.R-project.org/package=dtw (accessed on 9 April 2021).
- Available online: https://cran.r-project.org/web/packages/dtwclust/index.html (accessed on 9 April 2021).
- Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Perez, J.M.; Perona, I. An extensive comparative study of cluster validity indices. Pattern Recog. 2013, 46, 243–256. [Google Scholar] [CrossRef]
- Saitta, S.; Raphael, B.; Smith, I.F. A bounded index for cluster validity. In International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2007; pp. 174–187. [Google Scholar]
- Kim, M.; Ramakrishna, R.S. New indices for cluster validity assessment. Pattern Recog. Lett. 2005, 26, 2353–2363. [Google Scholar] [CrossRef]
- Jia, J.S. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 528, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, L.; Brockmann, D.; Geisel, T. Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 2004, 101, 15124–15129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, S.; Kandula, S.; Shaman, J. Differential Effects of Intervention Timing on COVID-19 Spread in the United States. medRxiv 2020. [Google Scholar] [CrossRef]
- Bennett, M. All things equal? Heterogeneity in policy effectiveness against COVID-19 spread in chile. World Dev. 2021, 137. [Google Scholar] [CrossRef]
- Abadie, A.; Diamond, A.; Hainmueller, J. Comparative politics and the synthetic control method. Am. J. Political Sci. 2015, 59, 495–510. [Google Scholar] [CrossRef]
- Ben-Michael, E.; Feller, A.; Rothstein, J. The Augmented Synthetic Control Method. Available online: https://arxiv.org/pdf/1811.04170.pdf (accessed on 26 April 2021).
- New England Complex Systems Institute. Countries Beating COVID-19. EndCoronavirus.org. 2021. Available online: https://www.endcoronavirus.org/countries#winning (accessed on 3 February 2021).
Num. of Clusters | Sil | SF | CH | DB | DBstar | D | COP |
---|---|---|---|---|---|---|---|
2 | 0.8 | 0.0 | 158.6 | 0.2 | 0.2 | 0.1 | 0.1 |
3 | 0.6 | 0.0 | 94.0 | 0.2 | 0.3 | 0.1 | 0.1 |
4 | 0.7 | 0.0 | 134.1 | 0.3 | 0.4 | 0.1 | 0.1 |
5 | 0.7 | 0.0 | 140.6 | 0.3 | 0.3 | 0.1 | 0.0 |
6 | 0.6 | 0.0 | 128.5 | 0.3 | 0.4 | 0.1 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, M.; Godoy-Faúndez, A. Exploring the Roles of Local Mobility Patterns, Socioeconomic Conditions, and Lockdown Policies in Shaping the Patterns of COVID-19 Spread. Future Internet 2021, 13, 112. https://doi.org/10.3390/fi13050112
Herrera M, Godoy-Faúndez A. Exploring the Roles of Local Mobility Patterns, Socioeconomic Conditions, and Lockdown Policies in Shaping the Patterns of COVID-19 Spread. Future Internet. 2021; 13(5):112. https://doi.org/10.3390/fi13050112
Chicago/Turabian StyleHerrera, Mauricio, and Alex Godoy-Faúndez. 2021. "Exploring the Roles of Local Mobility Patterns, Socioeconomic Conditions, and Lockdown Policies in Shaping the Patterns of COVID-19 Spread" Future Internet 13, no. 5: 112. https://doi.org/10.3390/fi13050112