Rod-Shaped Starch from Galanga: Physicochemical Properties, Fine Structure and In Vitro Digestibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Native Starches from the Rhizomes
2.3. Proximate Analysis and Amylose Content
2.4. Morphological Characterization
2.4.1. Polarized Light Microscopy Analysis (PM)
2.4.2. Scanning Electron Microscopy Analysis (SEM)
2.4.3. Confocal Laser Scanning Microscopy Analysis (CLSM)
2.5. Granule Size Distribution
2.6. Multi-Scale Structure Analysis
2.6.1. Crystalline Structure: X-ray Diffraction (XRD)
2.6.2. Short-Range Ordered Structure: Fourier-Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy
2.7. Molecular Structure: Size-Exclusion Chromatography (SEC)
2.8. Physicochemical Properties
2.8.1. Solubility (SOL) and Swelling Power (SP)
2.8.2. Pasting Property
2.8.3. Thermal Property
2.8.4. Rheological Properties of Starch Gels
2.9. In Vitro Digestibility
2.10. Statistical Analysis
3. Results and Discussion
3.1. Yield, Proximate Analysis and Amylose Content
3.2. Morphological Characteristics and Granule Size Distribution
3.3. Multi-Scale Structure
3.3.1. Crystalline Structure
3.3.2. Short-Range Ordered Structure
3.3.3. SEC
3.4. Physicochemical Properties
3.4.1. Swelling Power (SP) and Solubility (SOL)
3.4.2. Pasting Property
3.4.3. Thermal Property
3.4.4. Rheological Properties
3.5. In Vitro Digestibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tetlow, I.J.; Bertoft, E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int. J. Mol. Sci. 2020, 21, 7011. [Google Scholar] [CrossRef] [PubMed]
- Delcour, J.A.; Bruneel, C.; Derde, L.J.; Gomand, S.V.; Pareyt, B.; Putseys, J.A.; Wilderjans, E.; Lamberts, L. Fate of starch in food processing: From raw materials to final food products. Annu. Rev. Food Sci. Technol. 2010, 1, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Kalita, P.; Sen, S. Natural Starch in Biomedical and Food Industry: Perception and Overview. Curr. Drug Discov. Technol. 2019, 16, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Adewale, P.; Yancheshmeh, M.S.; Lam, E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr. Polym. 2022, 291, 119590. [Google Scholar] [CrossRef] [PubMed]
- Daza, L.D.; Umaña, M.; Simal, S.; Váquiro, H.A.; Eim, V.S. Non-conventional starch from cubio tuber (Tropaeolum tuberosum): Physicochemical, structural, morphological, thermal characterization and the evaluation of its potential as a packaging material. Int. J. Biol. Macromol. 2022, 221, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, H.; Zhang, Y.; Yan, S.; Chen, X.; Gao, X. Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Comput. Struct. Biotechnol. J. 2023, 21, 4172–4186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-Q.; Liu, H.; He, M.-X.; Wang, R.; Zeng, Q.-Q.; Wang, Y.; Ye, W.-C.; Zhang, Q.-W. Chapter 11—A Review of the Botany, Phytochemical, and Pharmacological Properties of Galangal. In Natural and Artificial Flavoring Agents and Food Dyes; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 351–396. [Google Scholar] [CrossRef]
- Ly, T.N.; Yamauchi, R.; Shimoyamada, M.; Kato, K. Isolation and Structural Elucidation of Some Glycosides from the Rhizomes of Smaller Galanga (Alpinia officinarum Hance). J. Agric. Food Chem. 2002, 50, 4919–4924. [Google Scholar] [CrossRef] [PubMed]
- Bitari, A.; Oualdi, I.; Touzani, R.; Elachouri, M.; Legssyer, A. Alpinia officinarum Hance: A mini review. Mater. Today: Proc. 2023, 72, 3869–3874. [Google Scholar] [CrossRef]
- Ramanunny, A.K.; Wadhwa, S.; Gulati, M.; Vishwas, S.; Khursheed, R.; Paudel, K.R.; Gupta, S.; Porwal, O.; Alshahrani, S.M.; Jha, N.K.; et al. Journey of Alpinia galanga from kitchen spice to nutraceutical to folk medicine to nanomedicine. J. Ethnopharmacol. 2022, 291, 115144. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H. Official and standardized methods of analysis (3rd ed). Trends Food Sci. Technol. 1995, 6, 382–383. [Google Scholar] [CrossRef]
- Lei, X.; Xu, J.; Han, H.; Zhang, X.; Li, Y.; Wang, S.; Li, Y.; Ren, Y. Fine molecular structure and digestibility changes of potato starch irradiated with electron beam and X-ray. Food Chem. 2024, 439, 138192. [Google Scholar] [CrossRef] [PubMed]
- Chiranthika, N.N.G.; Chandrasekara, A.; Gunathilake, K.D.P.P. Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocoll. 2022, 124, 107272. [Google Scholar] [CrossRef]
- Wang, Z.; Han, M.; Liu, Y.; Wu, Y.; Ouyang, J. Insights into the multiscale structure and thermal characteristics of chestnut starch. J. Food Compos. Anal. 2023, 115, 104973. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, W.; Chang, Q.; Zhang, Y.; Zheng, B.; Zeng, H. Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: A comparative study. Int. J. Biol. Macromol. 2020, 144, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-Y.; Chen, P.-X.; Liu, A.-B.; Zhu, W.-X.; Jiang, M.-M.; Wang, X.-D.; Liu, H.-M. Effects of different isolation methods on the structure and functional properties of starch from tiger nut (Cyperus esculentus L.) meal. LWT 2024, 196, 115853. [Google Scholar] [CrossRef]
- Chi, C.; Zhou, Y.; Chen, B.; He, Y.; Zhao, Y. A facile method for classifying starch fractions rich in long linear dextrin. Food Hydrocoll. 2023, 135, 108182. [Google Scholar] [CrossRef]
- Huang, Z.; Feng, W.; Zhang, T.; Miao, M. Structure and functional characteristics of starch from different hulled oats cultivated in China. Carbohydr. Polym. 2024, 330, 121791. [Google Scholar] [CrossRef]
- Xu, J.; Kuang, Q.; Wang, K.; Zhou, S.; Wang, S.; Liu, X.; Wang, S. Insights into molecular structure and digestion rate of oat starch. Food Chem. 2017, 220, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiao, X.G. Properties of Ginger Starch. Food Sci. 2011, 32, 131–135. [Google Scholar]
- Bento, J.A.C.; Ferreira, K.C.; de Oliveira, A.L.M.; Lião, L.M.; Caliari, M.; Júnior, M.S.S. Extraction, characterization and technological properties of white garland-lily starch. Int. J. Biol. Macromol. 2019, 135, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Afolayan, M.O.; Adama, K.K.; Oberafo, A.; Omojola, M.; Thomas, S. Isolation and characterization studies of ginger (Zingiber officinale) root starch as a potential industrial biomaterial. Am. J. Mater. Sci. 2014, 4, 97–102. [Google Scholar]
- Pires, M.B.; Amante, E.R.; Lucia de Oliveira Petkowicz, C.; Esmerino, E.A.; Manoel da Cruz Rodrigues, A.; Meller da Silva, L.H. Impact of extraction methods and genotypes on the properties of starch from peach palm (Bactris gasipaes Kunth) fruits. LWT 2021, 150, 111983. [Google Scholar] [CrossRef]
- Jamir, K.; Seshagirirao, K. Isolation, characterization and comparative study of starches from selected Zingiberaceae species, a non-conventional source. Food Hydrocoll. 2017, 72, 247–253. [Google Scholar] [CrossRef]
- Leonel, M.; Sarmento, S.B.S.; Cereda, M.P. New starches for the food industry: Curcuma longa and Curcuma zedoaria. Carbohydr. Polym. 2003, 54, 385–388. [Google Scholar] [CrossRef]
- Sukhija, S.; Singh, S.; Riar, C.S. Isolation of starches from different tubers and study of their physicochemical, thermal, rheological and morphological characteristics. Starch-Strke 2016, 68, 160–168. [Google Scholar] [CrossRef]
- Braga, M.E.M.; Moreschi, S.R.M.; Meireles, M.A.A. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches. Carbohydr. Polym. 2006, 63, 340–346. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q.; Jaiswal, S.; Chibbar, R.; Nantanga, K.K.M.; Seetharaman, K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 2011, 44, 2962–2974. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, W.; Luo, Y.; Li, J.; Gao, J.; Yang, P.; Gao, X.; Feng, B. Comparison of structural and physicochemical properties of starches from five coarse grains. Food Chem. 2019, 288, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wu, M.; Liao, Q.; Zhu, N.; Li, Y.; Huang, Y.; Wu, J. Hot-water soluble fraction of starch as particle-stabilizers of oil-in-water emulsions: Effect of dry heat modification. Carbohydr. Polym. 2024, 336, 122130. [Google Scholar] [CrossRef] [PubMed]
- Paramasivam, S.K.; Saravanan, A.; Narayanan, S.; Shiva, K.N.; Ravi, I.; Mayilvaganan, M.; Pushpa, R.; Uma, S. Exploring differences in the physicochemical, functional, structural, and pasting properties of banana starches from dessert, cooking, and plantain cultivars (Musa spp.). Int. J. Biol. Macromol. 2021, 191, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Ma, W.; Zhang, J.; Yang, H.; Wu, P.; Li, J.; Jin, Z. Physicochemical changes and in vitro digestibility of three banana starches at different maturity stages. Food Chem. X 2024, 21, 101004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Whistler, R.L.; BeMiller, J.N.; Hamaker, B.R. Banana starch: Production, physicochemical properties, and digestibility—A review. Carbohydr. Polym. 2005, 59, 443–458. [Google Scholar] [CrossRef]
- Zhang, Q.; Pei, X.; Hu, K.; Zhou, Y.; Ma, M.L.; Wang, M.; An, H.; Tan, Y. Facile fabrication of starch-based microrods by shear-assisted antisolvent-induced nanoprecipitation and solidification. ACS Macro Lett. 2022, 11, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yu, L.; Simon, G.; Petinakis, E.; Dean, K.; Chen, L. Morphologies and microstructures of cornstarches with different amylose–amylopectin ratios studied by confocal laser scanning microscope. J. Cereal Sci. 2009, 50, 241–247. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Policegoudra, R.S.; Aradhya, S.M. Structure and biochemical properties of starch from an unconventional source—Mango ginger (Curcuma amada Roxb.) rhizome. Food Hydrocoll. 2008, 22, 513–519. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, L.; Huang, Q.; Zhang, B.; Zhang, J.; Wen, X. Structure and physicochemical properties of cross-linked and acetylated tapioca starches affected by oil modification. Food Chem. 2022, 386, 132848. [Google Scholar] [CrossRef] [PubMed]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Maniglia, B.C.; Silveira, T.M.G.; Tapia-Blacido, D.R. Starch isolation from turmeric dye extraction residue and its application in active film production. Int. J. Biol. Macromol. 2022, 202, 508–519. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Ma, Q.; Zhang, F.; Zhai, C.; Sun, J.; Tang, Y.; Wang, W. Insight into microstructure evolution during starch retrogradation by infrared and Raman spectroscopy combined with two-dimensional correlation spectroscopy analysis. Food Hydrocoll. 2024, 146, 109174. [Google Scholar] [CrossRef]
- Wang, K.; Wambugu, P.W.; Zhang, B.; Wu, A.C.; Henry, R.J.; Gilbert, R.G. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydr Polym 2015, 129, 92–100. [Google Scholar] [CrossRef]
- Bharti, I.; Singh, S.; Saxena, D.C. Influence of alkali treatment on physicochemical, pasting, morphological and structural properties of mango kernel starches derived from Indian cultivars. Int. J. Biol. Macromol. 2019, 125, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, L.; Li, Z.; Li, C.; Ban, X.; Gu, Z.; Hong, Y. Physicochemical properties of a new starch from turion of Spirodela polyrhiza. Int. J. Biol. Macromol. 2022, 223, 1684–1692. [Google Scholar] [CrossRef]
- Blazek, J.; Copeland, L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Gao, L.; Van Bockstaele, F.; Lewille, B.; Haesaert, G.; Eeckhout, M. Characterization and comparative study on structural and physicochemical properties of buckwheat starch from 12 varieties. Food Hydrocoll. 2023, 137, 108320. [Google Scholar] [CrossRef]
- Sikora, M.; Krystyjan, M.; Dobosz, A.; Tomasik, P.; Walkowiak, K.; Masewicz, L.; Kowalczewski, P.L.; Baranowska, H.M. Molecular Analysis of Retrogradation of Corn Starches. Polymers 2019, 11, 1764. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Z.; Chen, P.F.; Li, P.; Zhao, J.; Olnood, C.G.; Zhao, S.; Yang, X.; Wang, Q.; Chen, X.G. Effects of Salecan on the gelatinization and retrogradation behaviors of wheat starch. LWT 2023, 186, 115238. [Google Scholar] [CrossRef]
- Liu, X.-X.; Liu, H.-M.; Li, J.; Yan, Y.-Y.; Wang, X.-D.; Ma, Y.-X.; Qin, G.-Y. Effects of various oil extraction methods on the structural and functional properties of starches isolated from tigernut (Cyperus esculentus) tuber meals. Food Hydrocoll. 2019, 95, 262–272. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, H.; Xing, J.; Sang, S.; Zhan, X.; Liu, Y.; Jia, L.; Li, J.; Luo, X. Long-Term Retrogradation Properties and In Vitro Digestibility of Waxy Rice Starch Modified with Pectin. Foods 2023, 12, 3981. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wei, Q.; Lin, L.; Shi, L.; Cui, Z.; Li, Y.; Huang, C.; Wei, C. Physicochemical properties of a new starch from ramie (Boehmeria nivea) root. Int. J. Biol. Macromol. 2021, 174, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Shrestha, A.K.; Hasjim, J.; Gidley, M.J. Physicochemical and structural properties of maize and potato starches as a function of granule size. J. Agric. Food Chem. 2011, 59, 10151–10161. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, Q.; Zhang, L.; Wei, C. Evaluation of the Molecular Structural Parameters of Normal Rice Starch and Their Relationships with Its Thermal and Digestion Properties. Molecules 2017, 22, 1526. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wu, X.; Zhang, B.; Luo, F.; Lin, Q.; Ding, Y. Understanding the aggregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. Int. J. Biol. Macromol. 2021, 189, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Masoodi, F.A.; Gani, A.; Ashwar, B.A. In-vitro digestibility, rheology, structure, and functionality of RS3 from oat starch. Food Chem. 2016, 212, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Kang, I.; Lee, J.; Song, D.; Sjoo, M.; Choi, J.; Lee, S.; Nilsson, L. Fractionation and characterization of starch granules using field-flow fractionation (FFF) and differential scanning calorimetry (DSC). Anal. Bioanal. Chem. 2019, 411, 3665–3674. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhao, N.; Jiang, F.; Ji, X.; Feng, B.; Liang, J.; Yu, X.; Du, S.K. Structure, physicochemical, functional and in vitro digestibility properties of non-waxy and waxy proso millet starches. Int. J. Biol. Macromol. 2023, 224, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, Y.; Wang, M.; Jane, J.-L.; Du, S.-K. Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocoll. 2017, 63, 249–255. [Google Scholar] [CrossRef]
Samples | Yield | Total Starch | Moisture | Protein | Lipids | Ash | Amylose Content |
---|---|---|---|---|---|---|---|
AOS | 22.10 ± 3.15 b | 97.02 ± 1.09 a | 11.53 ± 0.63 a | 0.86 ± 0.02 a | 2.08 ± 0.29 a | 0.07 ± 0.01 a | 24.14 ± 0.73 b |
AGS | 15.73 ± 2.03 b | 97.12 ± 1.74 a | 11.13 ± 0.60 a | 0.89 ± 0.01 a | 2.52 ± 0.09 a | 0.09 ± 0.02 a | 18.81 ± 0.96 c |
ZOS | 53.34 ± 6.45 a | 97.83 ± 0.38 a | 11.88 ± 0.14 a | 0.94 ± 0.03 a | 2.72 ± 0.21 a | 0.06 ± 0.01 a | 28.39 ± 1.66 a |
Samples | RC | R1047/1022 | R995/1022 | FWHM |
---|---|---|---|---|
AOS | 35.26 ± 1.02 a | 1.24 ± 0.02 a | 1.20 ± 0.00 a | 15.44 ± 0.35 c |
AGS | 28.00 ± 1.44 b | 1.13 ± 0.00 b | 1.08 ± 0.00 b | 16.30 ± 0.10 b |
ZOS | 32.62 ± 2.83 a | 0.99 ± 0.00 c | 0.99 ± 0.00 c | 16.99 ± 0.21 a |
Samples | AMSEC (%) | RhAM (nm) | RhAP1 (nm) | RhAP2 (nm) | XAM (DP) | XAP1 (DP) | XAP2 (DP) |
---|---|---|---|---|---|---|---|
AOS | 22.44 ±0.35 b | 16.78 ± 0.22 a | 2.65 ± 0.00 a | 1.05 ± 0.00 a | 1419.38 ± 31.28 a | 58.96 ± 0.13 a | 13.39 ± 0.17 b |
AGS | 21.63 ± 0.04 b | 15.09 ± 0.08 b | 2.51 ± 0.00 c | 1.05 ± 0.00 a | 1195.43 ± 22.66 b | 52.97 ± 0.07 c | 14.04 ± 0.16 a |
ZOS | 23.79 ± 0.27 a | 14.16 ± 0.09 c | 2.56 ± 0.01 b | 1.05 ± 0.00 a | 1069.55 ± 12.57 c | 54.69 ± 0.26 b | 13.91 ± 0.21 ab |
Samples | Pasting Temp (PTemp, °C) | Peak Viscosity (PV, mPa s) | Breakdown Viscosity (TV, mPa s) | Through Viscosity (TV, mPa s) | Final Viscosity (FV, mPa s) | Setback Viscosity (SV, mPa s) | Peak Time (PTime, min) |
---|---|---|---|---|---|---|---|
AOS | 77.95 ± 1.13 b | 3363.00 ± 267.29 ab | 1978.00 ± 82.02 b | 1385.00 ± 349.31 a | 3450.00 ± 25.46 c | 1472.00 ± 107.48 b | 5.27 ± 0.00 ab |
AGS | 78.28 ± 7.39 b | 3983.00 ± 251.73 a | 2511.00 ± 25.46 a | 1472.00 ± 277.19 a | 4707.50 ± 33.23 a | 2196.50 ± 58.69 a | 5.07 ± 0.09 b |
ZOS | 86.38 ± 0.46 a | 3047.00 ± 18.38 b | 2190.50 ± 115.26 b | 856.50 ± 96.87 a | 3872.50 ± 78.49 b | 1682.00 ± 36.77 b | 5.47 ± 0.09 a |
Samples | TO (°C) | TP (°C) | TC (°C) | ΔT (°C) | ΔH (J/g) |
---|---|---|---|---|---|
AOS | 61.53 ± 0.03 c | 69.42 ± 0.59 b | 91.48 ± 0.37 a | 29.95 ± 0.35 a | 21.05 ± 3.25 a |
AGS | 73.15 ± 0.46 a | 82.44 ± 0.59 a | 94.72 ± 2.75 a | 21.57 ± 3.06 b | 20.25 ± 0.67 a |
ZOS | 65.49 ± 0.73 b | 82.92 ± 0.35 a | 93.35 ± 0.05 a | 27.86 ± 0.68 a | 22.06 ± 0.01 a |
Samples | RDS (%) | SDS (%) | RS (%) | C∞ (%) | k/10−2 (min−1) |
---|---|---|---|---|---|
AOS | 15.97 ± 0.48 a | 31.71 ± 1.19 a | 49.34 ± 0.71 a | 62.41 ± 2.4 a | 0.01 ± 0.01 a |
AGS | 16.37 ± 0.70 a | 30.60 ± 6.41 a | 50.86 ± 7.11 a | 61.16 ± 6.99 a | 0.01 ± 0.01 a |
ZOS | 14.74 ± 2.29 a | 32.62 ± 5.54 a | 49.76 ± 7.84 a | 64.37 ± 9.01 a | 0.01 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; He, R.; Liu, J.; Chen, Y.; Yang, T.; Pan, K. Rod-Shaped Starch from Galanga: Physicochemical Properties, Fine Structure and In Vitro Digestibility. Foods 2024, 13, 1784. https://doi.org/10.3390/foods13111784
Li S, He R, Liu J, Chen Y, Yang T, Pan K. Rod-Shaped Starch from Galanga: Physicochemical Properties, Fine Structure and In Vitro Digestibility. Foods. 2024; 13(11):1784. https://doi.org/10.3390/foods13111784
Chicago/Turabian StyleLi, Shanshan, Rui He, Jiaqi Liu, Ying Chen, Tao Yang, and Kun Pan. 2024. "Rod-Shaped Starch from Galanga: Physicochemical Properties, Fine Structure and In Vitro Digestibility" Foods 13, no. 11: 1784. https://doi.org/10.3390/foods13111784