Effect of Various Carbohydrates in Aqueous Solutions on Color Stability and Degradation Kinetics of Selected Anthocyanins During Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Anthocyanin Standards
2.2. Stock Solutions of Sugars
2.3. Preparation of Samples for the Storage Test
2.4. Determination of the Color Change
2.5. Determination of Anthocyanins by HPLC/DAD
2.6. Kinetics of Anthocyanin Degradation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Verification of the HPLC/DAD Method for the Determination of Anthocyanins
3.2. Percentage Loss of Anthocyanins During Storage at Elevated Temperatures
Correlation of Parameters a* and b* with Anthocyanin Concentration Loss
3.3. Determination of Selected CIELab Parameters (L*, a*, b*) and Color Change (∆ELab *) of Anthocyanins During Accelerated Storage Test
3.4. Degradation Kinetics of Anthocyanins at Elevated Storage Temperatures Involving Different Carbohydrates
Temperature Dependence of Anthocyanins and Parameter a* and Their Correlation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobson, G.; McDougall, G.J.; Stewart, D.; Cubero, M.Á.; Karjalainen, R.O. Effects of juice matrix and pasteurization on stability of black currant anthocyanins during storage. J. Food Sci. 2017, 82, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical indegrients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Markakis, P.; Jurd, L. Anthocyanins and their stability in foods. CRC Crit. Rev. Food. Technol. 1974, 4, 437–456. [Google Scholar] [CrossRef]
- Velíšek, J.; Hajšlová, J. Chemie Potravin II, 3rd ed.; Tábor: OSSIS, Czech Republic, 2009. [Google Scholar]
- Oancea, S. A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef]
- Eiro, M.J.; Heinonen, M. Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. J. Agric. Food Chem. 2002, 50, 7461–7466. [Google Scholar] [CrossRef]
- Rein, M.J.; Heinonen, M. Stability and enhancement of berry juice color. J. Agric. Food Chem. 2004, 52, 3106–3114. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Skrede, G.; Lea, P.; Enersen, G. Influence of sugar on anthocyanin pigment stability in frozen strawberries. J. Food Sci. 1990, 55, 1064–1065. [Google Scholar] [CrossRef]
- Jiménez, N.; Bohuon, P.; Dornier, M.; Bonazzi, C.; Pérez, A.M.; Vaillant, F. Effect of water activity on anthocyanin degradation and browning kinetics at high temperatures (100–140 °C). Food Res. Inter. 2012, 47, 106–115. [Google Scholar] [CrossRef]
- de Rosso, V.V.; Mercadante, A.Z. Evaluation of colour and stability of anthocyanins from tropical fruits in an isotonic soft drink system. Innov. Food Sci. Emerg. Technol. 2007, 8, 347–352. [Google Scholar] [CrossRef]
- Cao, S.; Liu, L.; Lu, Q.; Xu, Y.; Pan, S.; Wang, K. Integrated effects of ascorbic acid, flavonoids and sugars on thermal degradation of anthocyanins in blood orange juice. Eur. Food Res. Technol. 2009, 6, 975–983. [Google Scholar] [CrossRef]
- Tsai, P.J.; Hsieh, Y.Y.; Huang, T.C. Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using 17O NMR. J. Agric. Food Chem. 2004, 52, 3097–3099. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Li, J.; Wang, M.; Jiang, H. Copigmentation effects and thermal degradation kinetics of purple sweet potato anthocyanins with metal ions and sugars. Appl. Biol. Chem. 2016, 59, 15–24. [Google Scholar] [CrossRef]
- Nikkhah, E.; Khayamy, M.; Heidari, R.; Jamee, R. Effect of sugar treatment on stability of anthocyanin pigments in berries. J. Biol. Sci. 2007, 7, 1412–1417. [Google Scholar] [CrossRef]
- Iversen, C.K. Black currant nectar: Effect of processing and storage on anthocyanin and ascorbic acid content. J. Food Sci. 1999, 64, 37–41. [Google Scholar] [CrossRef]
- Liang, Z.; Sang, M.; Fan, P.; Wu, B.; Wang, L.; Yang, S.; Li, S. CIELAB coordinates in response to berry skin anthocyanins and their composition in vitis. J. Food Sci. 2011, 76, C490–C497. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Gurak, P.D.; Ferreira Marczak, L.D.; Tessaro, I.C. Tracking bioactive compounds with colour changes in foods—A review. Dyes Pigm. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Álvarez, A.; Terreros, S.; Cocero, M.J.; Mato, R.B. Microwave pretreatment for the extraction of anthocyanins from saffron flowers: Assessment of product quality. Antioxidants 2021, 10, 1054. [Google Scholar] [CrossRef]
- Cliff, M.A.; King, M.C.; Schlosser, J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res. Int. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Hurtado, N.H.; Morales, A.L.; González-Miret, M.L.; Escudero-Gilete, M.L.; Heredia, F.J. Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chem. 2009, 117, 88–93. [Google Scholar] [CrossRef]
- Ma, C.; Yang, L.; Yang, F.; Wang, W.; Zhao, C.; Zu, Y. Content and color stability of anthocyanins isolated from Schisandra chinensis fruit. Int. J. Mol. Sci. 2012, 13, 14294–14310. [Google Scholar] [CrossRef]
- Tsai, P.J.; Delva, L.; Yu, T.Y.; Huang, Y.T.; Dufossé, L. Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Res. Int. 2005, 38, 1059–1065. [Google Scholar] [CrossRef]
- Shevell, S.K. The Science of Color, 2nd ed.; Elsevier Inprint: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH degradation kinetics of anthocyanins in natural food colorant prepared from black rice bran. J. Food Sci. Technol. 2016, 53, 461. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, L.; Salemi, L.; Bellumori, M.; Chignola, R.; Mainente, F.; Santisteban Soto, D.V.; Fierri, I.; Ciulu, M.; Zoccatelli, G. Thermal degradation of red cabbage (Brassica oleracea L. var. Capitata f. rubra) anthocyanins in a water model extract under accelerated shelf-life testing. Food Chem. 2024, 440, 138272. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Qin, P.; Zhang, Y.; Cui, S.; Ren, G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res. Int. 2013, 50, 691–697. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Akande, O.E.; Galam, D.C.A. Total Anthocyanin Content of Strawberry and the Profile Changes by Extraction Methods and Sample Processing. Foods 2022, 11, 1072. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Oliveira, A.; Gomes, M.H.; Alexandre, E.M.C.; Poças, F.; Almeida, D.P.F.; Pintado, M. Phytochemicals preservation in strawberry as affected by pH modulation. Food Chem. 2015, 170, 74–83. [Google Scholar] [CrossRef]
- Nielsen, I.L.F.; Haren, G.R.; Magnussen, E.L.; Dragsted, L.O.; Rasmussen, S.E. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. J. Agric. Food Chem. 2003, 51, 5861–5866. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Tao, C.; Liu, M.; Pan, Y.; Lv, Z. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. J. Food Meas. Charact. 2018, 12, 1744–1753. [Google Scholar] [CrossRef]
- Welch, C.R.; Wu, Q.; Simon, J.E. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar] [CrossRef]
- Hellström, J.; Mattila, P.; Karjalainen, R. Stability of anthocyanins in berry juices stored at different temperatures. J.Food Compos. Anal. 2013, 31, 12–19. [Google Scholar] [CrossRef]
- Dyrby, M.; Westergaard, N.; Stapelfeldt, H. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chem. 2001, 72, 431–437. [Google Scholar] [CrossRef]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J. Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Duhard, V.; Garnier, J.; Megard, D. Comparison of the stability of selected anthocyanin colorants in drink model systems. Agro Food Ind. Hi Tec 1997, 49, 170–176. [Google Scholar]
- Zhang, Y.; Liao, X.; Chen, F.; Wu, J.; Hu, X. Isolation, identification, and color characterization of cyanidin-3-glucoside and cyanidin-3-sophoroside from red raspberry. Eur. Food Res. Technol. 2008, 226, 395–403. [Google Scholar] [CrossRef]
- Desjardins, J.; Tanabe, S.; Bergeron, C.; Gafner, S.; Grenier, D. Anthocyanin-rich black currant extract and cyanidin-3-O-glucoside have cytoprotective and anti-inflammatory properties. J. Med. Food 2012, 15, 1045–1050. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.I.; Lajolo, F.M. Absorption and metabolism of cyanidin-3-glucoside and cyanidin-3-rutinoside extracted from wild mulberry (Morus nigra L.) in rats. Nutr. Res. 2008, 28, 198–207. [Google Scholar] [CrossRef]
- Tulio, A.Z.; Reese, R.N.; Wyzgoski, F.J.; Rinaldi, P.L.; Fu, R.; Scheerens, J.C.; Miller, A.R. Cyanidin 3-rutinoside and cyanidin 3-xylosylrutinoside as primary phenolic antioxidants in black raspberry. J. Agric. Food Chem. 2008, 56, 1880–1888. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Romaszko, E.; Piskula, M.K. Bioavailability of cyanidin glycosides from natural chokeberry (Aronia melanocarpa) juice with dietary-relevant dose of anthocyanins in humans. J. Agric. Food Chem. 2010, 58, 12130–12136. [Google Scholar] [CrossRef]
- Fan, C.; Li, N.; Cao, X.; Wen, L. Ionic liquid-modified countercurrent chromatographic isolation of high-purity delphinidin-3-rutinoside from eggplant peel. J. Food Sci. 2020, 85, 1132–1139. [Google Scholar] [CrossRef]
- Tani, T.; Nishikawa, S.; Kato, M.; Tsuda, T. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Sci. Nutr. 2017, 5, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Rampáčková, E.; Göttingerová, M.; Kiss, T.; Ondrášek, I.; Venuta, R.; Wolf, J.; Nečas, T.; Ercisli, S. CIELAB analysis and quantitative correlation of total anthocyanin content in European and Asian plums. Eur. J. Hortic. Sci. 2021, 86, 453–460. [Google Scholar] [CrossRef]
- Fan, G.; Han, Y.; Gu, Z.; Gu, F. Composition and colour stability of anthocyanins extracted from fermented purple sweet potato culture. LWT 2008, 41, 1412–1416. [Google Scholar] [CrossRef]
- Yang, W.; Kaimainen, M.; Järvenpää, E.; Sandell, M.; Huopalahti, R.; Yang, B.; Laaksonen, O. Red beet (Beta vulgaris) betalains and grape (Vitis vinifera) anthocyanins as colorants in white currant juice—Effect of storage on degradation kinetics, color stability and sensory properties. Food Chem. 2021, 348, 128995. [Google Scholar] [CrossRef]
- Roidoung, S.; Dolan, K.D.; Siddiq, M. Estimation of kinetic parameters of anthocyanins and color degradation in vitamin C fortified cranberry juice during storage. Food Res. Int. 2017, 94, 29–35. [Google Scholar] [CrossRef]
- Peron, D.V.; Fraga, S.; Antelo, F. Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and ‘Italia’ grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food Chem. 2017, 232, 836–840. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, D.; Song, X.; Deng, Y.; Zhao, Y. Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices. Food Res. Int. 2018, 105, 121–128. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef]
- Song, B.; Li, H.; Tian, J.; Zhang, Y.; Li, Z.; Wang, J.; Wang, Y.; Su, X.; Li, B. Mechanism of sugar degradation product 5-hydroxymethylfurfural reducing the stability of anthocyanins. Food Chem. 2023, 419, 136067. [Google Scholar] [CrossRef]
- Lee, H.S.; Nagy, S. Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural. J. Food Process Preserv. 1990, 14, 171–178. [Google Scholar] [CrossRef]
- Verbeyst, L.; Oey, I.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem. 2010, 123, 269–274. [Google Scholar] [CrossRef]
- Ahmed, J.; Shivhare, U.S.; Raghavan, G.S.V. Thermal degradation kinetics of anthocyanin and visual colour of plum puree. Eur. Food Res. Technol. 2004, 218, 525–528. [Google Scholar] [CrossRef]
Anthocyanins | Solvent | Temperature (°C) | L* | a* | b* | ∆E *Lab |
---|---|---|---|---|---|---|
Cya3Glc 1 | Water | 20 | 23.78 ± 0.01 | 1.64 ± 0.02 | −1.89 ± 0.02 | 1.35 ± 0.02 |
35 | 23.83 ± 0.01 | 1.40 ± 0.03 | −1.12 ± 0.01 | 1.85 ± 0.03 | ||
50 | 24.25 ± 0.01 | 1.36 ± 0.00 | −0.71 ± 0.02 | 2.59 ± 0.02 | ||
Glucose | 20 | 23.47 ± 0.01 | 1.59 ± 0.02 | −2.34 b,c ± 0.02 | 2.30 ± 0.02 | |
35 | 24.12 ± 0.01 | 1.65 ± 0.01 | −0.92 ± 0.01 | 2.22 ± 0.02 | ||
50 | 23.79 ± 0.01 | 1.01 ± 0.01 | −0.53 ± 0.01 | 2.95 ± 0.02 | ||
Sucrose | 20 | 23.57 ± 0.01 | 2.24 c ± 0.02 | −1.42 ± 0.02 | 0.45 ± 0.03 | |
35 | 24.36 ± 0.01 | 2.11 ± 0.01 | −1.10 ± 0.01 | 1.00 ± 0.02 | ||
50 | 24.21 ± 0.02 | 1.80 a ± 0.03 | −0.95 ± 0.02 | 1.18 ± 0.03 | ||
Fructose | 20 | 23.68 ± 0.01 | 2.16 ± 0.02 | −1.37 b,c ± 0.02 | 0.77 ± 0.03 | |
35 | 24.18 ± 0.00 | 2.34 ± 0.01 | −0.66 a ± 0.02 | 1.26 ± 0.02 | ||
50 | 24.06 ± 0.00 | 2.56 ± 0.06 | −0.48 a ± 0.02 | 2.37 ± 0.06 | ||
Fructose/glucose | 20 | 23.43 ± 0.01 | 1.72 ± 0.02 | −1.54 ± 0.02 | 0.83 ± 0.02 | |
35 | 24.28 ± 0.01 | 1.95 ± 0.02 | −0.58 ± 0.02 | 1.34 ± 0.02 | ||
50 | 24.41 ± 0.01 | 1.89 ± 0.02 | −0.46 ± 0.02 | 1.51 ± 0.01 | ||
Cya3Rut 2 | Water | 20 | 24.20 ± 0.01 | 1.89 ± 0.03 | −1.67 ± 0.01 | 1.29 ± 0.03 |
35 | 24.47 ± 0.01 | 1.57 ± 0.02 | −0.75 ± 0.01 | 1.79 ± 0.02 | ||
50 | 24.67 ± 0.01 | 2.00 ± 0.01 | −0.38 ± 0.01 | 1.70 ± 0.01 | ||
Glucose | 20 | 23.62 ± 0.00 | 1.85 ± 0.03 | −1.60 ± 0.01 | 0.35 ± 0.03 | |
35 | 24.25 ± 0.01 | 1.82 ± 0.03 | −0.77 ± 0.02 | 1.05 ± 0.03 | ||
50 | 24.31 ± 0.01 | 1.57 ± 0.03 | −0.48 ± 0.02 | 1.41 ± 0.02 | ||
Sucrose | 20 | 23.96 ± 0.01 | 2.43 b,c ± 0.02 | −1.73 b,c ± 0.02 | 0.52 ± 0.02 | |
35 | 24.03 ± 0.02 | 1.87 a ± 0.02 | −0.87 a ± 0.02 | 0.93 ± 0.03 | ||
50 | 23.74 ± 0.01 | 1.51 a ± 0.02 | −0.48 a ± 0.02 | 1.38 ± 0.02 | ||
Fructose | 20 | 23.66 ± 0.01 | 2.48 ± 0.02 | −1.21 c ± 0.02 | 0.47 ± 0.02 | |
35 | 24.34 ± 0.02 | 2.76 ± 0.02 | −0.84 ± 0.02 | 0.99 ± 0.02 | ||
50 | 24.48 ± 0.01 | 2.65 ± 0.02 | −0.40 a ± 0.00 | 1.39 ± 0.01 | ||
Fructose/glucose | 20 | 23.75 ± 0.01 | 2.26 ± 0.02 | −1.40 ± 0.01 | 0.60 ± 0.02 | |
35 | 24.32 ± 0.01 | 2.25 ± 0.02 | −0.77 ± 0.01 | 1.04 ± 0.01 | ||
50 | 24.47 ± 0.00 | 2.30 ± 0.02 | −0.63 ± 0.02 | 1.18 ± 0.01 | ||
Cya3Gal 3 | Water | 20 | 24.38 ± 0.01 | 3.15 ± 0.02 | −0.78 ± 0.02 | 2.69 ± 0.01 |
35 | 24.80 ± 0.01 | 2.49 ± 0.01 | −0.58 ± 0.02 | 3.02 ± 0.02 | ||
50 | 24.62 ± 0.01 | 3.05 ± 0.02 | −0.01 ± 0.02 | 2.32 ± 0.01 | ||
Glucose | 20 | 24.00 ± 0.01 | 3.63 ± 0.01 | −0.68 ± 0.01 | 2.09 ± 0.01 | |
35 | 24.40 ± 0.01 | 3.32 ± 0.02 | −0.28 ± 0.01 | 1.99 ± 0.01 | ||
50 | 24.45 ± 0.01 | 2.18 ± 0.01 | −0.53 ± 0.01 | 3.10 ± 0.01 | ||
Sucrose | 20 | 24.03 ± 0.01 | 3.40 c ± 0.03 | −0.59 ± 0.02 | 1.86 ± 0.03 | |
35 | 24.18 ± 0.00 | 3.05 c ± 0.01 | −0.44 ± 0.01 | 1.95 ± 0.01 | ||
50 | 23.80 ± 0.01 | 1.72 a,b ± 0.01 | −0.57 ± 0.01 | 3.21 ± 0.01 | ||
Fructose | 20 | 23.90 ± 0.01 | 2.63 ± 0.03 | −0.40 c ± 0.01 | 3.67 ± 0.03 | |
35 | 24.20 ± 0.01 | 3.50 ± 0.02 | −0.18 ± 0.01 | 2.76 ± 0.03 | ||
50 | 24.50 ± 0.00 | 3.14 ± 0.03 | 0.28 a ± 0.02 | 2.83 ± 0.03 | ||
Fructose/glucose | 20 | 23.69 ± 0.01 | 2.64 ± 0.01 | −0.51 ± 0.05 | 0.78 ± 0.02 | |
35 | 24.28 ± 0.00 | 2.54 ± 0.04 | −0.53 ± 0.01 | 0.67 ± 0.02 | ||
50 | 24.31 ± 0.01 | 2.79 ± 0.03 | −0.04 ± 0.02 | 2.05 ± 0.03 | ||
Del3Rut 4 | Water | 20 | 25.40 ± 0.01 | 0.39 ± 0.02 | 0.64 b ± 0.02 | 3.93 ± 0.01 |
35 | 24.49 ± 0.00 | 0.14 ± 0.01 | −0.10 a,c ± 0.01 | 3.05 ± 0.01 | ||
50 | 25.30 ± 0.01 | 0.28 ± 0.01 | 0.31 b ± 0.01 | 3.63 ± 0.02 | ||
Glucose | 20 | 25.42 ± 0.01 | 0.60 c ± 0.02 | 0.79 ± 0.01 | 4.08 ± 0.03 | |
35 | 24.56 ± 0.01 | 0.56 ± 0.01 | 0.01 ± 0.01 | 2.98 ± 0.01 | ||
50 | 24.49 ± 0.01 | 0.23 a ± 0.01 | −0.33 ± 0.02 | 2.70 ± 0.01 | ||
Sucrose | 20 | 25.17 ± 0.01 | 0.46 ± 0.02 | 0.71 b,c ± 0.01 | 3.70 ± 0.02 | |
35 | 24.13 ± 0.01 | 0.21 ± 0.02 | −0.33 a ± 0.01 | 2.40 ± 0.01 | ||
50 | 24.89 ± 0.01 | 0.67 ± 0.00 | −0.23 a ± 0.01 | 2.74 ± 0.01 | ||
Fructose | 20 | 25.77 ± 0.01 | 0.76 b,c ± 0.01 | 1.49 b,c ± 0.02 | 4.63 ± 0.01 | |
35 | 25.20 ± 0.00 | 0.55 a ± 0.03 | 0.59 a ± 0.03 | 3.60 ± 0.00 | ||
50 | 25.42 ± 0.01 | 0.56 a ± 0.01 | 0.76 a ± 0.01 | 3.84 ± 0.02 | ||
Fructose/glucose | 20 | 25.89 ± 0.00 | 0.50 ± 0.01 | 1.15 b,c ± 0.02 | 4.53 ± 0.01 | |
35 | 24.88 ± 0.00 | 0.31 ± 0.01 | 0.14 a ± 0.01 | 3.23 ± 0.00 | ||
50 | 25.18 ± 0.00 | 0.84 ± 0.01 | 0.48 a ± 0.02 | 3.66 ± 0.02 |
Solvent | Temperature (°C) | Cya3Glc a | Cya3Rut b | Cya3Gal c | Del3Rut d | ||||
---|---|---|---|---|---|---|---|---|---|
k f (Days)−1 | t1/2 g (Days) | k (Days)−1 | t1/2 (Days) | k (Days)−1 | t1/2 (Days) | k (Days)−1 | t1/2 (Days) | ||
Water | 20 | 0.632 (0.7023) e | 7.7 | 0.453 (0.7617) | 10.7 | 0.461 (0.7030) | 10.5 | 1.415 (0.6885) | 6.9 |
35 | 0.658 (0.8690) | 7.4 | 0.544 (0.9672) | 8.9 | 0.489 (0.9047) | 9.9 | 2.197 (0.8976) | 4.4 | |
50 | 0.668 (0.8893) | 7.3 | 0.593 (0.9193) | 8.2 | 0.512 (0.9012) | 9.5 | 4.014 (0.9026) | 2.4 | |
Glucose | 20 | 0.529 (0.7384) | 9.2 | 0.341 (0.6229) | 14.2 | 0.399 (0.6372) | 12.2 | 1.613 (0.6605) | 6.0 |
35 | 0.544 (0.9764) | 8.9 | 0.413 (0.8301) | 11.8 | 0.468 (0.8664) | 10.4 | 2.047 (0.9739) | 4.7 | |
50 | 0.644 (0.8364) | 7.5 | 0.430 (0.9899) | 11.3 | 0.500 (0.9703) | 9.7 | 2.110 (0.9357) | 4.6 | |
Sucrose | 20 | 0.479 (0.6888) | 10.1 | 0.357 (0.7083) | 13.6 | 0.376 (0.6531) | 12.9 | 1.395 (0.6464) | 7.0 |
35 | 0.507 (0.9478) | 9.6 | 0.379 (0.9039) | 12.8 | 0.444 (0.8381) | 10.9 | 1.446 (0.9703) | 6.7 | |
50 | 0.528 (0.9043) | 9.2 | 0.523 (0.9844) | 9.3 | 0.450 (0.9355) | 10.8 | 1.627 (0.9704) | 6.0 | |
Fructose | 20 | 0.700 (0.6590) | 6.9 | 0.509 (0.6347) | 9.5 | 0.526 (0.6469) | 9.2 | 1.677 (0.6635) | 5.8 |
35 | 0.802 (0.9632) | 6.1 | 0.572 (0.8980) | 8.5 | 0.658 (0.9331) | 7.4 | 1.831 (0.9446) | 5.3 | |
50 | 0.843 (0.9025) | 5.8 | 0.586 (0.9117) | 8.3 | 0.663 (0.9742) | 7.3 | 2.311 (0.9073) | 4.2 | |
Fructose/ Glucose | 20 | 0.670 (0.6691) | 7.2 | 0.468 (0.6472) | 10.4 | 0.498 (0.6291) | 9.7 | 1.394 (0.6523) | 7.0 |
35 | 0.678 (0.9633) | 7.2 | 0.484 (0.9189) | 10.0 | 0.577 (0.9147) | 8.4 | 1.758 (0.9469) | 5.5 | |
50 | 0.782 (0.8999) | 6.2 | 0.484 (0.8516) | 10.0 | 0.614 (0.9438) | 7.9 | 2.126 (0.9312) | 4.6 |
Solvent | Ea (kJ/mol) | |||||||
---|---|---|---|---|---|---|---|---|
Cya3Glc a | a* | Cya3Rut b | a* | Cya3Gal c | a* | Del3Rut d | a* | |
Water | 1.49 ± 0.25 (0.9495) e | 17.90 ± 0.94 (0.7883) | 7.09 ± 0.71 (0.9688) | 19.38 ± 2.91 (0.8294) | 2.74 ± 0.41 (0.9981) | 2.10 ± 0.32 (0.9566) | 27.27 ± 4.09 (0.9862) | 14.56 ± 2.18 (0.8026) |
Glucose | 5.11 ± 0.77 (0.8325) | 32.91 ± 4.94 (0.8396) | 6.12 ± 0.92 (0.8947) | 46.69 ± 7.00 (0.9802) | 5.97 ± 0.91 (0.9584) | 19.77 ± 2.97 (0.8139) | 7.14 ± 1.07 (0.8534) | 63.57 ± 9.54 (0.7686) |
Sucrose | 2.54 ± 0.38 (0.9946) | 34.81 ± 5.22 (0.9593) | 9.93 ± 1.49 (0.8450) | 66.30 ± 9.95 (0.9802) | 4.82 ± 0.72 (0.8328) | 36.57 ± 5.49 (0.8475) | 4.00 ± 0.41 (0.8982) | 17.76 ± 2.66 (0.8290) |
Fructose | 4.91 ± 0.74 (0.9468) | 50.71 ± 7.61 (0.8668) | 3.73 ± 0.56 (0.8938) | 68.02 ± 10.20 (0.8737) | 6.14 ± 0.92 (0.7965) | 31.58 ± 4.74 (0.9495) | 8.35 ± 1.25 (0.9218) | 32.53 ± 4.88 (0.8073) |
Glc/Fru | 3.98 ± 0.59 (0.7844) | 44.60 ± 6.69 (0.9792) | 0.87 ± 0.13 (0.7775) | 51.17 ± 7.68 (0.9493) | 5.52 ± 0.83 (0.9600) | 52.10 ± 7.82 (0.9829) | 11.10 ± 1.67 (0.9992) | 17.89 ± 2.68 (0.9142) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobolka, A.; Škorpilová, T.; Beňo, F.; Podskalská, T.; Rajchl, A. Effect of Various Carbohydrates in Aqueous Solutions on Color Stability and Degradation Kinetics of Selected Anthocyanins During Storage. Foods 2024, 13, 3628. https://doi.org/10.3390/foods13223628
Tobolka A, Škorpilová T, Beňo F, Podskalská T, Rajchl A. Effect of Various Carbohydrates in Aqueous Solutions on Color Stability and Degradation Kinetics of Selected Anthocyanins During Storage. Foods. 2024; 13(22):3628. https://doi.org/10.3390/foods13223628
Chicago/Turabian StyleTobolka, Adam, Tereza Škorpilová, Filip Beňo, Tereza Podskalská, and Aleš Rajchl. 2024. "Effect of Various Carbohydrates in Aqueous Solutions on Color Stability and Degradation Kinetics of Selected Anthocyanins During Storage" Foods 13, no. 22: 3628. https://doi.org/10.3390/foods13223628