Nutritional Composition, Fatty Acid Content, and Mineral Content of Nine Sorghum (Sorghum bicolor) Inbred Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorghum Varieties
2.2. Flour Sample Preparation
2.3. Moisture Content
2.4. Ash
2.5. Protein Content
2.6. Total Lipid Content
2.7. Gas Chromatography of Fatty Acids
2.8. Carbohydrates
2.9. Fiber Content
2.10. Total Minerals Determination
2.11. ELISA Assay
2.12. Statistical Analysis
3. Results
3.1. Weather Conditions and Soil Characteristics
3.2. Chemical Composition
3.3. Fatty Acid Composition of Total Lipids
3.4. Mineral Content
3.5. Immunochemical Evidence for the Absence of Gluten in Sorghum Inbreds
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anglani, C. Sorghum for human food: A review. Plant Food Hum. Nutr. 1998, 52, 85–89. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential aspects on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef]
- Pontieri, P.; Del Giudice, L. Sorghum: A novel and healthy food. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrà, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 33–42. [Google Scholar]
- FAO. FAOSTAT. World Crops Website. 2017. Available online: www.fao.org/faostat/en/#data/QC (accessed on 30 March 2019).
- USDA (United States Department of Agriculture)—Foreign Agriculture Division. 2003 Data. Available online: https://fas.usda.gov/ (accessed on 30 March 2019).
- Awika, J.M. Chapter 3—Sorghum: Its unique nutritional and health-promoting attributes. In Gluten-Free Ancient Grains; Taylor, J.R.N., Awika, J., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 21–54. [Google Scholar]
- Ciacci, C.; Maiuri, L.; Caporaso, N.; Bucci, C.; Del Giudice, L.; Massardo, D.R.; Pontieri, P.; Di Fonzo, N.; Bean, S.R.; Ioerger, B.; et al. Celiac disease: In vitro and in vivo safety and palatability of wheat-free sorghum food products. Clin. Nutr. 2007, 26, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Pontieri, P.; Mamone, G.; De Caro, S.; Tuinstra, M.R.; Roemer, E.; Okot, J.; De Vita, P.; Ficco, D.B.; Alifano, P.; Pignone, D.; et al. Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical and immunochemical analyses. J. Agric. Food Chem. 2013, 61, 2565–2571. [Google Scholar] [CrossRef] [PubMed]
- Smolensky, D.; Rhodes, D.; McVey, D.S.; Fawver, Z.; Perumal, R.; Herald, T.; Noronha, L. High-polyphenol sorghum bran extract inhibits cancer cell growth through ROS induction, cell cycle arrest, and apoptosis. J. Med. Food. 2018, 21, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Stefoska-Needham, A.; Tapsell, L. Considerations for progressing a mainstream position for sorghum, a potentially sustainable cereal crop, for food product innovation pipelines. Trends Food Sci. Tech. 2020, 97, 249–253. [Google Scholar] [CrossRef]
- Tuinstra, M.R. Food-grade sorghum varieties and production considerations: A review. J. Plant Interact. 2008, 3, 69–72. [Google Scholar] [CrossRef]
- de Mesa-Stonestreet, N.J.; Alavi, S.; Bean, S.R. Sorghum proteins: The concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 2010, 75, R90–R104. [Google Scholar] [CrossRef]
- Prasad, V.R.; Govindaraj, M.; Djanaguiraman, M.; Djalovic, I.; Shailani, A.; Rawat, N.; Singla-Pareek, S.L.; Pareek, A.; Prasad, P.V. Drought and high temperature stress in sorghum: Physiological, genetic, and molecular insights and breeding approaches. Int. J. Mol. Sci. 2021, 22, 9826. [Google Scholar] [CrossRef]
- Rosenow, D.T.; Dahlberg, J.A. Collection, conversion, and utilization of sorghum. In Sorghum: Origin, History, Technology, and Production; Smith, C.W., Frederiksen, R.A., Eds.; John Wiley& Sons: New York, NY, USA, 2000; pp. 309–328. [Google Scholar]
- Pontieri, P.; Di Fiore, R.; Troisi, J.; Bean, S.R.; Roemer, E.; Okot, J.; Alifano, P.; Pignone, D.; Del Giudice, L.; Massardo, D.R. Chemical composition and fatty acid content of white food sorghums grown in different environments. Maydica 2011, 56, 1–7. [Google Scholar]
- AOAC. Association of Analytical Chemists Official Method, 923.03. Ash of flour, direct method. J. AOAC Inter. 1923, 7, 132. [Google Scholar]
- AOAC. Association of Analytical Chemists Official Method, 920.87-1929. Protein (Total) in Flour; AOAC: Rockville, MD, USA, 2001. [Google Scholar]
- Pontieri, P.; Di Maro, A.; Tamburino, R.; De Stefano, M.; Tilley, M.; Bean, S.R.; Roemer, E.; De Vita, P.; Alifano, P.; Del Giudice, L.; et al. Chemical composition of selected food-grade sorghum varieties grown under typical mediterranean conditions. Maydica 2010, 55, 139–143. [Google Scholar]
- Arienzo, M.; De Martino, A.; Capasso, R.; Di Maro, A.; Parente, A. Analysis of carbohydrates and amino acids in vegetable waste waters by ion chromatography. Phytochem. Anal. 2003, 14, 74–82. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Association of Analytical Chemists Official Method, 962.09. Fiber (crude) in animal feed and pet food. In Official Methods of Analysis AOC International, 16th ed.; AOAC: Rockville, MD, USA, 1995. [Google Scholar]
- Tenore, G.C.; Troisi, J.; Di Fiore, R.; Basile, A.; Novellino, E. Chemical composition, antioxidant and antimicrobial properties of Rapa Catozza Napo¬letana (Brassica rapa L. var. rapa DC.) seed meal, a promising protein source of Campania region (southern Italy) horticultural germplasm. J. Sci. Food Agric. 2012, 92, 1716–1724. [Google Scholar] [CrossRef]
- Pontieri, P.; Troisi, J.; Calcagnile, M.; Bean, S.R.; Tilley, M.; Aramouni, F.; Boffa, A.; Pepe, G.; Campiglia, P.; Del Giudice, F.; et al. Chemical composition, fatty acid and mineral content of food-grade white, red and black sorghum varieties grown in the mediterranean environment. Foods 2022, 11, 436. [Google Scholar] [CrossRef]
- Pontieri, P.; Troisi, J.; Di Fiore, R.; Di Maro, A.; Bean, S.R.; Tuinstra, M.R.; Roemer, E.; Boffa, A.; Del Giudice, A.; Pizzolante, G.; et al. Mineral content in grains of seven food-grade sorghum hybrids grown in a Mediterranean environment. Aust. J. Crop. Sci. 2014, 8, 1550–1559. [Google Scholar]
- Valdés, I.; García, E.; Llorente, M.; Méndez, E. Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur. J. Gastroenterol. Hepatol. 2003, 15, 465–474. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for educaton and data anlysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Szentmihályi, K.; Kéry, Á.; Then, M.; Lakatos, B.; Sándor, Z.; Vinkler, P. Potassium-sodium ratio for the characterization of medicinal plant extracts with diuretic activity. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1998, 12, 163–166. [Google Scholar] [CrossRef]
- Rooney, L.W. Sorghum improvement-integrating traditional and new tecnology to produce improved genotypes. Adv. Agron. 2004, 83, 37–109. [Google Scholar]
- Arbeit, M.L.; Nicklas, T.A.; Berenson, G.S. Considerations of dietary sodium/potassium/energy ratios of selected foods. J. Am. Coll. Nutr. 1992, 11, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Jaćimović, S.; Kiprovski, B.; Ristivojević, P.; Dimić, D.; Nakarada, Đ.; Dojčinović, B.; Sikora, V.; Teslić, N.; Pantelić, N.Đ. Chemical composition, antioxidant potential, and nutritional evaluation of cultivated Sorghum Grains: A combined experimental, theoretical, and multivariate analysis. Antioxidants 2023, 12, 1485. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Wang, M.; Hugo, E.; Cuevas, H.E.; Chen, J.; Harrison, M.N.; Ace Pugh, N.A.; Morris, G. Sorghum genetic, genomic, and breeding resources. Planta 2021, 254, 114. [Google Scholar] [CrossRef]
- Kumar, A.A.; Reddy, B.V.S.; Sharma, H.C.; Hash, C.T.; Rao, P.S.; Ramaiah, B.; Reddy, O.S. Recent advances in sorghum genetic enhancement research at ICRISAT. Am. J. Plant Sci. 2011, 2, 589–600. [Google Scholar] [CrossRef]
- Ribeiro, L.P.; Tardin, F.D.; de Menezes, C.B.; Baldoni, A.B.; Teodoro, P.E.; Bhering, L.L. Combining yield, earliness and plant height in a single genotype: A proposal for breeding in grain sorghum (Sorghum bicolor L.). Rev. FCA UNCuyo. 2021, 53, 11–21. [Google Scholar] [CrossRef]
- Wu, G.; Johnson, S.K.; Bornman, J.F.; Bennett, S.J.; Clarke, M.W.; Singh, V.; Fang, Z. Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Sci. Rep. 2016, 6, 21835. [Google Scholar] [CrossRef]
- Wagaw, K.; Tadesse, T. Combining Ability and Heterosis of Sorghum (Sorghum bicolor L. Moench) Hybrids for Grain and Biomass Yield. Am. J. Plant Sci. 2020, 11, 2155–2171. [Google Scholar] [CrossRef]
- Widowati, S.; Luna, P. Nutritional and Functional Properties of Sorghum (Sorghum bicolor (L.) Moench)-based Products and Potential Valorisation of Sorghum Bran. IOP Conf. Ser. Earth Environ. 2022, 1024, 012031. [Google Scholar] [CrossRef]
- Afify, A.M.R.; El-Beltagi, H.S.; Abd El-Salam, S.M.; Omran, A.A. Effect of soaking, cooking, germination and fermentation processing on proximate analysis and mineral content of three white sorghum varieties (Sorghum bicolor L. Moench). Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 92–98. [Google Scholar]
- Vulin, M.; Magušić, L.; Metzger, A.M.; Muller, A.; Drenjančević, I.; Jukić, I.; Šijanović, S.; Lukić, M.; Stanojević, L.; Davidović Cvetko, E.; et al. Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients 2022, 14, 5052. [Google Scholar] [CrossRef]
- Kogure, M.; Nakaya, N.; Hirata, T.; Tsuchiya, N.; Nakamura, T.; Narita, A.; Suto, Y.; Honma, Y.; Sasaki, H.; Miyagawa, K. Sodium/potassium ratio change was associated with blood pressure change: Possibility of population approach for sodium/potassium ratio reduction in health checkup. Hypertens. Res. 2021, 44, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Saxholt, E.; Christensen, A.T.; Møller, A.; Hartkopp, H.B.; Hess-Ygil, K.; Hels, O.H. Danish Food Composition Databank, Revision 7; Department of Nutrition, National Food Institute, Technical University of Denmark: Kongens Lyngby, Denmark, 2008. [Google Scholar]
- Taleon, V.; Dykes, L.; Rooney, W.L.; Rooney, L.W. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. Cereal Sci. 2012, 56, 470–475. [Google Scholar] [CrossRef]
Inbreds | Type |
---|---|
PL-1 = TX436 | Normal food grade |
PL-2 = 05MN5113 | Normal food grade |
PL-3 = 05MN5115 | Normal food grade |
PL-4 = Macia | Normal food grade |
Tw = B.TXARG-1 | Waxy food grade |
N2 = SURENO | Normal food grade |
N3 = DORADO | Normal food grade |
N4 = R.TX436 | Normal food grade |
N5 = SEPON82 | Normal food grade |
Month | T. Min (°C) | T. Max (°C) | T. Mean (°C) | Rainfall (mm) |
---|---|---|---|---|
April | 7.8 | 14.4 | 11.1 | 78 |
May | 9.8 | 18.6 | 14.2 | 30.8 |
June | 14.1 | 27.8 | 20.9 | 29 |
July | 18.8 | 28.5 | 23.6 | 15.2 |
August | 17.4 | 29.4 | 23.4 | 29 |
September | 14.7 | 23.4 | 19.0 | 24.6 |
October | 10.8 | 13.4 | 12.1 | 1000 |
Mean | Mean | Mean | Total | |
13.3 | 22.2 | 17.7 | 172.3 |
Scheme 0 | 0–60 cm Depth |
---|---|
Clay (%) | 42.6 |
Silt (%) | 18.8 |
Sand (%) | 39.4 |
pH | 8.4 |
Exchangeable Ca (g/kg) | 119 |
Available P (mg/kg) | 16 |
Exchangeable K (meq/100 g) | 1.4 |
Exchangeable Mg (meq/100 g) | 1.6 |
Total Ca carbonate (g/kg) | 68 |
Total N (g kg−1) | 0.8 |
CSC (meq/100 g) | 28 |
Organic C (g kg−1) | 2.5 |
Parameter | Moisture (%) | Ash (%) | Total Proteins (%) | Fats (%) | Total Carbohydrates (%) | Sugars (%) | Fibers (%) |
---|---|---|---|---|---|---|---|
PL-1 | 12.2 ± 0.9 dg | 1.7 ± 0.1 bcdeg | 11 ± 0.4 fg | 2.93 ± 0.12 cdefh | 68.74 ± 2.75 | 1.6 ± 0.2 f | 3.43 ± 0.14 bcdefghi |
PL-2 | 11.7 ± 0.6 dg | 2 ± 0.2 acdf | 12.2 ± 1.2 cdfi | 2.61 ± 0.29 | 65.9 ± 5.27 | 1.7 ± 0.2 efg | 5.59 ± 0.56 acdefghi |
PL-3 | 12.3 ± 0.6 dgi | 2.5 ± 0.3 abfhi | 10.5 ± 0.4 bfg | 2.3 ± 0.07 afghi | 65.54 ± 5.24 | 1.5 ± 0 df | 6.86 ± 0.69 abdefgi |
PL-4 | 10.6 ± 0.7 abc | 2.4 ± 0.2 abfhi | 10.7 ± 0.5 bfg | 2.45 ± 0.27 a | 69.41 ± 6.25 | 1.8 ± 0.2 cefgi | 4.44 ± 0.13 abcefghi |
Tw | 11.8 ± 0.8 g | 2.3 ± 0.2 afhi | 10.7 ± 0.6 fg | 2.36 ± 0.09 ah | 71.15 ± 6.4 | 1.4 ± 0.1 bdh | 1.69 ± 0.08 abcdfghi |
N2 | 11.2 ± 1.3 | 1.7 ± 0.1 bcdeg | 9 ± 0.3 abcdegh | 2.47 ± 0.1 ac | 72.87 ± 8.74 | 1.3 ± 0.1 abcdhi | 2.76 ± 0.3 abcdeghi |
N3 | 10.5 ± 0.4 abce | 2.2 ± 0.1 afhi | 12.5 ± 0.4 acdefhi | 2.63 ± 0.26 c | 70.74 ± 6.37 | 1.4 ± 0.1 bdh | 1.43 ± 0.17 abcdefhi |
N4 | 11.4 ± 1 | 1.9 ± 0.2 cdeg | 10.8 ± 0.6 fg | 2.63 ± 0.11 ace | 65.54 ± 1.97 i | 1.6 ± 0.1 efg | 7.73 ± 0.85 abdefgi |
N5 | 10.9 ± 0.9 c | 1.8 ± 0.1 cdeg | 10 ± 1.2 bg | 2.66 ± 0.27 c | 73.47 ± 6.61 h | 1.5 ± 0.1 df | 1.17 ± 0.09 abcdefgh |
Int.Var 1 | 10.5–12.3 | 1.7–2.5 | 9.03–12.5 | 2.3–2.93 | 65.54–73.47 | 1.3–1.8 | 1.17–7.73 |
Parameter | PL-1 | PL-2 | PL-3 | PL-4 | Tw | N2 | N3 | N4 | N5 | Int.Var 4 |
---|---|---|---|---|---|---|---|---|---|---|
Myristic C14:0 | 0.082 ± 0.003 bcdefghi | 0.054 ± 0.004 ai | 0.05 ± 0.003 af | 0.0 5± 0.002 af | 0.05 ± 0.004 af | 0.057 ± 0.003 acdeghi | 0.05 ± 0.003 afhi | 0.049 ± 0.003 af | 0.046 ± 0.004 abf | 0.05–0.082 |
Palmitic C16:0 | 11.58 ± 0.58 defghi | 11.84 ± 0.59 defghi | 11.88 ± 0.59 defghi | 13.47 ± 0.53 abc | 13.46 ± 1.07 abc | 14.22 ± 0.56 abchi | 13.45 ± 0.94 abc | 13.40 ± 0.40 abcf | 13.26 ± 0.53abcf | 11.58–13.47 |
Palmitoleic C16:1 9 c | 0.291 ± 0.015 bdefghi | 0.215 ± 0.009 acdefghi | 0.31 ± 0.009 bdefghi | 0.34 ± 0.01 abcefghi | 0.600 ± 0.018 abcdghi | 0.567 ± 0.028 abcdghi | 0.369 ± 0.011 abcdefhi | 0.516 ± 0.021 abcdefg | 0.500 ± 0.025 abcdefg | 0.215–0.600 |
Margaric C17:0 | 0.082 ± 0.007 bcdegi | 0.046 ± 0.002 acefghi | 0.070 ± 0.004 abd | 0.050 ± 0.004 acefghi | 0.070 ± 0.004 abd | 0.073 ± 0.004 bd | 0.069 ± 0.004 abd | 0.074 ± 0.002 bd | 0.07 ± 0.004 abd | 0.046–0.082 |
Margaroleic C17:1 10 c | 0.08 ± 0.00 bcdfgh | 0.06 ± 0.00 acdfh | 0.07 ± 0.00 abdfgh | 0.071 ± 0.00 abcfgh | 0.07 ± 0.01 h | 0.062 ± 0.00 abcdgh | 0.06 ± 0.00 acdfh | 0.00 ± 0.00 abcdefgi | 0.07 ± 0.01 h | 0.00–0.08 |
Stearic C18:0 | 1.22 ± 0.10 f | 1.33 ± 0.05 cdefhi | 1.22 ± 0.08 bf | 1.205 ± 0.07 bf | 1.21 ± 0.08 bf | 1.08 ± 0.03 abcdeghi | 1.24 ± 0.07 f | 1.24 ± 0.03 bf | 1.18 ± 0.07 bf | 1.08–1.33 |
Oleic C18:1 9c | 35.92 ± 1.07 cdefghi | 35.08 ± 2.80 cdegi | 41.06 ± 2.46 abdefgh | 30.65 ± 2.45 abci | 30.39 ± 0.91 abcgi | 31.97 ± 2.55 acgi | 27.61 ± 2.20 abcefhi | 32.33 ± 1.94 acgi | 40.95 ± 2.04 abdefgh | 27.61–41.06 |
Linoleic C18:2 9c12c | 46.95 ± 1.40 cdegi | 47.79 ± 1.91 cdegi | 42.54 ± 2.12 abdefgh | 50.76 ± 1.52 abci | 50.98 ± 1.52 abci | 49.38 ± 2.96 ci | 54.28 ± 4.34 abci | 49.59 ± 3.96 ci | 40.66 ± 1.22 abdefgh | 42.54–54.28 |
Linolenic C18:3 c9c12c15 | 2.55 ± 0.17 bcdefghi | 2.14 ± 0.08 acefgh | 1.49 ± 0.04 abdehi | 2.05 ± 0.10 acefgh | 1.83 ± 0.05 abcdfgi | 1.45 ± 0.10 abdehi | 1.57 ± 0.07 abdei | 1.71 ± 0.13 abcdfi | 2.01 ± 0.10 acefgh | 1.45–2.55 |
Arachidic C20:0 | 0.14 ± 0.01 bcegi | 0.16 ± 0.01 af | 0.17 ± 0.01 adfh | 0.15 ± 0.01 c | 0.16 ± 0.01 af | 0.14 ± 0.01 bcegi | 0.16 ± 0.01 af | 0.151 ± 0.01 c | 0.16 ± 0.01 af | 0.14–0.17 |
Eicosenoic C20:1 11c | 0.220 ± 0.009 bdgi | 0.160 ± 0.008 acdefghi | 0.220 ± 0.009 bdgi | 0.200 ± 0.014 abcfghi | 0.210 ± 0.017 bfgi | 0.238 ± 0.017 bde | 0.250 ± 0.015 abcde | 0.229 ± 0.011 bdi | 0.250 ± 0.008 abcdeh | 0.160–0.250 |
Behenic C22:0 | 0.160 ± 0.005 bcdefghi | 0.077 ± 0.002 acdefghi | 0.130 ± 0.007 abdefghi | 0.110 ± 0.009 abcefghi | 0.040 ± 0.003 abcdfghi | 0.070 ± 0.005 abcdeghi | 0.070 ± 0.003 abcdehi | 0.060 ± 0.002 abcdefg | 0.060 ± 0.002 abcdefg | 0.040–0.160 |
Lignoceric C24:0 | 0.067 ± 0.005 cdefghi | 0.060 ± 0.004 cdefgh | 0.040 ± 0.001 abdefghi | 0.110 ± 0.004 abcei | 0.12 ± 0.006 abcdfi | 0.102 ± 0.008 abcegi | 0.120 ± 0.01 abcfi | 0.110 ± 0.009 abci | 0.060 ± 0.002 acdefgh | 0.040–0.120 |
Erucic C22:1 13c | 0.000 ± 0.000 dgh | 0.000 ± 0.000 dgh | 0.000 ± 0.000 dgh | 0.011 ± 0.000 abcefghi | 0.000 ± 0.000 dgh | 0.000 ± 0.000 dgh | 0.008 ± 0.000 abcdefhi | 0.003 ± 0.000 abcdefgi | 00.000 ± 0.000 dgh | 0.00–0.008 |
MSF 1 | 1.07 ± 0.11 defghi | 0.93 ± 0.07 defgi | 0.96 ± 0.07 defgi | 0.77 ± 0.07 abci | 0.74 ± 0.04 abcfhi | 0.81 ± 0.03 abcegi | 0.74 ± 0.04 abcfhi | 0.87 ± 0.07 aegi | 1.53 ± 0.09 abcdefgh | 0.74–1.53 |
PSF 2 | 1.47 ± 0.15 cef | 1.33 ± 0.15 ci | 1.03 ± 0.07 abdefghi | 1.32 ± 0.13 cgi | 1.27 ± 0.05 acgi | 1.27 ± 0.06 acgi | 1.49 ± 0.06 cef | 1.37 ± 0.12 ci | 1.59 ± 0.14 bcdefh | 1.03–1.59 |
SF 3 | 0.39 ± 0.01 bcdei | 0.35 ± 0.02 acghi | 0.31 ± 0.02 abdfghi | 0.37 ± 0.01 aci | 0.35 ± 0.03 agi | 0.39 ± 0.04 ci | 0.4 ± 0.03 bcei | 0.39 ± 0.03 ci | 0.54 ± 0.04 abcdefgh | 0.31–0.54 |
Parameter | Na | Mg | K | Ca |
---|---|---|---|---|
PL-1 | 0.14 ± 0.01 bcdefghi | 6.16 ± 0.37 bcdg | 13.66 ± 0.82 g | 0.51 ± 0.03 bcdefghi |
PL-2 | 0.24 ± 0.01 acdefgh | 7.06 ± 0.42 aefghi | 14.04 ± 0.7 g | 0.82 ± 0.04 adefghi |
PL-3 | 0.32 ± 0.01 abdefghi | 7.32 ± 0.37 aefghi | 14.25 ± 1 g | 0.83 ± 0.04 adefghi |
PL-4 | 0.29 ± 0.01 abcefghi | 6.99 ± 0.21 aefghi | 14.09 ± 0.56 g | 0.96 ± 0.06 abcefhi |
Tw | 0.35 ± 0.01 abcdfghi | 6.05 ± 0.24 bcdg | 13.04 ± 0.91 gh | 1.73 ± 0.12 abcdfghi |
N2 | 0.19 ± 0.01 abcdegi | 5.88 ± 0.29 bcdg | 14.38 ± 1.01 eg | 0.72 ± 0.02 abcdeghi |
N3 | 0.21 ± 0.01 abcdefi | 8.2 ± 0.25 abcdefhi | 16.38 ± 0.82 abcdefhi | 0.99 ± 0.03 abcefhi |
N4 | 0.2 ± 0.01 abcdei | 5.91 ± 0.35 bcdg | 14.54 ± 0.87 eg | 0.68 ± 0.02 abcdefgi |
N5 | 0.25 ± 0.01 acdefgh | 6.3 ± 0.44 bcdg | 14.14 ± 0.42 g | 0.63 ± 0.03 abcdefgh |
Int.Var 1 | 0.14–0.35 | 5.88–8.2 | 13.04–16.38 | 0.51–1.73 |
Parameter | PL-1 | PL-2 | PL-3 | PL-4 | Tw | N2 | N3 | N4 | N5 | Int.Var 1 |
---|---|---|---|---|---|---|---|---|---|---|
Be | <0.01 | 0.02 ±0.00 | 0.03 ±0.00 | 0.04 ±0.00 | 0.05 ±0.00 | 0.02 ±0.00 | 0.02 ±0.00 | 0.02 ±0.00 | 0.02 ±0.00 | <0.01–0.05 |
Al | 13.91 ± 0.83 bcdefghi | 65.47 ± 3.93 acdefghi | 107.15 ± 3.21 abdefghi | 131.88 ± 5.28 abcefghi | 178.44 ± 8.92 abcdfghi | 54.42 ± 3.27 abcdeghi | 42.62 ± 1.7 abcdefhi | 56.77 ± 3.97 abcdefgi | 25 ± 1.75 abcdefgh | 13.91–178.44 |
V | <0.01 bcdef | <0.01 acdefghi | 0.15 ± 0.01 abdefghi | 0.22 ± 0.01 abcefghi | 0.35 ± 0.02 abcdfghi | 0.08 ± 0.00 abcdeghi | 0.04 ± 0.00 bcdef | <0.01 bcdef | <0.01 bcdef | <0.01–0.35 |
Cr | 5.47 ± 0.38 bcdefghi | 17.79 ± 0.53 acdefghi | 3.67 ± 0.18 abefghi | 3.55 ± 0.18 abefghi | 4.18 ± 0.21 abcdfghi | 4.69 ± 0.14 abcdeghi | 3.07 ± 0.09 abcdefhi | 6.91 ± 0.21 abcdefgi | 5.71 ± 0.34 bcdefgh | 3.07–17.79 |
Mn | 36.33 ± 2.18 bcdeg | 41.78 ± 2.92 acdgh | 55.12 ± 3.31 abdefhi | 47.39 ± 3.32 abcfghi | 46.53 ± 3.26 acfghi | 40.09 ± 2.81 cdegh | 56.79 ± 1.7 abdefhi | 34.95 ± 1.75 bcdefg | 37.54 ± 2.63 cdeg | 34.95–56.79 |
Fe | 113.17 ± 6.79 cdefgh | 117.2 ± 8.2 cdefh | 154.25 ± 4.63 abdefghi | 182.04 ± 5.46 abcfghi | 193.66 ± 13.56 abcfghi | 135.67 ± 5.43 abcdei | 128.12 ± 6.41 acdei | 132.68 ± 9.29 abcdei | 113.42 ± 6.81 cdefgh | 113.17–193.66 |
Co | 0.06 ± 0.00 bcdefhi | 0.07 ± 0.00 adefghi | 0.07 ± 0.00 adefghi | 0.08 ± 0.00 abceghi | 0.11 ± 0.01 abcdfgh | 0.08 ± 0.00 abceghi | 0.06 ± 0.00 bcdefhi | 0.05 ± 0.00 abcdefgi | 0.12 ± 0.01 abcdfgh | 0.05–0.12 |
Ni | 1.89 ± 0.06 bcdefghi | 1.45 ± 0.1 acdfi | 0.95 ± 0.03 abdefghi | 1.32 ± 0.04 abcefi | 1.61 ± 0.1 acdfghi | 2.37 ± 0.09 abcdeghi | 1.40 ± 0.07 acefi | 1.40 ± 0.06 acefi | 3.9 ± 0.23 abcdefgh | 0.95–2.37 |
Cu | 11.05 ± 0.66 bcdefghi | 16.15 ± 0.97 adefghi | 16.39 ± 0.98 adefghi | 13.77 ± 0.41 abcfghi | 13.67 ± 0.68 abcfghi | 9.26 ± 0.46 abcdegi | 24.13 ± 0.72 abcdefhi | 9.46 ± 0.38 abcdegi | 33.79 ± 2.37 abcdefgh | 9.26–33.79 |
Zn | 97.85 ± 3.91 bcdghi | 107.93 ± 5.4 aefgi | 107.76 ± 6.47 aefgi | 107.68 ± 3.23 aefgi | 96.59 ± 3.86 bcdghi | 93.9 ± 6.57 bcdghi | 130.44 ± 6.52 abcdefhi | 113.06 ± 4.52 aefgi | 578.52 ± 28.93 abcdefgh | 93.9–578.52 |
As | 0.03 ± 0.00 bcdefghi | 0.09 ± 0.00 adefghi | 0.09 ± 0.00 adefghi | 0.10 ± 0.00 abcfgi | 0.10 ± 0.00 abcfgi | 0.05 ± 0.00 abcdeh | 0.05 ± 0.00 abcdeh | 0.11 ± 0.01 abcfgi | 0.05 ± 0.00abcdeh | 0.03–0.11 |
Se | 0.02 ± 0.00 bcdefghi | 0.01 ± 0.00 acdefghi | 0.03 ± 0.00 abegi | 0.03 ± 0.00 abegi | 0.04 ± 0.00 abcdfgh | 0.03 ± 0.00 abegi | 0.05 ± 0.00 abcdefhi | 0.03 ± 0.00 abegi | 0.04 ± 0.00 abcdfgh | 0.01–0.05 |
Mo | 0.26 ± 0.01 bcdefghi | 0.39 ± 0.02 acdfghi | 0.34 ± 0.02 abdefghi | 0.60 ± 0.02 abcefghi | 0.42 ± 0.02 acdfhi | 0.53 ± 0.03 abcdeghi | 0.43 ± 0.02 abcdfhi | 0.77 ± 0.02 abcdefgi | 0.70 ± 0.03 abcdefgh | 0.26–0.77 |
Ag | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.10 ± 0.01 i | 0.45 ± 0.01 abcdefgh | 0.1–0.45 |
Sn | 0.08 ± 0.01 cdeghi | 0.07 ± 0.00 cdefghi | 0.10 ± 0.00 abhi | 0.10 ± 0.01 abhi | 0.10 ± 0.01 abhi | 0.09 ± 0.01 bhi | 0.10 ± 0 abh | 0.13 ± 0.01 abcdefgi | 0.05 ± 0.00 abcdefgh | 0.05–0.14 |
Ba | 1.21 ± 0.08 bcdefghi | 2.48 ± 0.07 acdefghi | 3.86 ± 0.27 abdefghi | 5.39 ± 0.27 abcefghi | 6.3 ± 0.44 abcdfghi | 1.97 ± 0.14 abcdei | 1.9 ± 0.11 abcdeh | 2.12 ± 0.13 abcdegi | 1.73 ± 0.1 abcdefh | 1.21–6.3 |
Tl | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pb | 0.26 ± 0.01 abcdefghi | 0.39 ± 0.02 acdefghi | 0.63 ± 0.03 abdefhi | 0.76 ± 0.05 abcfghi | 0.81 ± 0.05 abcfghi | 1.05 ± 0.05 abcdeghi | 0.65 ± 0.05 abdefhi | 0.54 ± 0.03 abcdefgi | 0.96 ± 0.03 abcdefgh | 0.26–1.05 |
Parameter | U | Sb | Hg | Cd |
---|---|---|---|---|
PL-1 | 10.01 ± 0.70 bcdefghi | 3.0 ± 0.2 bcdefhi | 46.5 ± 1.8 | 112.5 ± 3.3 bcdefghi |
PL-2 | 25.27 ± 1.52 acdefghi | 8.0 ± 0.5 acdefghi | 47.0 ± 3.2 | 25.0 ± 0.7 acdefghi |
PL-3 | 38.26 ± 1.15 abdefghi | 5.5 ± 0.3 abdefgi | 47.0 ± 2.8 | 27.0 ± 1.3 abdefghi |
PL-4 | 49.41 ± 2.47 abcfghi | 13.5 ± 0.5 abcefghi | 49.0 ± 3.4 | 15.5 ± 0.6 abcefghi |
Tw | 54.11 ± 3.79 abcfghi | 6.0 ± 0.1 abcdfghi | 46.5 ± 2.3 | 13.0 ± 0.6 abcdfghi |
N2 | 15.09 ± 1.06 abcdegi | 2.5 ± 0.1 abcdeghi | 46.0 ± 2.3 | 17.0 ± 0.5 abcdeghi |
N3 | 33.6 ± 2.02 abcdefhi | 3.0 ± 0.1 bcdefhi | 47.1 ± 1.8 | 48.0 ± 2.8 abcdefhi |
N4 | 15.28 ± 0.76 abcdegi | 5.5 ± 0.2 abdefgi | 47.5 ± 1.43 | 42.0 ± 2.1 abcdefgi |
N5 | 8.83 ± 0.44 abcdefgh | <0.1 abcdefgh | 47.7 ± 2.82 | 379.5 ± 26.5 abcdefgh |
Int.Var 1 | 10.01–54.11 | <0.1–13.5 | 46.0–49.0 | 13.0–379.5 |
Mineral | mg/100 g Sorghum | US RDA/AI | Jaćimović et al., 2023 [30] |
---|---|---|---|
Mg | 0.6–0.8 | 400 (adult males age < 50) | 57.6–92.7 |
Fe | 11.3–19.4 | 18 (adult males and females age > 50) | 1.4–3.4 |
K | 1.3–1.6 | 3400 | 96.4–232.3 |
Zn | 9.4–57.8 | 11 (adult males) | 1.3–2.5 |
Sorghum Inbreds | Content (ppm) 2 |
---|---|
PL-1 | <5 |
PL-2 | <5 |
PL-3 | <5 |
PL-4 | <5 |
Tw | <5 |
N2 | <5 |
N3 | <5 |
N4 | <5 |
N5 | <5 |
Wheat gliadin standard 1 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontieri, P.; Troisi, J.; Calcagnile, M.; Aramouni, F.; Tilley, M.; Smolensky, D.; Guida, M.; Del Giudice, F.; Merciai, A.; Samoylenko, I.; et al. Nutritional Composition, Fatty Acid Content, and Mineral Content of Nine Sorghum (Sorghum bicolor) Inbred Varieties. Foods 2024, 13, 3634. https://doi.org/10.3390/foods13223634
Pontieri P, Troisi J, Calcagnile M, Aramouni F, Tilley M, Smolensky D, Guida M, Del Giudice F, Merciai A, Samoylenko I, et al. Nutritional Composition, Fatty Acid Content, and Mineral Content of Nine Sorghum (Sorghum bicolor) Inbred Varieties. Foods. 2024; 13(22):3634. https://doi.org/10.3390/foods13223634
Chicago/Turabian StylePontieri, Paola, Jacopo Troisi, Matteo Calcagnile, Fadi Aramouni, Michael Tilley, Dmitriy Smolensky, Marco Guida, Fabio Del Giudice, Antonio Merciai, Iryna Samoylenko, and et al. 2024. "Nutritional Composition, Fatty Acid Content, and Mineral Content of Nine Sorghum (Sorghum bicolor) Inbred Varieties" Foods 13, no. 22: 3634. https://doi.org/10.3390/foods13223634