Phytate Content in Cereals Impacted by Cropping System and Harvest Year
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Sampling, Analysis, and Weather
2.3. Statistical Analysis
3. Results
3.1. Impact of Cropping System on Phytate Content
3.2. Effect of Weather Conditions on Phytate Content
3.3. Relationship of Phytate Content with Quality Values of Cereals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AX | arabinoxylan |
BG | beta-glucan |
N | nitrogen |
P | phosphorous |
1000 KW | thousand kernel weight |
References
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M. Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? J. Funct. Foods 2022, 89, 104938. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef] [PubMed]
- Henninger, C.; Stadelmann, T.; Heid, D.; Ochsenreither, K.; Eisele, T. Ion chromatography coupled with optical emission spectrometry (IC-ICP-OES) methodology for the analysis of inositol phosphates in food and feed. Food Chem. 2025, 463, 141437. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, A.; Perera, I.; Hosoya, K.; Akabane, T.; Hirotsu, N. Genotypic differences in the effect of P fertilization on phytic acid content in rice grain. Plants 2020, 9, 146. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.; Raigond, P.; Sahu, C.; Mishra, U.N.; Sharma, S.; Lal, M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res. Int. 2021, 142, 110193. [Google Scholar] [CrossRef]
- Kaplan, M.; Karaman, K.; Kardes, Y.M.; Kale, H. Phytic acid content and starch properties of maize (Zea mays L.): Effects of irrigation process and nitrogen fertilizer. Food Chem. 2019, 283, 375–380. [Google Scholar] [CrossRef]
- Linares-Castañeda, A.; Jiménez-Martínez, C.; Sánchez-Chino, X.M.; Pérez-Pérez, V.; Cid-Gallegos, M.S.; Corzo-Ríos, L.J. 2025. Modifying of non-nutritional compounds in legumes: Processing strategies and new technologies. Food Chem. 2025, 463, 141603. [Google Scholar] [CrossRef]
- Raboy, V. Seeds for a better future: ‘Low phytate’ grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 2001, 6, 458–462. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58, 1310–1329. [Google Scholar] [CrossRef]
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A review of phytic acid sources, obtention, and applications. Food Rev. Int. 2021, 39, 73–92. [Google Scholar] [CrossRef]
- Bohn, L.; Meyer, A.S.; Rasmussen, S.K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B 2008, 9, 165–191. [Google Scholar] [CrossRef]
- Korge, M.; Alaru, M.; Keres, I.; Khaleghdoust, B.; Möll, K.; Altosaar, I.; Loit, E. The influence of cropping system, weather conditions and genotype on arabinoxylan content in wheat and barley grains. J. Cereal Sci. 2023, 110, 103650. [Google Scholar] [CrossRef]
- Khaleghdoust, B.; Esmaeilzadeh-Salestani, K.; Korge, M.; Alaru, M.; Möll, K.; Värnik, R.; Koppel, R.; Tamm, Ü.; Kurg, M.; Altosaar, I.; et al. Barley and wheat beta-glucan content influenced by weather, fertilization, and genotype. Front. Sustain. Food Syst. 2024, 7, 1326716. [Google Scholar] [CrossRef]
- Saastamoinen, M. Effect of nitrogen and phosphorus fertilization on the phytic acid content of oats. Cereal Res. Commun. 1987, 15, 57–63. [Google Scholar]
- Ning, H.; Liu, Z.; Wang, Q.; Lin, Z.; Chen, S.; Li, G.; Wang, S.; Ding, Y. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J. Cereal Sci. 2009, 50, 49–55. [Google Scholar] [CrossRef]
- Farm to Fork Strategy. For a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://food.ec.europa.eu/document/download/472acca8-7f7b-4171-98b0-ed76720d68d3_en?filename=f2f_action-plan_2020_strategy-info_en.pdf (accessed on 18 November 2024).
- Liu, X.; Han, R.; Cao, Y.; Turner, B.L.; Ma, L.Q. Enhancing phytate availability in soils and phytate-p acquisition by plants: A Review. Environ. Sci. Technol. 2022, 56, 9196–9219. [Google Scholar] [CrossRef]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl. Lantbrukshögskolans Annaler 1996, 26, 199–215. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants, BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; p. 204. [Google Scholar]
- Viikoja, R.; Alaru, M.; Keres, I.; Lillak, R.; Voor, I.; Loit, E. Impact of changing weather on the crops yield stability in different cropping systems. Agron. Res. 2023, 21, 979–993. [Google Scholar]
- Delin, L.; Zhaomin, Z. Effect of available phosphorus in paddy soils on phosphorus uptake of rice. J. Radioanal. Nucl. Chem. 1996, 205, 235–243. [Google Scholar] [CrossRef]
- Keres, I.; Alaru, M.; Talgre, L.; Eremeev, V.; Luik, A.; Loit, E. Long-term effect of farming systems on the yield of crop rotation and soil nutrient content. Agric Food Sci. 2020, 29, 210–221. [Google Scholar] [CrossRef]
- Chtouki, M.; Laaziz, F.; Naciri, R.; Garré, S.; Nguyen, F.; Oukarroum, A. Interactive effect of soil moisture content and phosphorus fertilizer form on chickpea growth, photosynthesis, and nutrient uptake. Sci. Rep. 2022, 12, 6671. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Mahdi, A.-K.; Han, X.; Chen, X.; Yan, J.; Biswas, A.; Zou, W. Long-term application of fertilizer and manures affect P fractions in Mollisol. Sci. Rep. 2020, 10, 14793. [Google Scholar] [CrossRef] [PubMed]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.M.; Fitzgerald, G.J.; Myers, S.; Nicolas, M.E.; Seneweera, S. Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments. J. Cereal Sci. 2014, 59, 137–144. [Google Scholar] [CrossRef]
- Aurangzeb, S.N.; Ahmad, Y.; Ikram, M.; Shaheen, S.; Ishaq, M.; Hameed, T.; Hussain, S.; Romman, M.; Khan, N. Phytic acid content variation among wheat grain lines and its impact on nutritional quality and growth. Vegetos 2025. Available online: https://link.springer.com/article/10.1007/s42535-024-01150-5?fromPaywallRec=true (accessed on 18 November 2024). [CrossRef]
Organic | Org2 I Org1 I Org0 I | Org2 II Org1 II Org0 II | Org2 III Org1 III Org0 III | Org2 IV Org1 IV Org0 IV |
intermediate strip | ||||
Conventional | N3 I N2 I N1 I N0 I | N3 II N2 II N1 II N0 II | N3 III N2 III N1 III N0 III | N3 IV N2 IV N1 IV N0 IV |
Month | Average Air Temperature per Month, °C | ||||||
---|---|---|---|---|---|---|---|
1991–2020 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
Average of April–August, °C | 13.52 | 12.1 | 15.7 | 14.1 | 13.2 | 14.8 | 14.2 |
April | 5.9 | 3.4 | 7.2 | 7.7 | 4.8 | 5.3 | 4.5 |
May | 11.5 | 10.4 | 16.0 | 11.4 | 9.5 | 10.9 | 10.3 |
June | 15.5 | 14.0 | 15.9 | 18.6 | 18.4 | 19.8 | 17.5 |
July | 18.0 | 16.0 | 20.8 | 16.4 | 16.3 | 22.2 | 18.1 |
August | 16.7 | 16.7 | 18.8 | 16.7 | 16.8 | 15.8 | 20.1 |
Sum of GDD per month, °C | |||||||
Sum of April–August, °C | 1295 | 1164 | 1669 | 1433 | 1284 | 1539 | 1445 |
April | 50 | 16 | 85 | 109 | 24 | 40 | 28 |
May | 201 | 177 | 341 | 204 | 141 | 187 | 166 |
June | 314 | 269 | 327 | 407 | 401 | 445 | 375 |
July | 386 | 340 | 488 | 352 | 351 | 533 | 406 |
August | 344 | 364 | 429 | 361 | 366 | 334 | 469 |
Sum of precipitation per month, mm | |||||||
Sum of April–August, mm | 323 | 328 | 170 | 213 | 332 | 390 | 340 |
April | 35 | 52 | 28 | 3 | 50 | 29 | 31 |
May | 54 | 16 | 8 | 60 | 32 | 108 | 46 |
June | 88 | 94 | 61 | 51 | 117 | 19 | 58 |
July | 67 | 61 | 14 | 41 | 69 | 17 | 145 |
August | 79 | 106 | 59 | 58 | 64 | 217 | 60 |
April | May | June | July | August | |
---|---|---|---|---|---|
Winter wheat | 21–22 | 23–45 | 47–71 | 72–90 | x |
Spring barley | x | 0–30 | 31–65 | 66–85 | 85–90 |
Factor | Winter Wheat | Spring Barley |
---|---|---|
Grain quality parameters | ||
Yield t ha−1 | −0.24 | 0.41 |
1000 KW | −0.62 | −0.01 |
Test weight, g L−1 | 0.21 | −0.63 |
Protein, % | 0.01 | −0.39 |
AX, g 100 g−1 | 0.67 | 0.36 |
BG g 100 g−1 | 0.09 | −0.48 |
Air temperature, °C | ||
Average of the period | 0.42 | −0.31 |
April | 0.05 | −0.19 |
May | −0.05 | 0.19 |
June | 0.58 | −0.71 |
July | 0.75 | −0.38 |
August | −0.51 | 0.43 |
Precipitation, mm | ||
Sum of the period | 0.47 | −0.31 |
April | −0.26 | 0.30 |
May | 0.87 | −0.69 |
June | −0.83 | 0.46 |
July | −0.62 | 0.28 |
August | −0.89 | −0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korge, M.; Alaru, M.; Keres, I.; Möll, K.; Talgre, L.; Voor, I.; Altosaar, I.; Loit-Harro, E. Phytate Content in Cereals Impacted by Cropping System and Harvest Year. Foods 2025, 14, 446. https://doi.org/10.3390/foods14030446
Korge M, Alaru M, Keres I, Möll K, Talgre L, Voor I, Altosaar I, Loit-Harro E. Phytate Content in Cereals Impacted by Cropping System and Harvest Year. Foods. 2025; 14(3):446. https://doi.org/10.3390/foods14030446
Chicago/Turabian StyleKorge, Mailiis, Maarika Alaru, Indrek Keres, Kaidi Möll, Liina Talgre, Ivo Voor, Illimar Altosaar, and Evelin Loit-Harro. 2025. "Phytate Content in Cereals Impacted by Cropping System and Harvest Year" Foods 14, no. 3: 446. https://doi.org/10.3390/foods14030446
APA StyleKorge, M., Alaru, M., Keres, I., Möll, K., Talgre, L., Voor, I., Altosaar, I., & Loit-Harro, E. (2025). Phytate Content in Cereals Impacted by Cropping System and Harvest Year. Foods, 14(3), 446. https://doi.org/10.3390/foods14030446