Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Reagents and Chemical Standards
2.3. Sample Digestion Procedures
2.3.1. Dry-Ashing
2.3.2. Microwave Digestion
2.3.3. Graphite Block Acid Digestion
2.4. ICP-OES Analysis
2.5. Quality Assurance Procedures
2.6. Calculation of the Uncertainty as a Function of Concentration
2.7. Classification System for the Digestion Methods
2.8. Statistical Analysis
3. Results and Discussion
3.1. Accuracy and Precision Assessment of Digestion Methods
3.2. Uncertainty Evaluation
3.3. Determination of Elemental Contents in Pseudocereals: Comparison of Digestion Methods
3.4. Assessment of Digestion Methods Based on the Criteria Developed to Evaluate the Comparability with Microwave Digestion Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ronteltap, A.; Sijtsema, S.J.; Dagevos, H.; de Winter, M.A. Construal Levels of Healthy Eating. Exploring Consumers’ Interpretation of Health in the Food Context. Appetite 2012, 59, 333–340. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Food and Agricultural Organization of the United Nations. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; ISBN 9241546123. [Google Scholar]
- Castanheira, I.; Saraiva, M.; Rego, A.; Ollilainen, V. EuroFIR Guidelines for Assessment of Methods of Analysis: GAMA. Food Chem. 2016, 193, 82–89. [Google Scholar] [CrossRef]
- Charrondiere, U.R.; Vignat, J.; Møller, A.; Ireland, J.; Becker, W.; Church, S.; Farran, A.; Holden, J.; Klemm, C.; Linardou, A.; et al. The European Nutrient Database (ENDB) for Nutritional Epidemiology. J. Food Compos. Anal. 2002, 15, 435–451. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Arendt, E.K.; Gallagher, E. Nutritive Value of Pseudocereals and Their Increasing Use as Functional Gluten-Free Ingredients. Trends Food Sci. Technol. 2010, 21, 106–113. [Google Scholar] [CrossRef]
- Hidalgo, M.J.; Sgroppo, S.C.; Camiña, J.M.; Marchevsky, E.J.; Pellerano, R.G. Trace Element Concentrations in Commercial Gluten-Free Amaranth Bars. J. Food Meas. Charact. 2015, 9, 426–434. [Google Scholar] [CrossRef]
- Stantiall, S.E.; Serventi, L. Nutritional and Sensory Challenges of Gluten-Free Bakery Products: A Review. Int. J. Food Sci. Nutr. 2018, 69, 427–436. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Jan, K.N.; Panesar, P.S.; Singh, S. Process Standardization for Isolation of Quinoa Starch and Its Characterization in Comparison with Other Starches. J. Food Meas. Charact. 2017, 11, 1919–1927. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.M.; Mattila, P.H. Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Kañiwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Schlick, G.; Bubenheim, D.L. Quinoa: An Emerging “New” Crop with Potential for CELSS. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940015664.pdf (accessed on 10 November 2024).
- Cheng, A. Review: Shaping a Sustainable Food Future by Rediscovering Long-Forgotten Ancient Grains. Plant Sci. 2018, 269, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Mota, C.; Santos, M.; Mauro, R.; Samman, N.; Matos, A.S.; Torres, D.; Castanheira, I. Protein Content and Amino Acids Profile of Pseudocereals. Food Chem. 2016, 193, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Mäkinen, S.; Eurola, M.; Jalava, T.; Pihlava, J.M.; Hellström, J.; Pihlanto, A. Nutritional Value of Commercial Protein-Rich Plant Products. Plant Foods Hum. Nutr. 2018, 73, 108–115. [Google Scholar] [CrossRef]
- Carlo, C.; Alessio, F. Celiac disease. Curr. Opin. Gastroenterol. 2008, 24, 687–691. [Google Scholar] [CrossRef]
- Pagamunici, L.M.; de Souza, A.H.P.; Gohara, A.K.; Silvestre, A.A.F.; Visentainer, J.V.; de Souza, N.E.; Gomes, S.T.M.; Matsushita, M. Multivariate Study and Regression Analysis of Gluten-Free Granola. Food Sci. Technol. 2014, 34, 127–134. [Google Scholar] [CrossRef]
- Kaur, H.; Shams, R.; Dash, K.K.; Dar, A.H. A Comprehensive Review of Pseudo-Cereals: Nutritional Profile, Phytochemicals Constituents and Potential Health Promoting Benefits. Appl. Food Res. 2023, 3, 100351. [Google Scholar] [CrossRef]
- Krejčová, A.; Ludvíková, I.; Černohorský, T.; Pouzar, M. Elemental Analysis of Nutritional Preparations by Inductively Coupled Plasma Mass and Optical Emission Spectrometry. Food Chem. 2012, 132, 588–596. [Google Scholar] [CrossRef]
- Demirel, S.; Tuzen, M.; Saracoglu, S.; Soylak, M. Evaluation of Various Digestion Procedures for Trace Element Contents of Some Food Materials. J. Hazard. Mater. 2008, 152, 1020–1026. [Google Scholar] [CrossRef]
- Borkowska-Burnecka, J.; Miazga, W.; Zyrnicki, W. Evaluation of Digestion Procedures for the Analysis of Vegetables by the ICP Emission Spectrometry. Chem. Anal. 2000, 45, 429–438. [Google Scholar]
- Buldini, P.L.; Ricci, L.; Sharma, J.L. Recent Applications of Sample Preparation Techniques in Food Analysis. J. Chromatogr. A 2002, 975, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Altundag, H.; Tuzen, M. Comparison of Dry, Wet and Microwave Digestion Methods for the Multi Element Determination in Some Dried Fruit Samples by ICP-OES. Food Chem. Toxicol. 2011, 49, 2800–2807. [Google Scholar] [CrossRef]
- Bakircioglu, D.; Kurtulus, Y.B.; Ucar, G. Determination of Some Traces Metal Levels in Cheese Samples Packaged in Plastic and Tin Containers by ICP-OES after Dry, Wet and Microwave Digestion. Food Chem. Toxicol. 2011, 49, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Ashoka, S.; Peake, B.M.; Bremner, G.; Hageman, K.J.; Reid, M.R. Comparison of Digestion Methods for ICP-MS Determination of Trace Elements in Fish Tissues. Anal. Chim. Acta 2009, 653, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wheal, M.S.; Fowles, T.O.; Palmer, L.T. A Cost-Effective Acid Digestion Method Using Closed Polypropylene Tubes for Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Analysis of Plant Essential Elements. Anal. Methods 2011, 3, 2854–2863. [Google Scholar] [CrossRef]
- Akinyele, I.O.; Shokunbi, O.S. Comparative Analysis of Dry Ashing and Wet Digestion Methods for the Determination of Trace and Heavy Metals in Food Samples. Food Chem. 2015, 173, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Choi, J.Y.; Nho, E.Y.; Hwang, I.M. Determination of Mineral Elements in Milk Products by Inductively Coupled Plasma-Optical Emission Spectrometry. Anal. Lett. 2014, 47, 1606–1613. [Google Scholar] [CrossRef]
- Nascimento, A.C.; Mota, C.; Coelho, I.; Gueifão, S.; Santos, M.; Matos, A.S.; Gimenez, A.; Lobo, M.; Samman, N.; Castanheira, I. Characterisation of Nutrient Profile of Quinoa (Chenopodium quinoa), Amaranth (Amaranthus caudatus), and Purple Corn (Zea mays L.) Consumed in the North of Argentina: Proximates, Minerals and Trace Elements. Food Chem. 2014, 148, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.S.; Calhau, M.A.; Gueifão, S.; Coelho, I.; Castanheira, I.; Finglas, P.; Roe, M. Six Sigma Scale as a Quality Criterion for Aggregation of Food Property Measures. J. Food Compos. Anal. 2011, 24, 1153–1159. [Google Scholar] [CrossRef]
- Ulberth, F. Metrological Concepts Required for Food Safety and Quality Testing. Accredit. Qual. Assur. 2011, 16, 607–613. [Google Scholar] [CrossRef]
- Taverniers, I.; De Loose, M.; Van Bockstaele, E. Trends in Quality in the Analytical Laboratory. I. Traceability and Measurement Uncertainty of Analytical Results. TrAC Trends Anal. Chem. 2004, 23, 480–490. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004; European Commission: Brussels, Belgium, 2004; Volume L 269, pp. 1–15.
- ISO 3696:1987; Water for Analytical Laboratory Use—Specification and Test Methods. ISO: Geneva, Switzerland, 1987.
- AOAC 985.35; Association of Official Analytical Chemists. Minerals in Infant Formula, Enteral Products, and Pet Foods. AOAC: Arlington, VA, USA, 2000.
- AOAC 984.27; Method to Determine Calcium, Copper, Iron, Magnesium, Manganese, Phosphorous, Potasium, Sodium and Zinc in Infant Formula. AOAC: Arlington, VA, USA, 2000.
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). ISO: Geneva, Switzerland, 2016.
- Magnusson, B.; Örnemark, U. The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics. In Eurachem Guide, 2nd ed.; 2014; pp. 1–70. Available online: https://www.eurachem.org/index.php/3-publications/guides/144-gdmv2014 (accessed on 10 November 2024).
- Thompson, M.; Wood, R. Using Uncertainty Functions to Predict and Specify the Performance of Analytical Methods. Accredit. Qual. Assur. 2006, 10, 471–478. [Google Scholar] [CrossRef]
- European Commission: Joint Research Centre; Robouch, P.; Stroka, J.; Haedrich, J.; Schaechtele, A.; Wenzl, T. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; Publications Office of the European Union: Luxembourg, 2016; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC102946 (accessed on 10 November 2024).
- European Medicines Agency. ICH Q14 Guideline on Analytical Procedure Development. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q14-guideline-analytical-procedure-development-step-5_en.pdf (accessed on 10 November 2024).
- European Commission. Commission Directive 2005/4/EC Amending Directive 2001/22/EC Laying down the Sampling Methods and the Methods of Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury and 3-MCPD in Foodstuffs. Off. J. Eur. Union 2005, L 77/14, 50–51. [Google Scholar]
- Bhagwat, S.A.; Patterson, K.Y.; Holden, J.M. Validation Study of the USDA’s Data Quality Evaluation System. J. Food Compos. Anal. 2009, 22, 366–372. [Google Scholar] [CrossRef]
- Braden, J.L.; Klarquist, E.F.; Kellogg, J.A. Determination of Elements in Cereals, Pseudocereals, and Legumes by Microwave Plasma-Atomic Emission Spectrometry. Food Chem. X 2024, 24, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Coelho, I.; Gueifão, S.; Matos, A.S.; Roe, M.; Castanheira, I. Experimental Approaches for the Estimation of Uncertainty in Analysis of Trace Inorganic Contaminants in Foodstuffs by ICP-MS. Food Chem. 2013, 141, 604–611. [Google Scholar] [CrossRef]
- Smith, F.E.; Arsenault, E.A. Microwave-Assisted Sample Preparation in Analytical Chemistry. Talanta 1996, 43, 1207–1268. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.; Poms, R.; Macarthur, R.; Pöpping, B.; Ulberth, F. What Is the Best Way to Ensure That Valid Analytical Methods Are Used for Food Control? Qual. Assur. Saf. Crops Foods 2011, 3, 123–134. [Google Scholar] [CrossRef]
- Westenbrink, S.; Roe, M.; Oseredczuk, M.; Castanheira, I.; Finglas, P. EuroFIR Quality Approach for Managing Food Composition Data; Where Are We in 2014? Food Chem. 2016, 193, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Poitevin, E.; Nicolas, M.; Graveleau, L.; Richoz, J.; Andrey, D.; Monard, F.; Abrahamson, A.; Baillon, A.; Barrios, J.; Berger, S.; et al. Improvement of AOAC Official Method 984.27 for the Determination of Nine Nutritional Elements in Food Products by Inductively Coupled Plasma-Atomic Emission Spectroscopy After Microwave Digestion: Single-Laboratory Validation and Ring Trial. J. AOAC Int. 2009, 92, 1484–1518. [Google Scholar] [CrossRef] [PubMed]
ICP OES—Thermo ICAP 6000 Series | Operating Conditions |
---|---|
Auxiliary gas flow (L/min) | 0.5 |
Radio frequency power (W) | 1200 |
Nebulization pressure (psi) | on |
Peristaltic pump speed (rpm) | 50 |
Pump stabilization time (s) | 5 |
Integration time in the UV and Visible (s) | 15 and 10 |
Plasma view mode | Axial and Radial a |
Parameter | Work Range (mg/kg) | Λ (nm) | LOD (mg/kg) | LOQ (mg/kg) | Accuracy and Precision | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DA | MW | DP | DA | MW | DP | Certified Value ± U (i) | Certified Found (mg/100g) (ii) (CV and Recovery, %) | |||||
DA | MW | DP | ||||||||||
Cu | 0.02–0.2 | 324.754 | 0.022 | 0.0058 | 0.00076 | 0.039 | 0.018 | 0.0023 | 0.23 ± 0.02 | 0.23 ± 0.02 (9; 98) | 0.23 ± 0.01 (6; 100) | 0.23 ± 0.02 (9; 98) |
Mn | 259.373 | 0.0065 | 0.0028 | 0.00045 | 0.020 | 0.0084 | 0.0014 | 0.57 ± 0.02 | 0.56 ± 0.01 (3; 98) | 0.56 ± 0.01 (3; 98) | 0.56 ± 0.01 (3; 98) | |
Fe | 0.05–0.5 | 259.940 | 0.017 | 0.0065 | 0.018 | 0.052 | 0.020 | 0.053 | 3.53 ± 0.38 | 3.25 ±0.21 (7; 93) | 3.40 ± 0.14 (4; 97) | 3.25 ± 0.21 (7; 93) |
Zn | 213.856 | 0.010 | 0.0062 | 0.018 | 0.030 | 0.019 | 0.054 | 2.46 ± 0.18 | 2.49 ± 0.26 (11; 99) | 2.45 ± 0.21 (9; 98) | 2.49 ± 0.26 (11; 99) | |
Mg | 1–10 | 279.553 | 0.12 | 0.12 | 0.015 | 0.36 | 0.35 | 0.045 | 58.0 ± 2.7 | 57.0 ± 1.4 (2; 98) | 59.5 ± 2.1 (4; 103) | 57.0 ± 1.4 (2; 98) |
Ca | 2–20 | 184.006 | 0.55 | 0.13 | 0.16 | 1.0 | 0.39 | 0.47 | 197 ± 11 | 197.0 ± 1.4 (1; 100) | 194.5 ± 2.1 (1; 99) | 197.0 ± 1.4 (1; 100) |
P | 178.284 | 0.14 | 0.055 | 0.065 | 0.41 | 0.17 | 0.20 | 349 ± 24 | 334.5 ± 6.4 (2; 96) | 344.0 ± 4.2 (1; 99) | 334.5 ± 6.4 (2; 96) | |
Na | 589.592 | 0.55 | 0.16 | 0.16 | 0.95 | 0.48 | 0.47 | 813 ± 94 | 826.0 ± 19.8 (2; 102) | 800.0 ± 33.9 (4; 98) | 826.0 ± 19.8 (2; 102) | |
K | 2.5–25 | 769.896 | 0.52 | 0.25 | 0.37 | 1.1 | 0.74 | 1.1 | 697 ± 13 | 687.5 ± 4.9 (1; 99) | 690.0 ± 8.5 (1; 99) | 687.5 ± 4.9 (1; 99) |
Digestion Method | Minerals | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Mn | Fe | Zn | Mg | Ca | P | K | |
DA | 0.11 | 0.088 | 0.089 | 0.095 | 0.097 | 0.089 | 0.087 | 0.098 |
MW | 0.088 | 0.092 | 0.082 | 0.078 | 0.091 | 0.97 | 0.086 | 0.099 |
DP | 0.096 | 0.088 | 0.092 | 0.082 | 0.091 | 0.076 | 0.092 | 0.10 |
Minerals | Digestion Method | uf (mg/100 g) | ||
---|---|---|---|---|
Quinoa | Amaranth | Buckwheat | ||
Cu | MW | 0.053 | 0.046 | 0.032 |
DA | 0.059 | 0.047 | 0.036 | |
DP | 0.046 | 0.047 | 0.037 | |
Mn | MW | 0.17 | 0.14 | 0.10 |
DA | 0.16 | 0.13 | 0.11 | |
DP | 0.15 | 0.14 | 0.10 | |
Fe | MW | 0.48 | 0.88 | 0.25 |
DA | 0.45 | 0.82 | 0.26 | |
DP | 0.42 | 0.90 | 0.25 | |
Zn | MW | 0.26 | 0.51 | 0.17 |
DA | 0.29 | 0.42 | 0.21 | |
DP | 0.28 | 0.46 | 0.16 | |
Mg | MW | 17 | 21 | 20 |
DA | 16 | 21 | 19 | |
DP | 18 | 26 | 21 | |
Ca | MW | 3.9 | 15 | 1.9 |
DA | 4.0 | 15 | 1.7 | |
DP | 3.6 | 17 | 1.5 | |
P | MW | 41 | 48 | 33 |
DA | 38 | 47 | 33 | |
DP | 43 | 60 | 37 | |
K | MW | 59 | 48 | 41 |
DA | 57 | 49 | 40 | |
DP | 60 | 59 | 44 |
Minerals | |||||||||
---|---|---|---|---|---|---|---|---|---|
Pseudocereal | Digestion Method | Cu | Mn | Fe | Zn | Mg | P | Ca | K |
Quinoa | DA | 0.59 a ± 0.03 | 1.60 ab ± 0.01 | 4.47 ab ± 0.08 | 2.95 ± 0.26 | 161.3 ± 1.0 | 377.5 ± 2.9 | 40.4 a ± 0.6 | 569.8 ± 12.8 |
MW | 0.51 ab ± 0.02 | 1.73 a ± 0.11 | 4.83 a ± 0.01 | 2.588 ± 0.002 | 173.9 ± 9.6 | 413.8 ± 16.4 | 38.5 ab ± 2.5 | 586.7 ± 20.8 | |
DP | 0.46 b ± 0.02 | 1.49 b ± 0.05 | 4.22 b ± 0.16 | 2.83 ± 0.04 | 176.0 ± 3.1 | 431.2 ± 12.6 | 36.2 b ± 0.7 | 603.5 ± 18.5 | |
Amaranth | DA | 0.47 ± 0.04 | 1.35 ± 0.03 | 8.20 ± 0.31 | 4.15 a ± 0.15 | 207.5 ± 9.1 | 474.2 ± 20.8 | 153.6 ± 5.9 | 490.4 a ± 1.9 |
MW | 0.464 ± 0.001 | 1.38 ± 0.04 | 8.769 ± 0.001 | 5.11 b ± 0.50 | 210.8 ± 5.8 | 480.2 ± 18.2 | 150.5 ± 12.8 | 482.9 a ± 27.5 | |
DP | 0.474 ± 0.004 | 1.44 ± 0.01 | 8.96 ± 0.15 | 4.61 ab ± 0.01 | 262.1 ± 9.7 | 599.5 ± 20.9 | 170.5 ± 3.3 | 589.5 b ± 21.0 | |
Buckwheat | DA | 0.36 a ± 0.01 | 1.073 ± 0.028 | 2.58 ± 0.09 | 2.07 ± 0.10 | 193.9 ± 15.1 | 326.4 ± 6.7 | 17.3 a ± 0.2 | 403.2 ± 9.6 |
MW | 0.32 b ± 0.01 | 0.982 ± 0.001 | 2.51 ± 0.09 | 1.72 ± 0.03 | 201.0 ± 0.9 | 328.8 ± 0.9 | 18.6 a ± 1.5 | 412.7 ± 2.4 | |
DP | 0.371 a ± 0.003 | 1.040 ± 0.019 | 2.50 ± 0.04 | 1.63 ± 0.02 | 209.7 ± 5.7 | 366.9 ± 8.5 | 15.3 b ± 0.2 | 441.0 ± 10.4 |
Mineral | Quinoa | Amaranthus | Buckwheat | |||
---|---|---|---|---|---|---|
DA | DP | DA | DP | DA | DP | |
Cu | C | A | C | A | R | C |
Mn | A | C | A | A | A | A |
Fe | A | C | A | A | A | A |
Zn | A | A | C | A | A | A |
Mg | A | A | A | A | A | A |
P | A | A | A | A | A | A |
Ca | A | A | A | A | A | C |
K | A | A | A | C | A | A |
Na | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, A.C.; Motta, C.; Rego, A.; Delgado, I.; Santiago, S.; Assunção, R.; Matos, A.S.; Santos, M.; Castanheira, I. Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method? Foods 2025, 14, 565. https://doi.org/10.3390/foods14040565
Nascimento AC, Motta C, Rego A, Delgado I, Santiago S, Assunção R, Matos AS, Santos M, Castanheira I. Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method? Foods. 2025; 14(4):565. https://doi.org/10.3390/foods14040565
Chicago/Turabian StyleNascimento, Ana C., Carla Motta, Andreia Rego, Inês Delgado, Susana Santiago, Ricardo Assunção, Ana Sofia Matos, Mariana Santos, and Isabel Castanheira. 2025. "Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method?" Foods 14, no. 4: 565. https://doi.org/10.3390/foods14040565
APA StyleNascimento, A. C., Motta, C., Rego, A., Delgado, I., Santiago, S., Assunção, R., Matos, A. S., Santos, M., & Castanheira, I. (2025). Measuring Minerals in Pseudocereals Using Inductively Coupled Plasma Optical Emission Spectrometry: What Is the Optimal Digestion Method? Foods, 14(4), 565. https://doi.org/10.3390/foods14040565