Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Gas Chromatography—Mass Spectrometry (GC-MS)
2.3. Chiral Gas Chromatography—Mass Spectrometry
2.4. Hierarchical Cluster Analysis
2.5. Antifungal Screening
3. Results and Discussion
3.1. Essential Oil Compositions
3.2. Chemotypes of Thymus vulgaris
3.3. Antifungal Activity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gillett, M. Growing and Using Thyme; Storey Publishing: North Adams, MA, USA, 1998. [Google Scholar]
- Aygun, O.; Aslantas, O.; Oner, S. A survey on the microbiological quality of Carra, a traditional Turkish cheese. J. Food Eng. 2005, 66, 401–404. [Google Scholar] [CrossRef]
- Akarca, G.; Çağlar, A.; Tomar, O. The effects of spicing on quality of mozzarella cheese. Mljekarstvo 2016, 66, 112–121. [Google Scholar]
- Martinez-Francés, V.; Rios, S. Lesser known herbal spirits of the Valencia and Alicante provinces (east-southern Spain). Ind. Crops Rural Dev. 2005, 417–426. [Google Scholar]
- Karabegović, I.T.; Vukosavljević, P.V.; Novaković, M.M.; Gorjanović, S.Ž.; Džamić, A.M.; Lazić, M.L. Influence of the storage on bioactive compounds and sensory attributes of herbal liqueur. Dig. J. Nanomater. Biostruct. 2012, 7, 1587–1598. [Google Scholar]
- Cornara, L.; La Rocca, A.; Marsili, S.; Mariotti, M.G. Traditional uses of plants in the eastern Riviera (Liguria, Italy). J. Ethnopharmacol. 2000, 125, 16–30. [Google Scholar] [CrossRef] [PubMed]
- Gimeno Gasca, J.M. Tomillo (Thymus vulgaris L.). Med. Natur. 2001, 3, 173–175. [Google Scholar]
- Alleman, F.; Gabriel, I.; Dufourcq, V.; Perrin, F.; Gabarrou, J.F. Utilisation des huiles essentielles en alimentation des volailles. 1. Perfornances de croussance et règlementation. INRA Prod. Anim. 2013, 26, 3–12. [Google Scholar]
- Basch, E.; Ulbricht, C.; Hammerness, P.; Blevins, A.; Sollars, D. Thyme (Thymus vulgaris L.), thymol. J. Herb. Pharmacother. 2004, 4, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Tropicos.org. Missouri Botanical Garden. Available online: http://www.tropicos.org (accessed on 17 August 2016).
- Thompson, J.D.; Chalchat, J.C.; Michet, A.; Linhart, Y.B.; Ehlers, B. Qualitative and quantitative variation on monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J. Chem. Ecol. 2003, 29, 859–880. [Google Scholar] [CrossRef] [PubMed]
- Giordani, R.; Regli, P.; Kaloustian, J.; Mikaïl, C.; Abou, L.; Portugal, H. Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 2004, 18, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Chizzola, R.; Michitsch, H.; Franz, C. Antioxidative properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem. 2008, 56, 6897–6904. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Vrchotová, N.; Tříska, J. Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2009, 105, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Özek, T.; Tabanca, N.; Demirci, F.; Wedge, D.E.; Başer, K.H.C. Enantiomeric distribution of some linalool containing essential oils and their biological activities. Rec. Nat. Prod. 2010, 4, 180–192. [Google Scholar]
- Shellie, R.; Marriott, P.; Cornwell, C. Application of comprehensive two-dimensional gas chromatography (GC × GC) to the enantioselective analysis of essential oils. J. Sep. Sci. 2001, 24, 823–830. [Google Scholar] [CrossRef]
- Bonaccorsi, I.; Sciarrone, D.; Cotroneo, A.; Mondello, L.; Dugo, P.; Dugo, G. Enantiomeric distribution of key volatile components in Citrus essential oils. Rev. Bras. Farmacog. 2011, 21, 841–849. [Google Scholar] [CrossRef]
- Pragadheesh, V.S.; Saroj, A.; Yadav, A.; Samad, A. Chanitiya, C.S. Compositions, enantiomer characterization and antifungal activity of two Ocimum essential oils. Ind. Crops Prod. 2013, 50, 333–337. [Google Scholar] [CrossRef]
- Tabanca, N.; Kirimer, N.; Demirci, B.; Demirci, F.; Başer, K.H.C. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J. Agric. Food. Chem. 2001, 49, 4300–4303. [Google Scholar] [CrossRef] [PubMed]
- Imelouane, B.; Amhamdi, H.; Wathelet, J.P.; Ankit, M.; Khedid, K.; El Bachiri, A. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from eastern Morocco. Int. J. Agric. Biol. 2009, 11, 205–208. [Google Scholar]
- Jordán, M.J.; Martínez, R.M.; Goodner, K.L.; Baldwin, E.A.; Sotomayor, J.A. Seasonal variation of Thymus hyemalis Lange and Spanish Thymus vulgaris L. essential oils composition. Ind. Crops Prod. 2006, 24, 253–263. [Google Scholar] [CrossRef]
- Bhaskara Reddy, M.V.; Angers, P.; Gosselin, A.; Arul, J. Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry 1998, 47, 1515–1520. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Dimitrijević, S.I.; Mihajlovski, K.R.; Antonović, D.G.; Milanović-Stevanović, M.R.; Mijin, D.Ž. A study of the synergistic antilisterial effects of a sub-lethal dose of lactic acid and essential oils from Thymus vulgaris L., Rosmarinus officinalis L. and Origanum vulgare L. Food Chem. 2007, 104, 774–782. [Google Scholar] [CrossRef]
- Gavahian, M.; Farahnaky, A.; Javidnia, K.; Majzoobi, M. Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Innov. Food Sci. Emerg. Technol. 2012, 14, 85–91. [Google Scholar] [CrossRef]
- Panizzi, L.; Flamini, G.; Cioni, P.L.; Morelli, I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J. Ethnopharmacol. 1993, 39, 167–170. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Zambonelli, A.; Zechini D’Aulerio, A.; Severi, A.; Benvenuti, S.; Maggi, L.; Bianchi, A. Chemical composition and fungicidal activity of commercial essential oils of Thymus vulgaris L. J. Essent. Oil Res. 2004, 16, 69–74. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharmaceut. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Szczepanik, M.; Zawitowska, B.; Szumny, A. Insecticidal activities of Thymus vulgaris essential oil and its components (thymol and carvacrol) against larvae of lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath. J. 2012, 30, 129–142. [Google Scholar]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Umano, K.; Shibamoto, T.; Lee, K.G. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005, 91, 131–137. [Google Scholar] [CrossRef]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, C.T.; Rehder, V.L.G. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Rado, E.; Wianowska, D.; Mardarowicz, M.; Gawdzik, J. Application of PLE for the determination of essential oil components from Thymus vulgaris L. Talanta 2008, 76, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Karami-Osboo, R.; Khodaverdi, M.; Ali-Akbari, F. Antibacterial effect of effective compounds of Satureja hortensis and Thymus vulgaris essential oils against Erwinia amylovora. J. Agric. Sci. Technol. 2010, 12, 35–45. [Google Scholar]
- Al-Maqtary, M.A.A.; Alghalibi, S.M.; Alhamzy, E.H. Chemical composition and antimicrobial activity of essential oil of Thymus vulgaris from Yemen. Turk. J. Biochem. 2011, 36, 342–349. [Google Scholar]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Pirbalouti, A.; Hashemi, M.; Taherian Ghahfarokhi, F. Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. Ind. Crops Prod. 2013, 48, 43–48. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Viškelis, P.; Dambrauskienė, E. Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). J. Agric. Food Chem. 2003, 51, 7751–7758. [Google Scholar] [CrossRef] [PubMed]
- Shabnum, S.; Wagay, M.G. Essential oil composition of Thymus vulgaris L. and their uses. J. Res. Dev. 2011, 11, 83–94. [Google Scholar]
- Asllani, U.; Toska, V. Chemical composition of Albanian thyme oil (Thymus vulgaris L.). J. Essent. Oil Res. 2003, 15, 165–167. [Google Scholar] [CrossRef]
- Porte, A.; Godoy, R.L.O. Chemical composition of Thymus vulgaris L. (thyme) essential oil from the Rio de Janeiro State (Brazil). J. Serbian Chem. Soc. 2008, 73, 307–310. [Google Scholar] [CrossRef]
- Piccaglia, R.; Marotti, M. Composition of the essential oil of an Italian Thymus vulgaris L. ecotype. Flavour Fragr. J. 1991, 6, 241–244. [Google Scholar] [CrossRef]
- Atti-Santos, A.C.; Pansera, M.R.; Paroul, N.; Atti-Serafini, L.; Moyna, P. Seasonal variation of essential oil yield and composition of Thymus vulgaris L. (Lamiaceae) from south Brazil. J. Essent. Oil Res. 2004, 16, 294–295. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Rado, E.; Wianowska, D. Static and dynamic superheated water extraction of essential oil components from Thymus vulgaris L. J. Sep. Sci. 2009, 32, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Vurro, E.; Bruni, R.; Bianchi, A.; di Toppi, L.S. Elevated atmospheric CO2 decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environ. Exp. Bot. 2009, 65, 99–106. [Google Scholar] [CrossRef]
- McGimpsey, J.A.; Douglas, M.H.; van Klink, J.W.; Beauregard, D.A.; Perry, N.B. Seasonal variation in essential oil yield and composition from naturalized Thymus vulgaris L. in New Zealand. Flavour Fragr. J. 1994, 9, 347–352. [Google Scholar] [CrossRef]
- Mota, K.S.L.; Pereira, F.O.; de Oliveira, W.A.; Lima, I.O.; Lima, E.O. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433. [Google Scholar] [CrossRef] [PubMed]
- Aziz, E.E.; Hendawi, S.T.; Azza, E.E.D.; Omer, E.A. Effect of soil type and irrigation intervals on plant growth, essential oil yield and constituents of Thymus vulgaris plant. Am.-Eurasian J. Agric. Environ. Sci. 2008, 4, 443–450. [Google Scholar]
- Venskutonis, P.R. Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chem. 1997, 59, 219–227. [Google Scholar] [CrossRef]
- Šegvić Klarić, M.; Kosalec, I.; Masterlić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Nguefack, J.; Tamgue, O.; Lekagne Dongmo, J.B.; Dakole, C.D.; Leth, V.; Vismer, H.F.; Amvam Zollo, P.H.; Nkengfack, A.E. Synergistic action between fractions of essential oils from Cymbopogon citratus, Ocimum gratissimum and Thymus vulgaris against Penicillium expansum. Food Control 2012, 23, 377–383. [Google Scholar] [CrossRef]
- Grigore, A.; Paraschiv, I.; Colceru-Mihul, S.; Bubueanu, C.; Draghici, E.; Ichim, M. Chemical composition and antioxidant activity of Thymus vulgaris L. volatile oil obtained by two different methods. Rom. Biotechnol. Lett. 2010, 15, 5436–5443. [Google Scholar]
- Díaz-Maroto, M.C.; Hidalgo, I.J.D.M.; Sánchez-Palomo, E.; Pérez-Coello, M.S. Volatile components and key odorants of fennel (Foeniculum vulgare Mill.) and thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation-extraction and supercritical fluid extraction. J. Agric. Food Chem. 2005, 53, 5385–5389. [Google Scholar] [CrossRef] [PubMed]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid.-Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [PubMed]
- El-Nekeety, A.A.; Mohamed, S.R.; Hathout, A.S.; Hassan, N.S.; Aly, S.E.; Abdel-Wahhab, M.A. Antioxidant properties of Thymus vulgaris oil against aflatoxin-induced oxidative stress in male rats. Toxicon 2011, 57, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.; Matsuoka, H.; Sumita, O.; Takatori, K. Kurata, H. Automatic evaluation of antifungal volatile compounds on the basis of the dynamic growth process of a single hypha. Appl. Microbiol. Biotechnol. 1993, 38, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.R.; Wanner, K.W.; Trowell, S.C.; Warr, C.G.; Jaquin-Joly, E.; Zagatti, P.; Robertson, H.; Newcomb, R.D. Molecular basis of female odorant responses in Bombyx mori. Insect Biochem. Mol. Biol. 2009, 39, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, L.; Appel, A.G.; Liu, N. Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus. J. Insect Physiol. 2013, 59, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Prasse, A.; Siehl, H.U.; Zeller, K.P.; Berger, S.; Sicker, D. Wie unsere Nase die enantiomeren Linaloole unterscheidet. Chem. Unserer Zeit 2014, 48, 342–353. [Google Scholar] [CrossRef]
- Asztemborska, M.; Ochocka, J.R. Chiral monoterpenoids in plants—Enantioselective chromatographic analysis, and their bioactivity. Stud. Nat. Prod. Chem. 2002, 27, 361–391. [Google Scholar] [CrossRef]
- De Sousa, D.P.; Nóbrega, F.F.; Santos, C.C.; de Almeida, R.N. Anticonvulsant activity of the linalool enantiomers and racemate: Investigation of chiral influence. Nat. Prod. Commun. 2010, 5, 1847–1851. [Google Scholar] [PubMed]
- Da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M.; Ochocka, R.J.; Deans, S.G.; Asztemborska, M.; Hart, S. Differences in bioactivity between the enantiomers of α-pinene. J. Essent. Oil Res. 1999, 11, 393–397. [Google Scholar] [CrossRef]
RI | Compound | #1 | #3 | #4 | #5 | ||||
---|---|---|---|---|---|---|---|---|---|
% | d/l | % | d/l | % | d/l | % | d/l | ||
752 | 3-Methyl-1-penten-3-ol | tr | |||||||
783 | Methyl α-methyl butyrate | 0.10 | 0.07 | tr | tr | ||||
850 | (3Z)-Hexenol | 0.05 | |||||||
922 | Tricyclene | 0.05 | tr | 0.09 | |||||
924 | α-Thujene | tr | tr | 91:9 | 0.71 | 87:13 | 0.43 | 10:90 | |
932 | α-Pinene | 0.47 | 1:99 | 0.21 | 1:99 | 1.75 | 85:15 | 1.32 | 52:48 |
947 | α-Fenchene | tr | |||||||
948 | Camphene | 1.17 | 99:1 | 0.38 | 99:1 | 0.25 | 0:100 | 1.19 | 10:90 |
971 | Sabinene | tr | 0.05 | 98:2 | 2.03 | 78:22 | |||
977 | 1-Octen-3-ol | 0.43 | 0.42 | ||||||
977 | 1-Octen-3-ol + β-Pinene | 0.97 | 20:80 | 0.54 | 20:80 | ||||
983 | 6-Methylhept-5-en-2-one | 0.05 | |||||||
983 | 3-Octanone | tr | tr | ||||||
988 | Myrcene | 0.09 | 0.44 | 4.09 | 1.59 | ||||
996 | 3-Octanol | tr | 0.07 | tr | |||||
1004 | (3Z)-Hexenyl acetate | tr | |||||||
1004 | p-Mentha-1(7),8-diene | tr | |||||||
1006 | α-Phellandrene | tr | 55:45 | 0.11 | |||||
1008 | δ-3-Carene | tr | |||||||
1016 | α-Terpinene | tr | 2.65 | 1.30 | |||||
1019 | o-Cymene | 0.06 | |||||||
1024 | p-Cymene | 0.09 | 0.18 | 1.09 | 20.07 | ||||
1028 | Limonene | 0.05 | 0.39 | 85:15 | 2.85 | 86:14 | 0.39 | 80:20 | |
1030 | β-Phellandrene | tr | 0.37 | 0.09 | |||||
1031 | 1,8-Cineole | 0.37 | 0.31 | 0.30 | 0.72 | ||||
1033 | m-Cymene | tr | |||||||
1034 | Lavender lactone + (Z)-β-Ocimene | tr | |||||||
1045 | (E)-β-Ocimene | tr | 0.05 | ||||||
1057 | γ-Terpinene | 0.09 | 4.58 | 9.03 | |||||
1063 | 3-Methylbut-2-enyl butanoate | tr | |||||||
1069 | cis-Sabinene hydrate | 0.31 | 30.77 | 97:3 | 0.17 | ||||
1070 | cis-Linalool oxide (furanoid) | 0.28 | |||||||
1071 | Pinol | tr | |||||||
1084 | Terpinolene | 0.97 | 0.07 | ||||||
1085 | trans-Linalool oxide (furanoid) | 0.23 | tr | ||||||
1089 | p-Cymenene | tr | |||||||
1099 | Linalool | 76.15 | 1:99 | 7.15 | 97:3 | 7.89 | 3:97 | 5.00 | 1:99 |
1101 | trans-Sabinene hydrate | tr | 4.98 | tr | |||||
1103 | Hotrienol | 0.07 | |||||||
1104 | Nonanal | 0.05 | tr | ||||||
1106 | α-Pinene oxide | tr | |||||||
1107 | 1-Octen-3-yl acetate | tr | tr | ||||||
1124 | cis-p-Menth-2-en-1-ol | 0.65 | |||||||
1136 | trans-Limonene oxide | tr | |||||||
1142 | trans-p-Menth-2-en-1ol | 0.25 | |||||||
1147 | Camphor | 1.79 | 100:0 | 0.11 | 0:100 | 0.10 | 0:100 | 1.42 | 95:5 |
1148 | α-Cyclogeraniol | tr | |||||||
1154 | β-Pinene oxide | 0.05 | |||||||
1162 | Lavandulol | tr | tr | tr | |||||
1169 | cis-Linalool oxide (pyranoid) | tr | |||||||
1171 | Borneol | 0.40 | 100:0 | 1.00 | 100:0 | 0.28 | 100:0 | 1.50 | 71:29 |
1174 | trans-Linalool oxide (pyranoid) | tr | |||||||
1178 | p-Mentha-1,8-dien-4-ol | tr | |||||||
1180 | Terpinen-4-ol | 0.06 | 0.17 | 70:30 | 9.50 | 30:70 | 1.25 | 40:60 | |
1184 | (3Z)-Hexenyl butanoate | tr | |||||||
1186 | p-Cymen-8-ol | tr | |||||||
1194 | α-Terpineol | 0.11 | 65:35 | 0.09 | 65:35 | 2.69 | 91:9 | 0.16 | 60:40 |
1196 | cis-Piperitol | 0.14 | |||||||
1197 | cis-Dihydrocarvone | tr | tr | tr | |||||
1205 | β-Cyclogeraniol | tr | |||||||
1206 | Decanal | tr | |||||||
1208 | trans-Piperitol | 0.16 | |||||||
1217 | 7-Ethylidenebicyclo[3.3.0]octan-3-one | 0.90 | |||||||
1220 | 6,7-Epoxyneral | tr | |||||||
1223 | Nerol | tr | 0.97 | ||||||
1223 | 7-Methylenebicyclo[3.3.1]nonan-3-ol | 6.07 | |||||||
1225 | Citronellol | tr | 0.35 | ||||||
1228 | Thymol methyl ether | 0.19 | |||||||
1230 | 6,7-Epoxygeranial | tr | |||||||
1234 | 4-t-Amylcyclohexanone | 0.08 | |||||||
1237 | Neral | tr | 0.61 | tr | |||||
1237 | Carvacrol methyl ether | 0.32 | |||||||
1243 | Carvone | tr | 0.09 | ||||||
1249 | Linalyl acetate | 14.26 | 1:99 | 3.40 | 0:100 | ||||
1249 | Geraniol | 59.75 | 0.24 | 0.05 | |||||
1266 | Geranial | tr | 1.25 | tr | tr | ||||
1271 | (2E)-Decenal | tr | |||||||
1279 | Isothymol | 0.07 | |||||||
1282 | Lavandulyl acetate | tr | |||||||
1284 | Bornyl acetate | 0.21 | 0.14 | 0.07 | |||||
1284 | neo-iso-3-Thujanol acetate | tr | |||||||
1288 | Thymol | 0.42 | tr | 47.06 | |||||
1296 | Carvacrol | 0.05 | 3.24 | ||||||
1296 | Geranyl formate | 0.09 | |||||||
1331 | 2,3-Epoxygeraniol | 0.06 | |||||||
1341 | cis-p-Menthadienyl acetate | 0.19 | 4.75 | ||||||
1344 | Citronellyl acetate | 0.28 | |||||||
1346 | α-Terpinyl acetate | 0.05 | |||||||
1348 | Citronellyl acetate | 0.07 | |||||||
1349 | Eugenol | 0.08 | |||||||
1357 | Neryl acetate | tr | 0.18 | tr | |||||
1372 | trans-p-Menthadienyl acetate | 0.05 | |||||||
1375 | α-Copaene | tr | |||||||
1377 | Geranyl acetate | 0.06 | 16.72 | 0.48 | |||||
1383 | α-Bourbonene | 0.20 | tr | 0.09 | |||||
1388 | β-Elemene | tr | |||||||
1403 | Isocaryophyllene | tr | tr | ||||||
1419 | β-Caryophyllene | 2.27 | 3.67 | 2.03 | 1.79 | ||||
1429 | β-Copaene | tr | |||||||
1429 | cis-Carvyl propanoate | 0.30 | |||||||
1434 | 7-Methyl-3-methylene-7-octen-1-yl propanoate | tr | |||||||
1437 | Aromadendrene | tr | |||||||
1454 | α-Humulene | 0.06 | 0.12 | 0.06 | 0.05 | ||||
1468 | Geranyl propanoate | tr | 1.26 | ||||||
1473 | trans-Cadina-1(6),4-diene | 0.06 | |||||||
1480 | Germacrene D | 0.26 | 0.05 | 0.58 | |||||
1489 | Viridiflorene | tr | |||||||
1494 | Bicyclogermacrene | tr | 0.09 | ||||||
1497 | α-Muurolene | tr | |||||||
1506 | Geranyl isobutyrate | 0.15 | |||||||
1506 | β-Bisabolene | tr | |||||||
1511 | δ-Amorphene | 0.07 | |||||||
1516 | δ-Cadinene | tr | 0.16 | ||||||
1531 | trans-Cadina-1,4-diene | tr | |||||||
1547 | Elemol | 0.96 | |||||||
1554 | Geranyl butanoate | 0.05 | 0.74 | ||||||
1575 | Germacrene-d-4-ol | 0.10 | tr | ||||||
1575 | Spathulenol | tr | |||||||
1581 | Caryophyllene oxide | 0.41 | 0.50 | 0.10 | 0.13 | ||||
1595 | Geranyl isovalerate | 0.06 | |||||||
1631 | 10-epi-γ-Eudesmol | tr | |||||||
1654 | α-Eudesmol | 0.17 |
Essential Oil | MIC (μg/mL) | |
---|---|---|
C. albicans | C. neoformans | |
#1 (linalool chemotype) | 1250 | 313 |
#3 (geraniol chemotype) | 625 | 156 |
#4 (sabinene hydrate chemotype) | >2500 | >2500 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods 2016, 5, 70. https://doi.org/10.3390/foods5040070
Satyal P, Murray BL, McFeeters RL, Setzer WN. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods. 2016; 5(4):70. https://doi.org/10.3390/foods5040070
Chicago/Turabian StyleSatyal, Prabodh, Brittney L. Murray, Robert L. McFeeters, and William N. Setzer. 2016. "Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations" Foods 5, no. 4: 70. https://doi.org/10.3390/foods5040070