Valorization of Poultry Waste Oils Recovered from Water Treatment Through the Degumming–Transesterification Process to Produce Biodiesel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Physicochemical Characterization of Chicken Oil
2.2. Degummed Oil Process
2.3. Transesterification
2.4. Identification of Esters by Chromatography
2.5. Quality Tests of the Obtained Biodiesel
2.6. Evaluation of Mixing Patterns in Kinematic Viscosity
2.7. Rheological Analysis of Biodiesel and Petrodiesel Mixtures
3. Results and Discussion
3.1. Physicochemical Evaluation of the Residual Oil Removal Process
3.2. Identification of Fatty Acid Methyl Ester by Chromatography
3.3. Statistical Analysis of the Production and Quality of Biodiesel
3.4. Evaluation of Biodiesel Blending Models with Petroleum Diesel
3.5. Rheological Evaluation of Biodiesel Blends with Petroleum Diesel
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nubi, O.; Murphy, R.; Morse, S. Life Cycle Sustainability Assessment of Waste to Energy Systems in the Developing World: A Review. Environments 2024, 11, 123. [Google Scholar] [CrossRef]
- Martins, F.; Felgueiras, C.; Smitková, M. Fossil fuel energy consumption in European countries. Energy Procedia 2018, 153, 107–111. [Google Scholar] [CrossRef]
- Abdul-Aziz, H.; Ahmad-Puat, N.N.; Alazaiza, M.Y.D.; Hung, Y. Poultry Slaughterhouse Wastewater Treatment Using Submerged Fibers in an Attached Growth Sequential Batch Reactor. Int. J. Environ. Res. Public Health 2018, 15, 1734. [Google Scholar] [CrossRef]
- Cabrera-Núñez, A.; Daniel-Rentería, I.; Martínez-Sánchez, C.; Alarcón-Pulido, S.; Rojas-Ronquillo, R.; Velázquez-Jiménez, S. Aprovechamiento de subproductos agrícolas como fuente protéica en la elaboración de dietas para rumiantes. Abanico Vet. 2018, 8, 59–67. [Google Scholar] [CrossRef]
- Jímenez-Mejía, P.; Loeza-Lara, D. Biociencias: Aspectos Básicos y Aplicaciones; Bonilla Artiga Editores: Mexico City, Mexico, 2024. [Google Scholar]
- Malik, M.A.I.; Zeeshan, S.; Khubaib, M.; Ikram, A.; Hussain, F.; Yassin, H.; Qazi, A. A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources. Energy Convers. Manag. X 2024, 23, 100675. [Google Scholar] [CrossRef]
- Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K. Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev. 2013, 18, 184–193. [Google Scholar] [CrossRef]
- Datta, A.; Hossain, A.; Roy, S. An Overview on Biofuels and Their Advantages and Disadvantages. Asian J. Chem. 2019, 31, 1851–1858. [Google Scholar] [CrossRef]
- Moya-Salazar, M.M.; Moya-Salazar, J. Biodegradación de residuos de aceite usado de cocina por hongos lipolíticos: Un estudio in vitro. Rev. Int. Contam. Ambient. 2020, 36, 351–359. [Google Scholar] [CrossRef]
- Nogales-Delgado, S.; Cabanillas, A.G.; Rodríguez, A.C. Combined Effect of Propyl Gallate and Tert-Butyl Hydroquinone on Biodiesel and Biolubricant Based on Waste Cooking Oil. Appl. Sci. 2024, 14, 9767. [Google Scholar] [CrossRef]
- Rodrigues, J.G.C.; Cardoso, F.V.; Duvoisin-Junior, S.; Machado, N.T.; Albuquerque, P.M. Endomelanconiopsis endophytica Lipase Immobilized in Calcium Alginate for Production of Biodiesel from Waste Cooking Oil. Energies 2024, 17, 5520. [Google Scholar] [CrossRef]
- Chakraborty, R.; Gupta, A.K.; Chowdury, R. Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assesment. Renew. Sustain. Energy Rev. 2014, 29, 120–134. [Google Scholar] [CrossRef]
- Hernández-Aguilar, E.; Cobos-Murcia, J.A. Proceso Para Tratamiento de Aguas Residuales (Patente de México No. 382447); Instituto Mexicano de la Propiedad Industrial: Mexico City, Mexico, 2021. [Google Scholar]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 2019, 235, 886–907. [Google Scholar] [CrossRef]
- García-Bowen, A.; Alarcón-Cedeño, J.; García-Muentes, S.; Cevallos-Cedeño, R.; García-Vinces, G.; Sánchez-Plaza, F. Producción de biodiésel a partir de grasa animal generada en el proceso de cocción de pollo asado. Rev. Científica INGENIAR Ing. Tecnol. Investig. 2022, 5, 64–80. Available online: https://www.journalingeniar.org/index.php/ingeniar/article/view/92/128 (accessed on 3 December 2024).
- Mexican Official Standard NMX-F-075-SCFI-2012; Determinación de la Densidad Relativa—Método de Prueba. Diario Oficial de la Federación: Mexico City, Mexico, 2012.
- Mexican Official Standard NMX-F-114-SCFI-2005; Determinación del Punto de Fusión—Método de Prueba. Diario Oficial de la Federación: Mexico City, Mexico, 2005.
- Mexican Official Standard NOM-116-SSA1-1994; Determinación de Humedad en Alimentos por Tratamiento Térmico. Método por Arena o Grasa. Diario Oficial de la Federación: Mexico City, Mexico, 1994.
- Mexican Official Standard NOM-F-74-S-1981; Determinación del Índice de Refracción Con el Refractómetro de Abbé. Diario Oficial de la Federación: Mexico City, Mexico, 1981.
- Mexican Official Standard NMX-F-101-SCFI-2012; Determinación de Ácidos Grasos Libres—Método de Prueba. Diario Oficial de la Federación: Mexico City, Mexico, 2012.
- Mexican Official Standard NMX-F-174-SCFI-2006; Determinación del Índice de Saponificación—Método de Prueba. Diario Oficial de la Federación: Mexico City, Mexico, 2006.
- ASTM D1298; Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. American Society for Testing and Materials: West Conshohocken, PA, USA, 2005.
- ASTM D2500-17a; Standard Test Method for Cloud Point of Petroleum Products and Liquid Fuels. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM D3278-21; Standard Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM D1218-21; Standard Test Method for Refractive Index and Refracting Dispersion of Hydrocarbon Liquids. American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- ASTM D664-24; Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. American Society for Testing and Materials: West Conshohocken, PA, USA, 2024.
- ASTM D4530-15; Standard Test Method for Determination of Carbon Residue (Micro Method). American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- ASTM D445-24; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). American Society for Testing and Materials: West Conshohocken, PA, USA, 2024.
- PEMEX. Hoja de Datos de Seguridad PEMEX Diesel; PEMEX: Mexico City, Mexico, 2016. [Google Scholar]
- Traxler, I.; Marschik, C.; Farthofer, M.; Laske, S.; Fischer, J. Application of Mixing Rules for Adjusting the Flowability of Virgin and Post-Consumer Polypropylene as an Approach for Design from Recycling. Polymers 2022, 14, 2699. [Google Scholar] [CrossRef]
- You, Y.-J.; Kim, J.-H.J.; Park, K.-T.; Seo, D.-W.; Lee, T.-H. Modification of Rule of Mixtures for Tensile Strength Estimation of Circular GFRP Rebars. Polymers 2017, 9, 682. [Google Scholar] [CrossRef] [PubMed]
- Walter, C. The evaluation of viscosity data. Erdol Teer 1931, 7, 382–384. [Google Scholar]
- Bingham, E.C. The viscosity of binary mixtures. J. Phys. Chem. 1914, 18, 157–165. [Google Scholar] [CrossRef]
- Cragoe, C.S. Changes in the viscosity of liquids with temperature, pressure and composition. In Proceedings of the 1st World Petroleum Congress, London, UK, 19–25 July 1933; pp. 529–541. [Google Scholar]
- Kendall, J.; Monroe, K.P. The viscosity of liquids. II. The viscosity-composition curve for ideal liquid mixtures. J. Am. Chem. Soc. 1917, 39, 1787–1802. [Google Scholar] [CrossRef]
- Godinho-Rocha, L.J.; Correia-Ferreira, O.M.; Mendes-Mendonça, V.C.; Fernandes-Torquato, R.; da Conceiçao-Lima, F.J.; Telis-Romero, J.; Lopes-Filho, J.F. Influência da temperatura no comportamento reológico de geleias comerciais de cupuaçu (Theobroma grandiflorum). Braz. J. Hea. Rev. 2020, 3, 5352–5358. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Tejeda-Benítez, L.; Villabona-Ortiz, A. Monroy-Rodríguez. Obtención de biodiesel a partir de distintos tipos de grasa de origen animal. Luna Azul. 2013, 36, 10–25. [Google Scholar]
- Cabrera, M.; Montenegro, L.; Jiménez, A. Análisis de un Sistema de Tratamiento de Aguas Residuales en una Industria de Embutidos. Rev. Politécnica 2022, 49, 47–54. [Google Scholar] [CrossRef]
- Devi, A.; Khatkar, B.S. Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: A review. J. Food Sci. Technol. 2016, 53, 3633–3641. [Google Scholar] [CrossRef]
- Sotero-Solís, V.; Gioielli, L.A.; Polakiewics, B. Mezclas binarias y ternarias del aceite y grasa hidrogenada de la castaña de Brasil (Bertholetia excelsa). Grasas Aceites 2000, 51, 405–411. [Google Scholar]
- Manley, D. Fats and Oils. In Technology of Biscuits, Crackers and Cookies; Manley, D., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 130–150. [Google Scholar]
- Feduchi-Canosa, E.; Romero-Magdalena, C.; Yáñez-Conde, E.; Blasco-Castiñeyra, I.; García-Hoz-Jiménez, C. Bioquímica: Conceptos Esenciales, 2nd ed.; Editorial Médica Panamericana: Madrid, Spain, 2014. [Google Scholar]
- Menéndez-Simisterra, A.L.; Quiñones-Hurtado, N.A.; García-Muentes, S.A.; García-Vinces, G.O.; García-Ávila, A.G. Obtención y purificación de glicerina mediante la transesterificación a partir de grasa residual de asaderos de pollo. MQR Investig. 2023, 7, 3–17. [Google Scholar] [CrossRef]
- Murcia-Ordóñez, B.; Cháves, L.C.; Rodríguez-Pérez, W.; Andredy-Murcia, M.; Alvarado, E.R. Caracterización de biodiésel obtenido de aceite residual de cocina. Rev. Colomb. Biotecnol. 2013, 15, 61–70. [Google Scholar]
- Canesin, E.A.; de Oliveira, C.C.; Matsushita, M.; Dias, L.F.; Pedrão, M.R.; de Souza, N.E. Characterization of residual oils for biodiesel production. Electron. J. Biotechnol. 2014, 17, 39–45. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.; Salvador-Reyes, R.; Guillén-Sánchez, J.; Capa-Robles, J.; Moreno-Rojo, C. Estudio comparativo de las características físico-químicas del aceite de sacha inchi (Plukenetia volubilis L.), aceite de oliva (Olea europaea) y aceite crudo de pescado. Sci. Agropecu. 2015, 6, 279–290. [Google Scholar] [CrossRef]
- Feddern, V.; Kupski, L.; Cipolatti, E.P.; Giacobbo, G.; Mendes, G.L.; Badiale-Furlong, E.; de Souza-Soares, L.A. Physico-chemical composition, fractionated glycerides and fatty acid profile of chicken skin fat. Eur. J. Lipid Sci. Technol. 2010, 112, 1277–1284. [Google Scholar] [CrossRef]
- Abraham, J.; Saravanakumar, V.R.; Kulkarni, V.V.; Sivakumar, K.; Singh, A.P.; Visha, P. Yield and Quality Characteristics of Rendered Chicken Oil for Biodiesel Production. J. Am. Oil Chem. Soc. 2014, 91, 133–141. [Google Scholar] [CrossRef]
- Knothe, G.; Steidley, K.R. Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel 2007, 86, 2560–2567. [Google Scholar] [CrossRef]
- Giakoumis, E.G. A statistical investigation of biodiesel physical and chemical properties, and their correlation of with the degree of unsaturation. Renew. Energy 2013, 50, 858–878. [Google Scholar] [CrossRef]
- Hoque, M.E.; Singh, A.; Chuan, Y.L. Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass Bioenergy 2011, 35, 1582–1587. [Google Scholar] [CrossRef]
- Haghighi, S.F.M.; Parvasi, P.; Jokar, S.M.; Basile, A. Investigating the effects of ultrasonic frequency and membrane technology on biodiesel production from chicken waste. Energies 2021, 14, 2133. [Google Scholar] [CrossRef]
- Shafiq, F.; Mumtaz, M.W.; Mukhtar, H.; Touqeer, T.; Raza, S.A.; Rashid, U.; Choong TS, Y. Response surface methodology approach for optimized biodiesel production from waste chicken fat oil. Catalysts 2020, 10, 633. [Google Scholar] [CrossRef]
- Colman, M.; Sorichetti, P.A.; Romano, S.D. Refractive index of biodiesel-diesel blends from effective polarizability and density. Fuel 2018, 211, 130–139. [Google Scholar] [CrossRef]
- Santoso, A.; Salim, A.; Marfu’ah, S. Synthesis of methyl ester from chicken oil and methanol using heterogeneous catalyst of CaO-MgO as well as characterization its potential as a biodiesel fuel. J. Phys. Conf. Ser. 2018, 1093, 012035. [Google Scholar] [CrossRef]
- Kirubakaran, M.; Selvan, V.A.M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renew. Sustain. Energy Rev. 2018, 82, 390–401. [Google Scholar] [CrossRef]
- Hernández, E.A.; Sánchez-Reyna, G.; Ancheyta, J. Evaluation of mixing rules to predict viscosity of petrodiesel and biodiesel blends. Fuel 2021, 283, 118941. [Google Scholar] [CrossRef]
- Kim, J.; Kim, D.N.; Lee, S.H.; Yoo, S.H.; Lee, S. Correlation of fatty acid composition of vegetable oils with rheological behavior and oil uptake. Food Chem. 2010, 118, 398–402. [Google Scholar] [CrossRef]
- Borges, M.E.; Díaz, L.; Gavín, J.; Brito, A. Estimation of the content of fatty acid methyl esters (FAME) in biodiesel samples from dynamic viscosity measurements. Fuel Process. Technol. 2011, 92, 597–599. [Google Scholar] [CrossRef]
- Guirong, W.; Ge, J.C.; Choi, N.J. A comprehensive review of the application characteristics of biodiesel blends in diesel engines. Appl. Sci. 2020, 10, 8015. [Google Scholar] [CrossRef]
Parameter | Method | References |
---|---|---|
Density | Gravimetric | [16] |
Melting point | Thermal | [17] |
Humidity | Gravimetric | [18] |
Refractive index | Refractometric | [19] |
Acidity index | Volumetric | [20] |
Saponification index | Volumetric | [21] |
Parameter | Method | References |
---|---|---|
Density | Gravimetric | [22] |
Cloud point | Temperature | [23] |
Flash point | Temperature | [24] |
Refractive index | Refractometric | [25] |
Acid number | Volumetric | [26] |
Residual carbon | Gravimetric | [27] |
Kinematic viscosity | Ubbelohde | [28] |
Model Mix Rule | Equation | References |
---|---|---|
Newton | [31] | |
Arrhenius | [32] | |
Bingham | [33] | |
Cragoe | [34] | |
Kendall and Monroe | [35] |
Parameter | Crude | Degummed | Reference | |
---|---|---|---|---|
Density (g mL−1) | 0.9224 0.0035 | 0.9091 0.002 | 0.876 | [37] |
Melting point (°C) | 10 0.5 | 8 0.5 | 3 | [40] |
Humidity (% w/w) | 0.0177 0.0002 | 0.0256 0.0002 | 0.31 | [41] |
Refractive index (N/A) | 1.5856 0.0001 | 1.5856 0.0001 | 1.459 | [43] |
Acid number (% AGL) | 4.891 0.004 | 1.397 0.002 | 2.77 | [37] |
Saponification index (mg KOH g−1) | 192.384 0.004 | 246.373 0.003 | 182.5 | [44] |
Retention Time | Fatty Acid | Specie | Biodiesel Sample (% w/w) | Biodiesel from Skin Chicken Oil (% w/w) [47] | Biodiesel from Rendered Chicken Oil (% w/w) [48] |
---|---|---|---|---|---|
19.17 | Methyl myristate | 14:0 | 2 | 0.53 | 0 |
21.6 | Methyl palmitate | 16:0 | 15.92 | 23.52 | 26.03 |
21.89 | Methyl palmitoleate | 16:1 | 19.34 | 4.18 | 7.03 |
25.77 | Methyl stearate | 18:0 | 16.26 | 6.11 | 13.97 |
24.21 | Methyl oleate | 18:1 | 5.42 | 34.78 | 37.73 |
23.94 | Methyl linoleate | 18:2 | 36.01 | 28.23 | 14.4 |
ND | Methyl linolenate | 18:3 | 0 | 2.37 | 0 |
26.26 | Methyl 11(Z),14(Z)-Eicosadienoate | 21:2 | 1.86 | 0 | 0 |
26.2 | Omega-3 arachidonic acid methyl ester | 21:4 | 3.18 | 2.4 | 0 |
Saturated | 34.18 | 30.16 | 40 | ||
Unsaturated | 65.81 | 69.56 | 59.16 | ||
Sat/Unsat Ratio | 99.99 | 99.72 | 99.16 | ||
Sat/Unsat | 0.519373955 | 0.43358252 | 0.676132522 |
Biodiesel Concentration (% v/v) | Dynamic Viscosity (Pa·s) | Equation | R2 |
---|---|---|---|
100 | 0.004903 | 0.9904 | |
75 | 0.004065 | 0.9999 | |
50 | 0.003389 | 0.9994 | |
25 | 0.002790 | 0.9994 | |
0 | 0.002322 | 0.9993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Casiano, N.; Cobos-Murcia, J.A.; Ortiz-Sánchez, C.A.; Pérez-Guzmán, S.M.; Hernández-Aguilar, E. Valorization of Poultry Waste Oils Recovered from Water Treatment Through the Degumming–Transesterification Process to Produce Biodiesel. Fuels 2025, 6, 7. https://doi.org/10.3390/fuels6010007
Gutiérrez-Casiano N, Cobos-Murcia JA, Ortiz-Sánchez CA, Pérez-Guzmán SM, Hernández-Aguilar E. Valorization of Poultry Waste Oils Recovered from Water Treatment Through the Degumming–Transesterification Process to Produce Biodiesel. Fuels. 2025; 6(1):7. https://doi.org/10.3390/fuels6010007
Chicago/Turabian StyleGutiérrez-Casiano, Nayeli, José Angel Cobos-Murcia, César Antonio Ortiz-Sánchez, Solmaría Mandi Pérez-Guzmán, and Eduardo Hernández-Aguilar. 2025. "Valorization of Poultry Waste Oils Recovered from Water Treatment Through the Degumming–Transesterification Process to Produce Biodiesel" Fuels 6, no. 1: 7. https://doi.org/10.3390/fuels6010007
APA StyleGutiérrez-Casiano, N., Cobos-Murcia, J. A., Ortiz-Sánchez, C. A., Pérez-Guzmán, S. M., & Hernández-Aguilar, E. (2025). Valorization of Poultry Waste Oils Recovered from Water Treatment Through the Degumming–Transesterification Process to Produce Biodiesel. Fuels, 6(1), 7. https://doi.org/10.3390/fuels6010007