Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease
Abstract
:1. Introduction
2. Methods
2.1. UMR-106 Cell Culture
2.2. Bionano OGM Methods
2.3. Nanopore Sequencing (ONT)
2.4. RNASeq Methods
2.5. Mutation Identification
3. Results
3.1. Optical Genome Mapping
3.2. Correlation between Optical Mapping and Nanopore Sequence Depth
3.3. Osteosarcoma Mutation Analysis
3.4. Expression Data
3.5. Methylation
3.6. Chromosome 7 Amplified Gene Region
Gene | Chr | Start | End | OGM T:N | ONT T:N | TPM T:N | Comments, References |
---|---|---|---|---|---|---|---|
Ratio log(10) | Ratio log(10) | Ratio log(10) | |||||
Mdm2 | 7 | 53290660 | 53315205 | 0.167 | 0.037 | −0.209 | OS amp; [49] |
Mdm1 | 7 | 53729603 | 53766034 | 0.207 | 0.064 | 0.419 | |
Oxr1 | 7 | 72528750 | 72965666 | 0.167 | 0.127 | −0.109 | |
Angpt1 | 7 | 73528345 | 73783953 | 0.196 | 0.170 | −0.703 | OS marker; [50] |
Csmd3 | 7 | 78747322 | 80066466 | 0.500 | 0.473 | mut in ESCC; [51] | |
Trps1 | 7 | 81916668 | 82142733 | 0.541 | 0.544 | 0.374 | OS marker; [52] |
Eif3h | 7 | 83091037 | 83174451 | 0.753 | 0.737 | 0.887 | OS marker; [53] |
Taf2 | 7 | 86422613 | 86479616 | 0.706 | 0.639 | 0.952 | BRC amp; [54] |
Deptor | 7 | 86514859 | 86668817 | 0.721 | 0.604 | −0.707 | OS marker; [55] |
Has2 | 7 | 88113326 | 88139337 | 0.649 | 0.515 | −1.152 | OS marker; [56] |
Zhx2 | 7 | 89226358 | 89374266 | 0.744 | 0.719 | −0.222 | [57] |
Fam91a1 | 7 | 89969558 | 90007546 | 0.758 | 0.727 | 0.796 | OS marker: [58] |
Tmem65 | 7 | 90336997 | 90378930 | 0.751 | 0.776 | 0.838 | OS marker; [59] |
Rnf139 | 7 | 90439726 | 90450911 | 0.793 | 0.767 | 0.928 | OS marker; [60] |
Myc | 7 | 93593705 | 93598633 | 0.759 | 0.859 | 0.544 | OS marker; [60] |
Gsdmc | 7 | 95594015 | 95606106 | 0.412 | 0.531 | [61] | |
Cyrib | 7 | 95633876 | 95760588 | 0.389 | 0.511 | 0.719 | [62] |
Asap1 | 7 | 95786130 | 96093111 | 0.562 | 0.512 | 0.580 | [63] |
Adcy8 | 7 | 96417310 | 96665911 | 0.457 | 0.508 | 0.699 | [64] |
Efr3a | 7 | 97552677 | 97633369 | 0.696 | 0.695 | 0.755 | [65] |
Kcnq3 | 7 | 97730219 | 98025652 | 0.680 | 0.744 | ||
Phf20l1 | 7 | 98330580 | 98396526 | 0.552 | 0.496 | 0.089 | [66] |
Ccn4 | 7 | 98645238 | 98677253 | 0.558 | 0.464 | 0.748 | OS marker; [67] |
Ndrg1 | 7 | 98684487 | 98725869 | 0.708 | 0.873 | 0.508 | OS marker; [42] |
St3gal1 | 7 | 98845270 | 98913409 | 0.922 | 0.882 | 0.236 | OS marker; [68] |
Zfat | 7 | 99886954 | 100054288 | 0.624 | 0.641 | 0.637 | [69] |
Khdrbs3 | 7 | 100837707 | 100995644 | 0.636 | 0.604 | 1.655 | [70] |
Col22a1 | 7 | 103730939 | 103968452 | 0.021 | 0.037 | OS marker; [71] | |
Trappc9 | 7 | 104521593 | 104998352 | 0.068 | −0.092 | −0.073 | [72] |
Chrac1 | 7 | 105013047 | 105016435 | 0.095 | 0.185 | 0.091 | [73] |
Mfng | 7 | 110310810 | 110328653 | 0.096 | 0.111 | [74] |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eaton, B.R.; Schwarz, R.; Vatner, R.; Yeh, B.; Claude, L.; Indelicato, D.J.; Laack, N. Osteosarcoma. Pediatr. Blood Cancer 2021, 68 (Suppl. S2), e28352. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, P.S.; Helman, L.J. New Horizons in the Treatment of Osteosarcoma. N. Engl. J. Med. 2021, 385, 2066–2076. [Google Scholar] [CrossRef]
- Belayneh, R.; Fourman, M.S.; Bhogal, S.; Weiss, K.R. Update on Osteosarcoma. Curr. Oncol. Rep. 2021, 23, 71. [Google Scholar] [CrossRef]
- Ben-David, U.; Siranosian, B.; Ha, G.; Tang, H.; Oren, Y.; Hinohara, K.; Strathdee, C.A.; Dempster, J.; Lyons, N.J.; Burns, R.; et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature 2018, 560, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.J.; Ingleton, P.M.; Underwood, J.C.; Michelangeli, V.P.; Hunt, N.H.; Melick, R.A. Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma. Nature 1976, 260, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Chen, Y.; Li, H.; Xu, S.; Li, Y.; Sun, J.; Rao, W.; Chen, C.; Du, M.; He, K.; et al. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model. Mol. Med. Rep. 2016, 14, 57–68. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, L.; Long, H.; Yang, T.T.; Zhou, Y.; Fan, Q.Y.; Ma, B.A. Homologous mesenchymal stem cells promote the emergence and growth of pulmonary metastases of the rat osteosarcoma cell line UMR-106. Oncol. Lett. 2014, 8, 127–132. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, B.; Zhou, Y.; Zhang, M.; Long, H.; Wang, Y.; Fan, Q. Allogeneic tumor vaccine produced by electrofusion between osteosarcoma cell line and dendritic cells in the induction of antitumor immunity. Cancer Investig. 2007, 25, 535–541. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, H.; Fan, Q.; Long, H.; Yang, T.; Ma, B. Establishment of reproducible osteosarcoma rat model using orthotopic implantation technique. Oncol. Rep. 2009, 21, 1175–1180. [Google Scholar]
- Zhu, X.Z.; Yin, H.M.; Mei, J. Inhibition of tumors cell growth in osteosarcoma-bearing SD rats through a combination of conventional and metronomic scheduling of neoadjuvant chemotherapy. Acta Pharmacol. Sin. 2010, 31, 970–976. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, Y.; Yang, D.; Lin, J. Survivin and vascular endothelial growth factor are associated with spontaneous pulmonary metastasis of osteosarcoma: Development of an orthotopic mouse model. Oncol. Lett. 2014, 8, 2577–2580. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wan, M. Methylene diphosphonate-conjugated adriamycin liposomes: Preparation, characteristics, and targeted therapy for osteosarcomas in vitro and in vivo. Biomed. Microdevices 2012, 14, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S.; Allan, E.H.; Martin, T.J. Regulation of plasminogen activator inhibitor-1 (PAI-1) expression by 1,25-dihydroxyvitamin D-3 in normal and malignant rat osteoblasts. Biochim. Biophys. Acta 1994, 1201, 223–228. [Google Scholar] [CrossRef]
- Ishiyama, S.; Kissel, C.; Guo, X.; Howard, A.; Saeki, H.; Ito, T.; Sysa-Shah, P.; Orita, H.; Sakamoto, K.; Gabrielson, K. A Syngeneic Orthotopic Osteosarcoma Sprague Dawley Rat Model with Amputation to Control Metastasis Rate. J. Vis. Exp. 2021, 171. [Google Scholar] [CrossRef]
- Partridge, N.C.; Frampton, R.J.; Eisman, J.A.; Michelangeli, V.P.; Elms, E.; Bradley, T.R.; Martin, T.J. Receptors for 1,25(OH)2-vitamin D3 enriched in cloned osteoblast-like rat osteogenic sarcoma cells. FEBS Lett. 1980, 115, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Ek, E.T.; Dass, C.R.; Choong, P.F. Commonly used mouse models of osteosarcoma. Crit. Rev. Oncol. Hematol. 2006, 60, 1–8. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Billingsley, K.J.; Mastoras, M.; Meredith, M.; Monlong, J.; Lorig-Roach, R.; Asri, M.; Alvarez Jerez, P.; Malik, L.; Dewan, R.; et al. Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 2023, 20, 1483–1492. [Google Scholar] [CrossRef]
- Barford, R.G.; Whittle, E.; Weir, L.; Fong, F.C.; Goodman, A.; Hartley, H.E.; Allinson, L.M.; Tweddle, D.A. Use of Optical Genome Mapping to Detect Structural Variants in Neuroblastoma. Cancers 2023, 15, 5233. [Google Scholar] [CrossRef]
- Baelen, J.; Dewaele, B.; Debiec-Rychter, M.; Sciot, R.; Schöffski, P.; Hompes, D.; Sinnaeve, F.; Wafa, H.; Vanden Bempt, I. Optical Genome Mapping for Comprehensive Cytogenetic Analysis of Soft-Tissue and Bone Tumors for Diagnostic Purposes. J. Mol. Diagn. 2024, 26, 374–386. [Google Scholar] [CrossRef]
- Thibodeau, M.L.; O’Neill, K.; Dixon, K.; Reisle, C.; Mungall, K.L.; Krzywinski, M.; Shen, Y.; Lim, H.J.; Cheng, D.; Tse, K.; et al. Improved structural variant interpretation for hereditary cancer susceptibility using long-read sequencing. Genet. Med. 2020, 22, 1892–1897. [Google Scholar] [CrossRef]
- O’Neill, K.; Pleasance, E.; Fan, J.; Akbari, V.; Chang, G.; Dixon, K.; Csizmok, V.; MacLennan, S.; Porter, V.; Galbraith, A.; et al. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. medRxiv 2024. medRxiv:2024.02.20.24302959. [Google Scholar] [CrossRef]
- Pei, Y.; Tanguy, M.; Giess, A.; Dixit, A.; Wilson, L.C.; Gibbons, R.J.; Twigg, S.R.F.; Elgar, G.; Wilkie, A.O.M. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Genes 2024, 15, 925. [Google Scholar] [CrossRef] [PubMed]
- Nilius-Eliliwi, V.; Gerding, W.M.; Schroers, R.; Nguyen, H.P.; Vangala, D.B. Optical Genome Mapping for Cytogenetic Diagnostics in AML. Cancers 2023, 15, 1684. [Google Scholar] [CrossRef] [PubMed]
- Genomics, B. Bionano Solve Theory of Operation: Variant Annotation Pipeline 2024.
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Razaghi, R.; Hook, P.W.; Ou, S.; Schatz, M.C.; Hansen, K.D.; Jain, M.; Timp, W. Modbamtools: Analysis of single-molecule epigenetic data for long-range profiling, heterogeneity, and clustering. bioRxiv 2022. bioRxiv:2022.07.07.499188. [Google Scholar] [CrossRef]
- De Coster, W.; Rademakers, R. NanoPack2: Population-scale evaluation of long-read sequencing data. Bioinformatics 2023, 39, btad311. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef]
- Wilkinson, M.; Sinclair, P.; Dellatorre-Teixeira, L.; Swan, P.; Brennan, E.; Moran, B.; Wedekind, D.; Downey, P.; Sheahan, K.; Conroy, E.; et al. The Molecular Effects of a High Fat Diet on Endometrial Tumour Biology. Life 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- De Luca, G.; Cerruti, G.; Lastraioli, S.; Conte, R.; Ibatici, A.; Di Felice, N.; Morabito, F.; Monti, P.; Fronza, G.; Matis, S.; et al. The spectrum of subclonal TP53 mutations in chronic lymphocytic leukemia: A next generation sequencing retrospective study. Hematol. Oncol. 2022, 40, 962–975. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, Y.; Xu, W.; Liu, L.; Liu, X.; Da, J.; Zhang, K.; Zhang, X.; Wang, J.; Liu, Z.; et al. Characterization of transcriptional landscape in bone marrow-derived mesenchymal stromal cells treated with aspirin by RNA-seq. PeerJ 2022, 10, e12819. [Google Scholar] [CrossRef]
- Lietz, C.E.; Newman, E.T.; Kelly, A.D.; Xiang, D.H.; Zhang, Z.; Luscko, C.A.; Lozano-Calderon, S.A.; Ebb, D.H.; Raskin, K.A.; Cote, G.M.; et al. Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun. Biol. 2022, 5, 213. [Google Scholar] [CrossRef]
- Righi, A.; Gambarotti, M.; Sbaraglia, M.; Sisto, A.; Ferrari, S.; Dei Tos, A.P.; Picci, P. p16 expression as a prognostic and predictive marker in high-grade localized osteosarcoma of the extremities: An analysis of 357 cases. Hum. Pathol. 2016, 58, 15–23. [Google Scholar] [CrossRef]
- Chang, C.Y.; Wu, K.L.; Chang, Y.Y.; Liu, Y.W.; Huang, Y.C.; Jian, S.F.; Lin, Y.S.; Tsai, P.H.; Hung, J.Y.; Tsai, Y.M.; et al. The Downregulation of LSAMP Expression Promotes Lung Cancer Progression and Is Associated with Poor Survival Prognosis. J. Pers. Med. 2021, 11, 578. [Google Scholar] [CrossRef]
- Yen, C.C.; Chen, W.M.; Chen, T.H.; Chen, W.Y.; Chen, P.C.; Chiou, H.J.; Hung, G.Y.; Wu, H.T.; Wei, C.J.; Shiau, C.Y.; et al. Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. Int. J. Oncol. 2009, 35, 775–788. [Google Scholar] [PubMed]
- West, R.M. Best practice in statistics: The use of log transformation. Ann. Clin. Biochem. 2022, 59, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Jia, X.; Sun, M.; Zheng, L.; Yin, L.; Zhang, L.; Cai, Z. Plasma membrane proteomic analysis of human osteosarcoma and osteoblastic cells: Revealing NDRG1 as a marker for osteosarcoma. Tumour Biol. 2011, 32, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Lakhani, S.R.; McCart Reed, A.E. NDRG1 in Cancer: A Suppressor, Promoter, or Both. Cancers 2022, 14, 5739. [Google Scholar] [CrossRef]
- Kalkat, M.; De Melo, J.; Hickman, K.A.; Lourenco, C.; Redel, C.; Resetca, D.; Tamachi, A.; Tu, W.B.; Penn, L.Z. MYC Deregulation in Primary Human Cancers. Genes 2017, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Megquier, K.; Turner-Maier, J.; Morrill, K.; Li, X.; Johnson, J.; Karlsson, E.K.; London, C.A.; Gardner, H.L. The genomic landscape of canine osteosarcoma cell lines reveals conserved structural complexity and pathway alterations. PLoS ONE 2022, 17, e0274383. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cogdell, D.; Yang, D.; Hu, L.; Li, H.; Zheng, H.; Du, X.; Pang, Y.; Trent, J.; Chen, K.; et al. Deletion of the WWOX gene and frequent loss of its protein expression in human osteosarcoma. Cancer Lett. 2010, 291, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, J.P.; Schofield, P.N. Commentary: Mouse genetic nomenclature. Standardization of strain, gene, and protein symbols. Vet. Pathol. 2010, 47, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Sciot, R. MDM2 Amplified Sarcomas: A Literature Review. Diagnostics 2021, 11, 496. [Google Scholar] [CrossRef]
- Sorenson, L.; Fu, Y.; Hood, T.; Warren, S.; McEachron, T.A. Targeted transcriptional profiling of the tumor microenvironment reveals lymphocyte exclusion and vascular dysfunction in metastatic osteosarcoma. Oncoimmunology 2019, 8, e1629779. [Google Scholar] [CrossRef]
- Mangalaparthi, K.K.; Patel, K.; Khan, A.A.; Manoharan, M.; Karunakaran, C.; Murugan, S.; Gupta, R.; Gupta, R.; Khanna-Gupta, A.; Chaudhuri, A.; et al. Mutational Landscape of Esophageal Squamous Cell Carcinoma in an Indian Cohort. Front. Oncol. 2020, 10, 1457. [Google Scholar] [CrossRef]
- Li, Z.; Jia, M.; Wu, X.; Cui, J.; Pan, A.; Li, L. Overexpression of Trps1 contributes to tumor angiogenesis and poor prognosis of human osteosarcoma. Diagn. Pathol. 2015, 10, 167. [Google Scholar] [CrossRef]
- Hong, S.; Liu, Y.; Xiong, H.; Cai, D.; Fan, Q. Eukaryotic translation initiation factor 3H suppression inhibits osteocarcinoma cell growth and tumorigenesis. Exp. Ther. Med. 2018, 15, 4925–4931. [Google Scholar] [CrossRef]
- Parris, T.Z.; Kovács, A.; Hajizadeh, S.; Nemes, S.; Semaan, M.; Levin, M.; Karlsson, P.; Helou, K. Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas. Oncogenesis 2014, 3, e95. [Google Scholar] [CrossRef]
- Hu, B.; Lv, X.; Gao, F.; Chen, S.; Wang, S.; Qing, X.; Liu, J.; Wang, B.; Shao, Z. Downregulation of DEPTOR inhibits the proliferation, migration, and survival of osteosarcoma through PI3K/Akt/mTOR pathway. OncoTargets Ther. 2017, 10, 4379–4391. [Google Scholar] [CrossRef]
- Zhao, Z.; Liang, T.; Feng, S. Silencing of HAS2-AS1 mediates PI3K/AKT signaling pathway to inhibit cell proliferation, migration, and invasion in glioma. J. Cell. Biochem. 2019, 120, 11510–11516. [Google Scholar] [CrossRef]
- Ding, R.; Shi, H.; Guo, Y.; Zeng, W.; Fan, J. Zinc fingers and homeoboxes 2 inhibition could suppress the proliferation of ovarian cancer cells by apoptosis pathway. Clin. Transl. Oncol. 2023, 25, 2116–2126. [Google Scholar] [CrossRef]
- Lin, C.; Miao, J.; He, J.; Feng, W.; Chen, X.; Jiang, X.; Liu, J.; Li, B.; Huang, Q.; Liao, S.; et al. The regulatory mechanism of LncRNA-mediated ceRNA network in osteosarcoma. Sci. Rep. 2022, 12, 8756. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Y.; Han, Z.; Tian, R. Identification of potential gene signatures associated with osteosarcoma by integrated bioinformatics analysis. PeerJ 2021, 9, e11496. [Google Scholar] [CrossRef]
- Pandya, P.H.; Cheng, L.; Saadatzadeh, M.R.; Bijangi-Vishehsaraei, K.; Tang, S.; Sinn, A.L.; Trowbridge, M.A.; Coy, K.L.; Bailey, B.J.; Young, C.N.; et al. Systems Biology Approach Identifies Prognostic Signatures of Poor Overall Survival and Guides the Prioritization of Novel BET-CHK1 Combination Therapy for Osteosarcoma. Cancers 2020, 12, 2426. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Q.; Liu, X.; Han, L.; Chen, S.; Xue, R. The Pyroptosis-Related Signature Composed of GSDMC Predicts Prognosis and Contributes to Growth and Metastasis of Hepatocellular Carcinoma. Front. Biosci. 2023, 28, 235. [Google Scholar] [CrossRef]
- Pereira, B.S.; Wisnieski, F.; Calcagno, D.Q.; Santos, L.C.; Gigek, C.O.; Chen, E.S.; Rasmussen, L.T.; Payão, S.L.M.; Almeida, R.S.; Pinto, C.A.; et al. Genetic and Transcriptional Analysis of 8q24.21 Cluster in Gastric Cancer. Anticancer Res. 2022, 42, 4381–4394. [Google Scholar] [CrossRef]
- Müller, T.; Stein, U.; Poletti, A.; Garzia, L.; Rothley, M.; Plaumann, D.; Thiele, W.; Bauer, M.; Galasso, A.; Schlag, P.; et al. ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients. Oncogene 2010, 29, 2393–2403. [Google Scholar] [CrossRef]
- El-Kafrawy, S.A.; El-Daly, M.M.; Bajrai, L.H.; Alandijany, T.A.; Faizo, A.A.; Mobashir, M.; Ahmed, S.S.; Ahmed, S.; Alam, S.; Jeet, R.; et al. Genomic profiling and network-level understanding uncover the potential genes and the pathways in hepatocellular carcinoma. Front. Genet. 2022, 13, 880440. [Google Scholar] [CrossRef]
- Zhou, D.; Yang, L.; Zheng, L.; Ge, W.; Li, D.; Zhang, Y.; Hu, X.; Gao, Z.; Xu, J.; Huang, Y.; et al. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis. PLoS ONE 2013, 8, e53310. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, W.; Yi, X.; Yang, Y.; Su, D.; Huang, W.; Yu, H.; Teng, X.; Yang, Y.; Feng, W.; et al. PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis. Sci. Adv. 2020, 6, eaaz0356. [Google Scholar] [CrossRef]
- Tsai, H.C.; Tzeng, H.E.; Huang, C.Y.; Huang, Y.L.; Tsai, C.H.; Wang, S.W.; Wang, P.C.; Chang, A.C.; Fong, Y.C.; Tang, C.H. WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death Dis. 2017, 8, e2750. [Google Scholar] [CrossRef]
- Zou, Y.; Guo, S.; Liao, Y.; Chen, W.; Chen, Z.; Chen, J.; Wen, L.; Xie, X. Ceramide metabolism-related prognostic signature and immunosuppressive function of ST3GAL1 in osteosarcoma. Transl. Oncol. 2024, 40, 101840. [Google Scholar] [CrossRef]
- Tsunoda, T.; Shirasawa, S. Roles of ZFAT in haematopoiesis, angiogenesis and cancer development. Anticancer Res. 2013, 33, 2833–2837. [Google Scholar]
- Zhao, M.; Zhang, Y.; Li, L.; Liu, X.; Zhou, W.; Wang, C.; Tang, Y. KHDRBS3 accelerates glycolysis and promotes malignancy of hepatocellular carcinoma via upregulating 14-3-3ζ. Cancer Cell Int. 2023, 23, 244. [Google Scholar] [CrossRef]
- Pan, R.; Pan, F.; Zeng, Z.; Lei, S.; Yang, Y.; Yang, Y.; Hu, C.; Chen, H.; Tian, X. A novel immune cell signature for predicting osteosarcoma prognosis and guiding therapy. Front. Immunol. 2022, 13, 1017120. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Wang, H.; Yang, W.; Li, F.; Yang, F.; Yu, D.; Ramsey, F.V.; Tuszyski, G.P.; Hu, W. Elevated NIBP/TRAPPC9 mediates tumorigenesis of cancer cells through NFκB signaling. Oncotarget 2015, 6, 6160–6178. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, S.; Guo, W.; Wang, L.; Huang, J.; Zhuo, J.; Lai, B.; Liao, C.; Ge, T.; Nie, Y.; et al. CHRAC1 promotes human lung cancer growth through regulating YAP transcriptional activity. Carcinogenesis 2022, 43, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Luo, L.; Qu, Y.; Zhou, Q. MFNG is an independent prognostic marker for osteosarcoma. Eur. J. Med. Res. 2023, 28, 256. [Google Scholar] [CrossRef] [PubMed]
- Vieler, L.M.; Nilius-Eliliwi, V.; Schroers, R.; Vangala, D.B.; Nguyen, H.P.; Gerding, W.M. Optical Genome Mapping Reveals and Characterizes Recurrent Aberrations and New Fusion Genes in Adult ALL. Genes 2023, 14, 686. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, A.F.; Mohr, D.W.; Littrell, W.A.; Babu, R.; Kokosinski, M.; Stinnett, V.; Madhiwala, J.; Anderson, J.; Zou, Y.S.; Gabrielson, K.L. Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease. Genes 2024, 15, 1254. https://doi.org/10.3390/genes15101254
Scott AF, Mohr DW, Littrell WA, Babu R, Kokosinski M, Stinnett V, Madhiwala J, Anderson J, Zou YS, Gabrielson KL. Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease. Genes. 2024; 15(10):1254. https://doi.org/10.3390/genes15101254
Chicago/Turabian StyleScott, Alan F., David W. Mohr, William A. Littrell, Reshma Babu, Michelle Kokosinski, Victoria Stinnett, Janvi Madhiwala, John Anderson, Ying S. Zou, and Kathleen L. Gabrielson. 2024. "Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease" Genes 15, no. 10: 1254. https://doi.org/10.3390/genes15101254