Transcriptome Analysis of Muscle Growth-Related circRNA in the Pacific Abalone Haliotis discus hanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Materials
2.2. RNA Extraction and Sequencing
2.3. Identification and Analysis of circRNA
2.4. Construction and Analysis of ceRNA Networks
2.5. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) Verification
3. Results
3.1. Characteristics of circRNAs
3.2. Differentially Expressed circRNAs and Functional Analysis
3.3. CircRNA-miRNA-mRNA Interaction Network Analysis
3.4. Verification by qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kos, A.; Dijkema, R.; Arnberg, A.C.; van der Meide, P.H.; Schellekens, H. The hepatitis delta (δ) virus possesses a circular RNA. Nature 1986, 323, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [PubMed]
- Danan, M.; Schwartz, S.; Edelheit, S.; Sorek, R. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res. 2012, 40, 3131–3142. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.B.; Venø, M.T.; Damgaard, C.K.; Kjems, J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016, 44, e58. [Google Scholar] [CrossRef]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef]
- Westholm, J.O.; Miura, P.; Olson, S.; Shenker, S.; Joseph, B.; Sanfilippo, P.; Celniker, S.E.; Graveley, B.R.; Lai, E.C. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014, 9, 1966–1980. [Google Scholar] [CrossRef]
- Li, Z.Y.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.L.; Zhong, G.L.; Yu, B.; Hu, W.C.; Dai, L.M.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, W.; Li, X.; Zhang, J.; Chen, S.Y.; Zhang, J.L.; Yang, L.; Chen, L.L. The biogenesis of nascent circular RNAs. Cell Rep. 2016, 15, 611–624. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef]
- Rbbani, G.; Nedoluzhko, A.; Galindo-Villegas, J.; Fernandes, J.M.O. Function of circular RNAs in fish and their potential application as biomarkers. Int. J. Mol. Sci. 2021, 22, 7119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.X.; Dong, L.; Yang, L.S.; Ma, Q.; Liu, F.; Li, Y.J.; Xiong, S. Identification and analysis of circRNA–miRNA–mRNA regulatory network in hepatocellular carcinoma. IET Syst. Biol. 2020, 14, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-throughput sequencing technologies. Mol. Cell 2015, 58, 586–597. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, K.; Zhang, L.; Li, P.; He, M.; Zhang, X.; Ye, H.; Zhang, Q.; Wei, Q.; Zhang, G. High-throughput sequencing reveals crucial miRNAs in skeletal muscle development of Bian chicken. Br. Poult. Sci. 2021, 62, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.C.; Jia, X.W.; Wan, H.F.; Wang, S.H.; Zhang, X.; Zhang, Z.P.; Wang, Y.L. miR-9 and miR-263 regulate the key genes of the ERK pathway in the ovary of mud crab Scylla paramamosain. Mar. Biotechnol. 2020, 22, 594–606. [Google Scholar] [CrossRef]
- Benson, T.W.; Conrad, K.A.; Li, X.S.; Wang, Z.N.; Helsley, R.N.; Schugar, R.C.; Coughlin, T.M.; Wadding-Lee, C.; Fleifil, S.; Russell, H.M.; et al. Gut microbiota-derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 2023, 147, 1079–1096. [Google Scholar] [CrossRef]
- Liu, S.S.; Chen, G.X.; Xu, H.D.; Zou, W.B.; Yan, W.R.; Wang, Q.Q.; Deng, H.W.; Zhang, H.Q.; Yu, G.J.; He, J.G.; et al. Transcriptome analysis of mud crab (Scylla paramamosain) gills in response to mud crab reovirus (MCRV). Fish Shellfish Immunol. 2017, 60, 545–553. [Google Scholar] [CrossRef]
- Yue, B.L.; Yang, H.Y.; Wang, J.; Ru, W.X.; Wu, J.Y.; Huang, Y.Z.; Lan, X.Y.; Lei, C.Z.; Chen, H. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif. 2020, 53, e12857. [Google Scholar] [CrossRef]
- Zhao, X.H.; Ye, J.N.; Lin, X.K.; Xue, H.W.; Zou, X.; Liu, G.B.; Deng, M.; Sun, B.L.; Guo, Y.Q.; Liu, D.W.; et al. Identification of key functional genes and LncRNAs influencing muscle growth and development in Leizhou black goats. Genes 2023, 14, 881. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, L.X.; Wang, X.Y.; He, S.Y.; Bai, J.N.; Li, Q.; Zhang, M.; Zhang, C.; Yu, X.F.; Zhang, J.T.; et al. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase. J. Cell. Mol. Med. 2020, 24, 5260–5273. [Google Scholar] [CrossRef]
- Guo, X.M.; Ford, S.E.; Zhang, F.S. Molluscan aquaculture in China. J. Shellfish Res. 1999, 18, 19–31. [Google Scholar]
- Luo, X.; Ke, C.H.; You, W.W.; Wang, D.X.; Chen, F. Molecular identification of interspecific hybrids between Haliotis discus hannai Ino and Haliotis gigantea Gmelin usingamplified fragment-length polymorphism and microsatellite markers. Aquacult. Res. 2010, 41, 1827–1834. [Google Scholar] [CrossRef]
- Chen, N.; Luo, X.; Gu, Y.T.; Han, G.D.; Dong, Y.W.; You, W.W.; Ke, C.H. Assessment of the thermal tolerance of abalone based on cardiac performance in Haliotis discus hannai, H. gigantea and their interspecific hybrid. Aquaculture 2016, 465, 258–264. [Google Scholar] [CrossRef]
- Guo, Y.F.; Zhao, W.W.; Gao, H.Q.; Wang, S.; Yu, P.M.; Yu, H.S.; Wang, D.; Wang, Q.; Wang, J.X.; Wang, Z.F.; et al. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2017. [Google Scholar]
- Naipil, C.C.; Muñoz, V.V.; Valdés, J.A.; Molina, A.; Escárate, C.G. RNA interference in Haliotis rufescens myostatin evidences upregulation of insulin signaling pathway. Agri Gene 2016, 1, 93–99. [Google Scholar] [CrossRef]
- Elliott, N.G. Genetic improvement programmes in abalone: What is the future? Aquac. Res. 2000, 31, 51–59. [Google Scholar] [CrossRef]
- Huang, J.F.; Luo, X.; Zeng, L.T.; Huang, Z.K.; Huang, M.Q.; You, W.W.; Ke, C.H. Expression profiling of lncRNAs and mRNAs reveals regulation of muscle growth in the Pacific abalone, Haliotis discus hannai. Sci. Rep. 2018, 8, 16839. [Google Scholar] [CrossRef]
- Liang, G.M.; Yang, Y.L.; Niu, G.L.; Tang, Z.L.; Li, K. Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 2017, 24, 523–535. [Google Scholar] [CrossRef]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Quan, J.; Kang, Y.; Luo, Z.; Zhao, G.; Li, L.; Liu, Z. Integrated analysis of the responses of a circRNA-miRNA-mRNA ceRNA network to heat stress in rainbow trout (Oncorhynchus mykiss) liver. BMC Genom. 2021, 22, 48. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.F.; Luo, X.; Huang, M.Q.; Liu, G.M.; You, W.W.; Ke, C.H. Identification and characteristics of muscle growth-related microRNA in the Pacific abalone, Haliotis discus hannai. BMC Genom. 2018, 19, 915. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. genome research. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.L.; Du, H.R.; Yang, C.W.; Chen, J.L.; Zhao, S.J.; Wang, Q.S. Identification of immune-related circRNA of thymusin chickens. China Anim. Husb. Vet. Med. 2022, 49, 2022–2032. [Google Scholar]
- Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 2017, 66, 22–37.e9. [Google Scholar] [CrossRef]
- Nedoluzhko, A.; Sharko, F.; Rbbani, M.G.; Teslyuk, A.; Konstantinidis, I.; Fernandes, J.M.O. CircParser: A novel streamlined pipeline for circular RNA structure and host gene prediction in non-model organisms. PeerJ 2020, 8, e8757. [Google Scholar] [CrossRef]
- Shen, M.M.; Wu, P.; Li, T.T.; Wu, P.F.; Chen, F.X.; Chen, L.; Xie, K.Z.; Wang, J.Y.; Zhang, G.X. Transcriptome analysis of circRNA and mRNA in theca cells during follicular development in chickens. Genes 2020, 11, 489. [Google Scholar] [CrossRef]
- Goody, M.F.; Henry, C.A. A need for NAD+ in muscle development, homeostasis, and aging. Skelet. Muscle 2018, 8, 9. [Google Scholar] [CrossRef]
- Bassel-Duby, R.; Olson, E.N. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 2006, 75, 19–37. [Google Scholar] [CrossRef]
- Miska, E.A.; Karlsson, C.; Langley, E.; Nielsen, S.J.; Pines, J.; Kouzarides, T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999, 18, 5099–5107. [Google Scholar] [CrossRef]
- Nie, M.; Deng, Z.L.; Liu, J.M.; Wang, D.Z. Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res. Int. 2015, 2015, 676575. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.F.; Li, H.; Yang, J.M.; Hao, D.; Dong, D.; Huang, Y.Z.; Lan, X.Y.; Plath, M.; Lei, C.Z.; Lin, F.P.; et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis. 2017, 8, e3153. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.H.; Zheng, Q.; Zhu, L.; Xu, L.N.; Sui, M.H.; Zhang, Y.H.; Liu, Y.; Fang, F.G.; Chu, M.X.; Ma, Y.H.; et al. Trend analysis of the role of circular RNA in goat skeletal muscle development. BMC Genom. 2020, 21, 220. [Google Scholar] [CrossRef]
- Shen, X.X.; Liu, Z.H.; Cao, X.N.; He, H.R.; Han, S.S.; Chen, Y.Q.; Cui, C.; Zhao, J.; Li, D.Y.; Wang, Y.; et al. Circular RNA profiling identified an abundant circular RNA circTMTC1 that inhibits chicken skeletal muscle satellite cell differentiation by sponging miR-128-3p. Int. J. Biol. Sci. 2019, 15, 2265–2281. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.J.; Gu, T.; He, Y.J.; Zhou, C.; Hu, Q.; Wang, X.W.; Zheng, E.Q.; Huang, S.X.; Xu, Z.; Yang, J.; et al. Genome-wide analysis of circular RNAs mediated ceRNA regulation in porcine embryonic muscle development. Front. Cell Dev. Biol. 2019, 7, 289. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mariscal, L.; Dominguez-Calderon, A.; Raya-Sandino, A.; Ortega-Olvera, J.M.; Vargas-Sierra, O.; Martinez-Revollar, G. Tight junctions and the regulation of gene expression. Semin. Cell Dev. Biol. 2014, 36, 213–223. [Google Scholar] [CrossRef]
- Gonzalez-Mariscal, L.; Lechuga, S.; Garay, E. Role of tight junctions in cell proliferation and cancer. Prog. Histochem. Cytochem. 2007, 42, 1–57. [Google Scholar] [CrossRef]
- Nilsson, M.; Fagman, H. Development of the thyroid gland. Development 2017, 144, 2123–2140. [Google Scholar] [CrossRef]
- Andersson, Y.; Sävman, K.; Bläckberg, L.; Hernell, O. Pasteurization of mother’s own milk reduces fat absorption and growth in preterm infants. Acta Paediatr. 2007, 96, 1445–1449. [Google Scholar] [CrossRef]
- Li, G.Z.; Zhou, X.Q.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Shi, H.Q.; Feng, L. Dietary curcumin supplementation enhanced growth performance, intestinal digestion, and absorption and amino acid transportation abilities in on growing grass carp (Ctenopharyngodon idella). Aquac. Res. 2020, 51, 4863–4873. [Google Scholar] [CrossRef]
- Zou, W.G.; Lin, Z.D.; Huang, Y.H.; Limbu, S.M.; Rong, H.; Yu, C.Q.; Lin, F.; Wen, X.B. Effect of dietary vitamin C on growth performance, body composition and biochemical parameters of juvenile Chu’s croaker (Nibea coibor). Aquac. Nutr. 2020, 26, 60–73. [Google Scholar] [CrossRef]
- Ma, S.H.; Meng, Z.P.; Chen, R.; Guan, K.L. The hippo pathway: Biology and pathophysiology. Annu. Rev. Biochem. 2019, 88, 577–604. [Google Scholar] [CrossRef]
- Benian, G.M.; Tinley, T.L.; Tang, X.; Borodovsky, M. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains. J. Cell Biol. 1996, 132, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Fard, S.S.; Holz, M.K. Regulation of mRNA translation by estrogen receptor in breast cancer. Steroids 2023, 200, 109316. [Google Scholar] [CrossRef]
- Guo, J.T.; Wang, J.F.; Zhang, K.; Yang, Z.M.; Li, B.Z.; Pan, Y.T.; Yu, H.W.; Yu, S.C.; Abbas Raza, S.H.; Kuraz Abebea, B.; et al. Molecular cloning of TPM3 gene in qinchuan cattle and its effect on myoblast proliferation and differentiation. Anim. Biotechnol. 2024, 35, 2345238. [Google Scholar] [CrossRef]
- Li, C.C.; Vargas-Franco, D.; Saha, M.; Davis, R.M.; Manko, K.A.; Draper, I.; Pacak, C.A.; Kang, P.B. Megf10 deficiency impairs skeletal muscle stem cell migration and muscle regeneration. FEBS Open Bio 2021, 11, 114–123. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, X.X.; Cao, X.N.; He, H.R.; Han, S.S.; Chen, Y.Q.; Cui, C.; Wei, Y.H.; Wang, Y.; Li, D.Y.; et al. HDAC4 regulates the proliferation, differentiation and apoptosis of chicken skeletal muscle satellite cells. Animals 2020, 10, 84. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Peng, S.J.; Song, C.C.; Li, H.; Cao, X.K.; Ma, Y.L.; Wang, X.G.; Huang, Y.Z.; Lan, X.Y.; Lei, C.Z.; Chaogetu, B.; et al. Circular RNA SNX29 sponges miR-744 to regulate proliferation and differentiation of myoblasts by activating the Wnt5a/Ca2+ signaling pathway. Mol. Ther. Nucleic Acids 2019, 16, 481–493. [Google Scholar] [CrossRef]
- Kuales, G.; De Mulder, K.; Glashauser, J.; Salvenmoser, W.; Takashima, S.; Hartenstein, V.; Berezikov, E.; Salzburger, W.; Ladurner, P. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev. Biol. 2011, 357, 117–132. [Google Scholar] [CrossRef] [PubMed]
Primer | Sequence (5′-3′) |
---|---|
novel_circ_0007575-qF | GGAGACAAAGTTGACGGGAT |
novel_circ_0007575-qR | AGCACGACATTTGTACGCAG |
novel_circ_0008967-qF | AGAGGTGGCATCAGGATCAG |
novel_circ_0008967-qR | GGGTAGCCATCGATGAGGAA |
novel_circ_0003381-qF | AGAACAAGGTCTCCAGCACA |
novel_circ_0003381-qR | TCACTTGTCCCACTAAGCCA |
novel_circ_0003383-qF | TTGCTGGAAATTGGTGGTCG |
novel_circ_0003383-qR | CTTGGAAGCAGACGTCAAGG |
novel_circ_0008580-qF | CTGAAACACTGAAACGTATGGAA |
novel_circ_0008580-qR | TCAGTGGATGTAATTATCGCGT |
novel_circ_0003380-qF | TTGAGATCAGACAGCCAGGG |
novel_circ_0003380-qR | TGATGGGGTTACTCTTGCCA |
β-actin-qF | GGTATCCTCACCCTCAAGT |
β-actin-qR | GGGTCATCTTTTCACGGTTG |
Description | Term_Type | p Value |
---|---|---|
Lipid transporter activity | molecular_function | 0.0021589 |
Lipid transport | biological_process | 0.0021775 |
Lipid localization | biological_process | 0.0021775 |
Catalytic activity | molecular_function | 0.0037282 |
Lipid biosynthetic process | biological_process | 0.0041697 |
ATP binding | molecular_function | 0.004655 |
Adenyl ribonucleotide binding | molecular_function | 0.004655 |
Hydrolase activity | molecular_function | 0.0050891 |
Adenyl nucleotide binding | molecular_function | 0.00539 |
Single-organism metabolic process | biological_process | 0.005411 |
MapTitle | p Value | Gene |
---|---|---|
Hypertrophic cardiomyopathy (HCM) | 0.0000976 | Actin, cytoplasmic 1 (Actb), actin, cytoplasmic(Actc), Twitchin (unc-22), muscle M-line assembly protein unc-89 (unc-89), tropomyosin, Fc receptor-like protein 3 (FCRL3) |
Dilated cardiomyopathy | 0.000131112 | Actb, Actc, unc-22, unc-89, Tropomyosin, FCRL3 |
Tight junction | 0.000852074 | Janus kinase and microtubule-interacting protein 3 (Jakmip3), Actb, Actc, Janus kinase and microtubule-interacting protein 3 (Jakmip3), circularly permutated Ras protein 1 (Cpras1), band 4.1-like protein 5 (Epb41l5) |
Vibrio cholerae infection | 0.001678884 | Actb, Actc, V-type proton ATPase catalytic subunit A (Vha68-2), E3 ubiquitin-protein ligase (KCMF1) |
Viral myocarditis | 0.013475154 | Actb, Actc, inter-α-trypsin inhibitor heavy chain H4 (ITIH4) |
Thyroid hormone signaling pathway | 0.013793361 | Actb, Actc, estrogen receptor(ESR1), Cpras1, Golgi integral membrane protein 4 (Golim4) |
Adherens junction | 0.014536358 | Actb, Actc, receptor-type tyrosine-protein phosphatase kappa (PTPRK), multiple epidermal growth factor-like domains protein 10 (MEGF10) |
Fat digestion and absorption | 0.015652512 | Apolipophorins |
Vitamin digestion and absorption | 0.017022673 | Deleted in malignant brain tumors 1 (Dmbt1), apolipophorins |
Collecting duct acid secretion | 0.020650989 | KCMF1 |
Arrhythmogenic right ventricular cardiomyopathy (ARVC) | 0.025900718 | Actb, Actc |
Synaptic vesicle cycle | 0.027482768 | KCMF1 |
Hippo signaling pathway | 0.03606938 | Actb, Actc, Leucine-rich repeat and calponin homology domain-containing protein 3 (Lrch3) |
Pathogenic Escherichia coli infection | 0.038107063 | Actb, Actc, tubulin β chain |
Alcoholism | 0.046909914 | Glutamate receptor ionotropic, NMDA 2B (Grin2b), Guanine nucleotide-binding protein subunit β, histone deacetylase 4(HDAC4), Cpras1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; He, J.; She, Z.; Zhou, M.; Li, D.; Chen, J.; Ke, C. Transcriptome Analysis of Muscle Growth-Related circRNA in the Pacific Abalone Haliotis discus hanna. Genes 2025, 16, 65. https://doi.org/10.3390/genes16010065
Huang J, He J, She Z, Zhou M, Li D, Chen J, Ke C. Transcriptome Analysis of Muscle Growth-Related circRNA in the Pacific Abalone Haliotis discus hanna. Genes. 2025; 16(1):65. https://doi.org/10.3390/genes16010065
Chicago/Turabian StyleHuang, Jianfang, Jian He, Zhenghan She, Mingcan Zhou, Dongchang Li, Jianming Chen, and Caihuan Ke. 2025. "Transcriptome Analysis of Muscle Growth-Related circRNA in the Pacific Abalone Haliotis discus hanna" Genes 16, no. 1: 65. https://doi.org/10.3390/genes16010065
APA StyleHuang, J., He, J., She, Z., Zhou, M., Li, D., Chen, J., & Ke, C. (2025). Transcriptome Analysis of Muscle Growth-Related circRNA in the Pacific Abalone Haliotis discus hanna. Genes, 16(1), 65. https://doi.org/10.3390/genes16010065