Extensive Sills in the Continental Basement from Deep Seismic Reflection Profiling
Abstract
:1. Introduction
2. Observations
2.1. Seismic Bright Spots and Magma in the Crust
2.2. “Frozen” Sills Detected by Reflection Surveys
2.2.1. Ground Truth: Siljan, Sweden
2.2.2. Identification via Outcrop
2.2.3. Extensive Sills in the Canadian Craton: Relicts of a Proterozoic Plume?
2.2.4. Basement Layering across the Central US: Fingerprints from the Keweenawan Plume?
2.2.5. Deep Sills and Ore Deposits—The Iberian Massif
2.2.6. Mantle Sills?
3. Discussion
4. Tectonic Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bradley, J. Intrusion of major dolerite sills. Trans. R. Soc. 1965, 3, 27–55. [Google Scholar]
- Hargraves, R.B. Physics of Magmatic Processes; Princeton University Press: Princeton, NJ, USA, 1980; p. 565. [Google Scholar]
- Spence, D.A.; Turcotte, D.L. Magma-driven propagation of cracks. J. Geophys. Res. 1985, 90, 575–580. [Google Scholar] [CrossRef]
- Cartwright, J.; Hansen, D.M. Magma transport through the crust via interconnected sill complexes. Geology 2006, 34, 929–932. [Google Scholar] [CrossRef]
- Marsh, B.D. Magmatism, magma, and magma chambers. In Treatise on Geophysics: Crust and Lithosphere Dynamics; Watts, A.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 6, pp. 275–333. [Google Scholar]
- Thomson, K. Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement. Bull. Volcanol. 2007, 70, 183–201. [Google Scholar] [CrossRef]
- Elliot, D.H.; Fleming, T.H.; Kyle, P.R.; Fland, K.A. Long-distance transport of magmas in the Jurassic Ferrar large igneous province. Antarct. Earth Planet. Sci. Lett. 1999, 167, 89–104. [Google Scholar] [CrossRef]
- Muirhead, J.D.; van Eaton, A.R.; Re, G.; White, J.-D.; Ort, M.H. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA. Bull. Volcanol. 2016, 78, 11. [Google Scholar] [CrossRef]
- Bott, M.H.P.; Smithson, S.B. Gravity investigations of subsurface shape and mass distributions of granite batholiths. Geol. Soc. Am. Bull. 1967, 78, 859–878. [Google Scholar] [CrossRef]
- Oliver, H.W. Gravity and magnetic investigations of the Sierra Nevada batholith, California. Geol. Soc. Am. Bull. 1977, 88, 445–461. [Google Scholar] [CrossRef]
- Kauahikaua, J.; Hildebrand, T.; Webring, M. Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models. Geology 2000, 28, 883–886. [Google Scholar] [CrossRef]
- Tizzani, P.; Battaglia, M.; Zeni, G.; Atzori, S.; Berardino, P.; Lanari, R. Uplift and magma intrusion at Long Valley caldera from INSAR and gravity measurements. Geology 2009, 37, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Unsworth, M.; Jones, A.; Booker, J.; Tan, H.; Nelson, K.D.; Chen, L.; Li, S.; Solon, K.; Bedrosian, P.; et al. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 2001, 292, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Unsworth, M.; Arnason, K.; Cordell, D. Imaging the magmatic system beneath Krafla geothermal field, Iceland: A new 3-D electrical resistivity model from inversion of magnetotelluric data. Geophys. J. Int. 2020, 22, 541–567. [Google Scholar] [CrossRef]
- Al-Chalabi, M. Some studies relating to nonuniqueness in gravity and magnetic inverse problems. Geophysics 1971, 36, 835–855. [Google Scholar] [CrossRef]
- Beblo, M.; Björnsson, K.; Arnason, K.; Stein, B.; Wolfgram, P. Electrical conductivity beneath Iceland—Constraints imposed by magnetotelluric results on temperature, partial melt, crust and mantle structure. J. Geophys. 1983, 53, 16–23. [Google Scholar]
- Yin, C. Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models. Geophysics 2003, 68, 138–146. [Google Scholar] [CrossRef]
- Thybo, H.; Artemieva, I. Moho and magmatic underplating in continental lithosphere. Tectonophysics 2013, 609, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Iyer, H.M.; Evans, J.R.; Zandt, G.; Stewart, R.M.; Coakley, J.M.; Roloff, J.N. A deep low-velocity body under the Yellowstone Caldera, Wyoming: Delineation using teleseismic P-wave residuals and tectonic interpretation. Geol. Soc. Am. Bull. 1981, 92, 792–798. [Google Scholar] [CrossRef]
- Huang, H.H.; Lin, F.-C.; Schmandt, B.; Farrell, J.; Smith, R.B.; Tsai, V.C. The Yellowstone magmatic system from the upper mantle to the upper crust. Science 2017, 348, 773–776. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.M. Seismic tomography of magmatic systems. J. Volcanol. Geotherm. Res. 2007, 167, 37–56. [Google Scholar] [CrossRef]
- Schuler, J.; Greenfield, T.; White, R.S.; Roecker, S.W.; Brandsdóttir, B.; Stock, J.M.; Pugh, D. Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland. J. Geophys. Res. Solid Earth 2015, 120, 7156–7173. [Google Scholar] [CrossRef] [Green Version]
- Kiser, E.; Palomeras, I.; Levander, A.; Zelt, C.; Harder, S.; Schmandt, B.; Hansen, S.; Creager, K.; Ulberg, C. Magma reservoirs from the upper crust to the Moho inferred from high resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology 2016, 44, 411–414. [Google Scholar] [CrossRef] [Green Version]
- Zandt, G.; Leidig, M.; Chmielowski, J.; Baumont, D.; Yuan, X. Seismic detection and characterization of the Altiplano-Puna magma body, central Andes. Pure Appl. Geophys. 2003, 160, 789–807. [Google Scholar] [CrossRef]
- Ward, K.M.; Zandt, G.; Beck, S.; Christensen, D.H.; McFarlin, H.M. Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet. Sci. Lett. 2014, 404, 43–53. [Google Scholar] [CrossRef]
- Waters, K. Reflection Seismology: A Tool for Energy Resource Exploration; Wiley: New York, NY, USA, 1981; p. 537. [Google Scholar]
- Polteau, S.; Mazzini, A.; Galland, O.; Planke, S.; Malthe-Sorenssen, A. Saucer-shaped intrusions: Occurrences, emplacement and implications. Earth Planet. Sci. Lett. 2008, 266, 195–204. [Google Scholar] [CrossRef]
- Thomson, K.; Schofield, N. Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. Geol. Soc. Lond. Spec. Publ. 2008, 302, 31–44. [Google Scholar] [CrossRef]
- Magee, C.; Muirhead, J.D.; Karvelas, A.; Holford, S.P.; Jackson, C.A.; Bastow, L.D.; Schofield, N.; Stevenson, C.T.; McLean, C.; McCarthy, W.; et al. Lateral magma flow in mafic sill complexes. Geosphere 2016, 12, 809–841. [Google Scholar] [CrossRef] [Green Version]
- Christensen, N.I. Poisson’s ratio and crustal seismology. J. Geophys. Res. 1996, 101, 3139–3156. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical relations between elastic wave speeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
- Murase, T.; McBirney, A.R. Properties of some common igneous rocks and their melts at high temperatures. Geo. Soc. Am. Bull. 1973, 84, 3563–3592. [Google Scholar] [CrossRef]
- Christensen, N.I.; Mooney, W.D. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res. 1995, 100, 9761–9788. [Google Scholar] [CrossRef]
- Sanford, A.R.; Alptekin, Ö.; Toppozada, T.R. Use of reflection phases on microearthquake seismograms to map an unusual discontinuity beneath the Rio Grande rift. Bull. Seismol. Soc. Am. 1973, 63, 2021–2034. [Google Scholar]
- Matsumoto, S.; Hasegawa, A. Distinct S wave reflector in the midcrust beneath Nikko-Shirane volcano in the northeastern Japan arc. J. Geophys. Res. Solid Earth 1996, 101, 3067–3083. [Google Scholar] [CrossRef]
- Rinehart, E.J.; Sanford, A.R.; Ward, R.M. Geographic Extent and Shape of an Extensive Magma Body at Mid-Crustal Depths in the Rio Grande Rift Near Socorro, New Mexico. Rio Grande Rift Tectonics Magmatism 1979, 14, 237–251. [Google Scholar]
- Brown, L.D.; Krumhansl, P.A.; Chapin, C.E.; Sanford, A.R.; Cook, F.A.; Kaufman, S.; Oliver, J.E.; Schilt, F.S. COCORP seismic reflection studies of the Rio Grande rift. Rio Grande Rift Tectonics Magmatism 1979, 14, 169–184. [Google Scholar]
- Long, L.T.; Sanford, A.R. Microearthquake crustal reflections. Bull. Seismol. Soc. Am. 1965, 55, 579–586. [Google Scholar]
- Brocher, T.M. Geometry and physical properties of the Socorro, New Mexico, magma bodies. J. Geophys. Res. Solid Earth 1981, 86, 9420–9432. [Google Scholar] [CrossRef]
- Hermance, J.F.; Neumann, G.A. The Rio Grande rift: New electromagnetic constraints on the Socorro magma body. Phys. Earth Planet. Inter. 1991, 66, 101–117. [Google Scholar] [CrossRef]
- Reilinger, R.; Oliver, J. Modern uplift associated with a proposed magma body in the vicinity of Socorro, New Mexico. Geology 1976, 4, 583–586. [Google Scholar] [CrossRef]
- Larsen, S.; Reilinger, R.; Brown, L.L. Evidence of ongoing crustal deformation related to magmatic activity near Socorro, New Mexico. J. Geophys. Res. 1986, 91, 6283–6292. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M. Evidence for on-going inflation of the Socorro Magma Body, New Mexico, from interferometric synthetic aperture radar imaging. Geophys. Res. Lett. 2001, 28, 3549–3552. [Google Scholar] [CrossRef] [Green Version]
- Sheetz, K.E.; Schlue, J.W. Inferences for the Socorro magma body from teleseismic receiver functions. Geophys. Res. Lett. 1992, 19, 1867–1870. [Google Scholar] [CrossRef]
- Ross, A. Deep Seismic Bright Spots. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, June 1999. [Google Scholar]
- De Voogd, B.; Serpa, L.; Brown, L.; Hauser, E.; Kaufman, S.; Oliver, J.; Troxel, B.W.; Willemin, J.; Wright, L.A. Death Valley bright spot; a midcrustal magma body in the southern Great Basin, California? Geology 1986, 14, 64–67. [Google Scholar] [CrossRef]
- Jarchow, C.M.; Thompson, G.A.; Catchings, R.D.; Mooney, W.D. Seismic evidence for active magmatic underplating beneath the basin and range province, western United States. J. Geophys. Res. 1993, 98, 22095–22108. [Google Scholar] [CrossRef]
- Brown, L.D.; Zhao, W.; Nelson, K.D.; Hauck, M.; Alsdorf, D.; Ross, A.; Cogan, M.; Clark, M.; Liu, X.; Che, J. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 1996, 274, 1688–1690. [Google Scholar] [CrossRef]
- ANCORP Working Group. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature 1999, 397, 341–344. [Google Scholar] [CrossRef]
- Gase, A.C.; Van Avendonk, N.L.; Bangs, T.W.; Luckie, D.H.; Barker, S.A.; Henrys, F.G.; Fujie, G. Seismic evidence of magmatic rifting in the offshore Taupo Volcanic Zone, New Zealand. Geophys. Res. Lett. 2019, 46, 12949–12957. [Google Scholar] [CrossRef]
- Detrick, R.S.; Buhl, P.; Vera, E.; Mutter, J.; Orcutt, J.; Madsen, J.; Brocher, T. Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 1987, 326, 35–41. [Google Scholar] [CrossRef]
- Kent, G.M.; Singh, S.C.; Harding, A.J.; Sinha, M.C.; Orcutt, J.A.; Barton, P.J.; White, R.S.; Bazin, S.; Hobbs, R.W.; Tong, C.H.; et al. Evidence from three-dimensional seismic reflectivity images for enhanced melt supply beneath mid-ocean-ridge discontinuities. Nature 2000, 406, 614–618. [Google Scholar] [CrossRef]
- Canales, J.P.; Dunn, R.A.; Arai, R.; Sohn, R.A. Seismic imaging of magma sills beneath an ultramafic hosted hydrothermal system. Geology 2017, 45, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Juhlin, C.; Pedersen, L.B. Reflection seismic investigations of the Siljan impact structure, Sweden. J. Geophys. Res. 1987, 92, 14113–14122. [Google Scholar] [CrossRef]
- Juhlin, C. Interpretation of the reflections in the Siljan Ring area based on results from the Gravberg-1 borehole. Tectonophysics 1990, 173, 345–360. [Google Scholar] [CrossRef]
- Papasikas, N.; Juhlin, C. Interpretation of reflections from the central part of the Siljan Ring impact structure based on results from the Stenberg-1 borehole. Tectonophysics 1997, 269, 237–245. [Google Scholar] [CrossRef]
- Hauser, E.C.; Gephart, J.; Latham, T.; Oliver, J.E.; Kaufman, S.; Brown, L.D.; Lucchitta, I. COCORP Arizona Transect: Strong Crustal Reflections and Offset Moho Beneath the Transition Zone. Geology 1987, 15, 1103–1106. [Google Scholar]
- Litak, R.K.; Marchant, R.H.; Brown, L.D.; Pfiffner, O.A.; Hauser, E.C. Correlating crustal reflections with geologic outcrops: Seismic modeling results from the southwestern USA and the Swiss Alps. Amer. Geophys. Union Geodyn. Ser. 1992, 22, 299–305. [Google Scholar]
- Ross, G.M.; Eaton, D.W. Winagami reflection sequence: Seismic evidence for post collisional magmatism in the Proterozoic of western Canada. Geology 1997, 25, 199–202. [Google Scholar] [CrossRef]
- Mandler, H.A.F.; Clowes, R. The HIS bright reflector: Further evidence for extensive magmatism in the Precambrian of western Canada. Tectonophysics 1998, 288, 71–81. [Google Scholar] [CrossRef]
- Welford, J.K.; Clowes, R.M. Three-dimensional seismic reflection investigation of the crustal Winagami sill complex of northwestern Alberta, Canada. Geophys. J. Int. 2006, 166, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Mandler, H.A.F.; Clowes, R. Evidence for extensive tabular intrusions in the Precambrian shield of western Canada: A 160-km-long sequence of bright reflections. Geology 1997, 25, 271–274. [Google Scholar] [CrossRef]
- Fahrig, W.F. The tectonic settings of continental mafic dyke swarms: Failed arm and early passive margin. Spec. Pap. Geol. Assoc. Can. 1987, 34, 331–348. [Google Scholar]
- Muirhead, J.D.; Airoldi, G.; Rowland, J.V.; White, J.D.L. Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province. Antarct. Geol. Soc. Am. Bull. 2012, 124, 162–180. [Google Scholar] [CrossRef]
- Oliver, J.; Dobrin, M.; Kaufman, S.; Meyer, R.; Phinney, R. Continuous seismic reflection profiling of the deep basement, Hardeman County, Texas. Geol. Soc. Am. Bull. 1976, 87, 1537–1546. [Google Scholar] [CrossRef]
- Brewer, J.A.; Brown, L.D.; Steiner, D.; Oliver, J.E.; Kaufman, S.; Denison, R.E. Proterozoic basin in the southern Midcontinent of the United States revealed by COCORP deep seismic reflection profiling. Geology 1981, 9, 569–575. [Google Scholar] [CrossRef]
- Pratt, T.; Culotta, R.; Hauser, E.; Nelson, D.; Brown, L.; Kaufman, S.; Oliver, J.; Hinze, W. Major Proterozoic basement features of the eastern midcontinent of North America revealed by recent COCORP profiling. Geology 1989, 17, 505–509. [Google Scholar] [CrossRef]
- Adams, D.C.; Miller, K.C. Evidence for late middle Proterozoic extension in the Precambrian basement beneath the Permian basin. Tectonics 1995, 14, 1263–1272. [Google Scholar] [CrossRef]
- Kim, D.; Brown, L.D. From trash to treasure: Three-dimensional basement imaging with “excess” data from oil and gas explorations. AAPG Bull. 2019, 103, 1691–1701. [Google Scholar] [CrossRef]
- Bickford, M.E.; Van Schmus, W.R.; Karlstrom, K.E.; Mueller, P.A.; Kamenov, G.D. Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age distributions, new SIMS U–Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions. Precambrian Res. 2015, 265, 286–312. [Google Scholar] [CrossRef]
- Kargi, H.; Barnes, C.G. A Grenville-age layered intrusion in the subsurface of west Texas: Petrology, petrography, and possible tectonic setting. Can. J. Earth Sci. 1995, 32, 2159–2166. [Google Scholar] [CrossRef]
- Keller, G.R.; Hills, J.M.; Baker, M.R.; Wallin, E.T. Geophysical and geochronological constraints on the extent and age of mafic intrusions in the basement of west Texas and eastern New Mexico. Geology 1989, 17, 1049–1052. [Google Scholar] [CrossRef]
- Ernst, R.E.; Buchan, K.L. Layered mafic intrusions: A model for their feeder systems and relationship with giant dyke swarms and mantle plume centres. S. Afr. J. Geol. 1997, 100, 319–334. [Google Scholar]
- Simancas, J.F.; Carbonell, R.; Lodeiro, F.G.; Estaún, A.P.; Juhlin, C.; Ayarza, P.; Kashubin, A.; Azor, A.; Poyatos, D.M.; Almodóvar, G.R.; et al. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS). Tectonics 2003, 22, 1062. [Google Scholar] [CrossRef]
- García-Lobón, J.L.; Rey-Moral, C.; Ayala, C.; Martín-Parra, L.M.; Matas, J.; Reguera, M.I. Regional structure of the southern segment of Central Iberian Zone (Spanish Variscan Belt) interpreted from potential field images and 2.5 D modelling of Alcudia gravity transect. Tectonophysics 2014, 614, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, R.; Simancas, F.; Juhlin, C.; Pous, J.; Pérez-Estaûn, A.; Gonzalez-Lodero, F.; Muñoz, G.; Heise, W.; Ayarza, P. Geophysical evidence of a mantle derived intrusion in S.W. Iberia. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Tornos, F.; Casquet, C.; Galindo, C.; Velasco, F.; Canales, A. A new style of Ni-Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc. Aguablanca. Min. Depos. 2001, 36, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Leistel, J.M.; Marcoux, E.; Thiéblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sóez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Smythe, D.K.; Dobinson, A.; McQuillin, R.; Brewer, J.A.; Matthews, D.H.; Blundell, D.J.; Kelk, B. Deep structure of the Scottish Caledonides revealed by the MOIST reflection profile. Nature 1982, 299, 338–340. [Google Scholar] [CrossRef]
- Brewer, J.A.; Matthews, D.H.; Warner, M.R.; Hall, J.; Smythe, D.K.; Whittington, R.J. BIRPS deep seismic reflection studies of the British Caledonides. Nature 1983, 305, 206–210. [Google Scholar] [CrossRef]
- Flack, C.A.; Klemperer, S.L.; McGeary, S.E.; Snyder, D.B.; Warner, M.R. Reflections from mantle fault zones around the British Isles. Geology 1990, 18, 528–532. [Google Scholar] [CrossRef]
- Warner, M.; Morgan, J.; Barton, P.; Morgan, P.; Price, C.; Jones, K. Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere. Geology 1996, 24, 39–42. [Google Scholar] [CrossRef]
- Steer, D.N.; Knapp, D.J.H.; Brown, L.D. Super-deep reflection profiling: Exploring the continental mantle lid. Tectonophysics 1998, 286, 111–121. [Google Scholar] [CrossRef]
- Cook, F.A.; van der Velden, A.J.; Hall, K.W.; Roberts, B.J. Tectonic delamination and subcrustal imbrication of the Precambrian lithosphere in northwestern Canada mapped by LITHOPROBE. Geology 1998, 26, 839–842. [Google Scholar] [CrossRef]
- van der Velden, A.J.; Cook, F.A. Relict subduction zones in Canada. J. Geophys. Res. 2005, 110, B08403. [Google Scholar] [CrossRef] [Green Version]
- Snyder, D.B.; Flack, C.A. A Caledonian age for reflectors within the mantle lithosphere north and west of Scotland. Tectonics 1990, 9, 903–922. [Google Scholar] [CrossRef]
- Reston, T.J. Mantle shear zones and the evolution of the North Sea basin. Geology 1990, 18, 272–275. [Google Scholar] [CrossRef]
- Warner, M. Basalts, water, or shear zones in the lower continental crust? Tectonophysics 1990, 173, 163–174. [Google Scholar] [CrossRef]
- Sadowiak, P.; Wever, T.; Meissner, R. Deep seismic reflectivity patterns in specific tectonic units of Western and Central Europe. Geophys. J. Int. 1991, 105, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Meissner, R.; Rabbel, W.; Kern, H. Seismic lamination and anisotropy of the Lower continental crust. Tectonophysics 2006, 416, 81–99. [Google Scholar] [CrossRef]
- Gerya, T.V.; Burg, J.-P. Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation. Phys. Earth Planet. Inter. 2007, 160, 124–142. [Google Scholar] [CrossRef]
- Wrona, T.; Magee, C.; Fossen, H.; Gawthrope, R.L.; Bell, R.E.; Jackson, C.A.-L.; Faleide, J.I. 3-D seismic images of an extensive igneous sill in the lower crust. Geology 2019, 47, 729–733. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.M.; Cartwright, J. The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. J. Struct. Geol. 2006, 28, 1520–1535. [Google Scholar] [CrossRef]
- Goulty, N.R.; Schofield, M. Implications of simple flexure theory for the formation of saucer-shaped sills. J. Struct. Geol. 2008, 30, 812–817. [Google Scholar] [CrossRef]
- Pratt, T.L.; Mondary, J.F.; Brown, L.D. Crustal structure and deep reflector properties: Wide angle shear and compressional wave studies of the midcrustal Surrency bright spot beneath southeastern Georgia. J. Geophys. Res. 1993, 98, 17723. [Google Scholar] [CrossRef]
- Ivanic, T.; Korsch, R.J.; Wyche, S.; Jones, L.E.A.; Zibra, I.; Blewett, R.S.; Jones, T.; Milligan, P.; Costelloe, R.D.; van Kranendonk, M.J.; et al. Preliminary interpretation of the 2010 Youanmi deep seismic reflection lines and magnetotelluric data for the Windimurra igneous complex. In Proceedings, Youanmi and Southern Carnarvon Seismic and Magnetotelluric Workshop; 2013; pp. 93–102. Available online: https://www.academia.edu/33355649/Youami_and_Southern_Carnarvon_seismic_and_magnetotelluric_MT_workshop_2013 (accessed on 22 October 2020).
- Barnes, A.E.; Reston, T.J. A study of two mid-crustal bright spots from southeast Georgia (USA). Geophys. J. Int. 1992, 108, 683–691. [Google Scholar] [CrossRef]
- Carbonell, R.S.; Smithson, B. The bright Moho reflection in the 1986 Nevada PASSCAL, seismic experiment. Tectonophysics 1995, 243, 255–276. [Google Scholar] [CrossRef]
- Klemperer, S.L.; Hauge, T.A.; Hauser, E.C.; Oliver, J.E.; Potter, C.J. The Moho in the northern Basin and range province, Nevada, along the COCORP 40-N seismic reflection transect. Geol. Soc. Amer. Bull. 1986, 97, 603–618. [Google Scholar] [CrossRef]
- Suetnova, E.; Carbonell, R.; Smithson, S.B. Magma in layering at the Moho of the basin and range of Nevada. Geophys. Res. Lett. 1993, 20, 2945–2948. [Google Scholar] [CrossRef]
- Hedin, P.C.; Christopher, J.; Gee, D.G. Seismic imag8ng of the Scandinavian Caledonides to define ICDP drilling sites. Tectonophysics 2012, 554–557, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Cook, F.A.; Vasudevan, K. Reprocessing and enhanced interpretation of the initial COCORP southern Appalachians traverse. Tectonophysics 2006, 420, 161–174. [Google Scholar] [CrossRef]
- Zhao, W.; Nelson, K.D.; Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 1993, 366, 557–559. [Google Scholar] [CrossRef]
- Makovsky, U.; Klemperer, S.L.; Ratschbacher, L.; Brown, L.D.; Li, M.; Zhao, W.; Meng, F. INDEPTH wide-angle reflection observations of P-to-S conversion from crustal bright spots in Tibet. Science 1996, 274, 1690–1691. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, O. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; Volume 1, p. 2024. [Google Scholar]
- Schofield, N.; Holford, S.; Millett, J.; Brown, D.; Jolley, D.; Passey, S.R.; Muirhead, D.; Grove, C.; Magee, C.; Murray, J.; et al. Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland sill complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Res. 2017, 29, 41–63. [Google Scholar] [CrossRef]
- Syndes, M.; Fjeldskaar, W.; Grunnaleite, I.; Løtveit, I.F.; Mjelde, R. The Influence of magmatic intrusions on diagenetic processes and stress accumulation. Geosciences 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Syndes, M.; Fjeldskaar, W.; Grunnaleite, I.; Løtveit, I.F.; Mjelde, R. Transient thermal effects in sedimentary basins with normal faults and magmatic sill intrusions—A Sensitivity Study. Geosciences 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Haxby, W.F.; Turcotte, D.L.; Bird, J.M. Thermal and mechanical evolution of the Michigan basin. In Developments in Geotectonics; Bott, M.H.P., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; Volume 12, pp. 57–75. [Google Scholar]
- Ernst, R.E.; Buchan, K.L. The use of mafic dyke swarms in identifying and locating mantle plumes. Geol. Soc. Am. Spec. Pap. 2001, 352, 247–275. [Google Scholar]
- Gretener, P.E. On the mechanics of the intrusion of sills. Can. J. Earth Sci. 1969, 6, 1415–1419. [Google Scholar] [CrossRef]
- Menand, T. The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet. Sci. Lett. 2008, 267, 93–99. [Google Scholar] [CrossRef]
Material | Vp (km/s) @ 200 Mpa | Density, kg/m3 | RC % against UCC | Source |
---|---|---|---|---|
granite-granodiorite | 6.246 | 2.76 | 0.3 | [30,31] |
diabase | 6.712 | 2.87 | 9.3 | [30,31] |
andesitic magma | 2.5 | 2.45 | −46.3 | [32] Mt. Hood andesite |
basaltic magma | 6.243 | 2.76 | −30.6 | [32] Columbia River Basalt |
Phyllite | 6.243 | 2.76 | 0,7 | [30,31] |
Average upper continental crust (UCC) | 6.2 | 2.76 | 0.0 | [31,32,33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, L.D.; Kim, D. Extensive Sills in the Continental Basement from Deep Seismic Reflection Profiling. Geosciences 2020, 10, 449. https://doi.org/10.3390/geosciences10110449
Brown LD, Kim D. Extensive Sills in the Continental Basement from Deep Seismic Reflection Profiling. Geosciences. 2020; 10(11):449. https://doi.org/10.3390/geosciences10110449
Chicago/Turabian StyleBrown, Larry D., and Doyeon Kim. 2020. "Extensive Sills in the Continental Basement from Deep Seismic Reflection Profiling" Geosciences 10, no. 11: 449. https://doi.org/10.3390/geosciences10110449