Elevated CO2 Emissions during Magmatic-Hydrothermal Degassing at Awu Volcano, Sangihe Arc, Indonesia
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. SO2 Emission Rate
3.2. Gas Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poorter, R.; Varekamp, J.; Poreda, R.; Van Bergen, M.; Kreulen, R. Chemical and isotopic compositions of volcanic gases from the east Sunda and Banda arcs, Indonesia. Geochim. Cosmochim. Acta 1991, 55, 3795–3807. [Google Scholar] [CrossRef]
- Andres, R.J.; Kasgnoc, A.D. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. Space Phys. 1998, 103, 25251–25261. [Google Scholar] [CrossRef]
- Giggenbach, W.; Tedesco, D.; Sulistiyo, Y.; Caprai, A.; Cioni, R.; Favara, R.; Fischer, T.; Hirabayashi, J.-I.; Korzhinsky, M.; Martini, M.; et al. Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia. J. Volcanol. Geotherm. Res. 2001, 108, 157–172. [Google Scholar] [CrossRef]
- Hilton, D.; Fischer, T.P.; Marty, B. Noble Gases and Volatile Recycling at Subduction Zones. Rev. Miner. Geochem. 2002, 47, 319–370. [Google Scholar] [CrossRef]
- Galle, B.; Oppenheimer, C.; Geyer, A.; Mcgonigle, A.J.S.; Edmonds, M.; Horrocks, L. A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 2003, 119, 241–254. [Google Scholar] [CrossRef]
- Mori, T.; Burton, M. The SO2 camera: A simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys. Res. Lett. 2006, 33, 24804. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S. Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, H. A new technique to estimate volcanic gas composition: Plume measurements with a portable multi-sensor system. J. Volcanol. Geotherm. Res. 2005, 143, 319–333. [Google Scholar] [CrossRef]
- Smekens, J.-F.; Clarke, A.B.; Burton, M.R.; Harijoko, A.; Wibowo, H.E. SO2 emissions at Semeru volcano, Indonesia: Characterization and quantification of persistent and periodic explosive activity. J. Volcanol. Geotherm. Res. 2015, 300, 121–128. [Google Scholar] [CrossRef]
- Bani, P.; Normier, A.; Bacri, C.; Allard, P.; Gunawan, H.; Hendrasto, M.; Surono; Tsanev, V. First measurement of the volcanic gas output from Anak Krakatau, Indonesia. J. Volcanol. Geotherm. Res. 2015, 302, 237–241. [Google Scholar] [CrossRef]
- Gunawan, H.; Caudron, C.; Pallister, J.; Primulyana, S.; Christenson, B.; McCausland, W.; Van Hinsberg, V.; Lewicki, J.; Rouwet, D.; Kelly, P.; et al. New insights into Kawah Ijen’s volcanic system from the wet volcano workshop experiment. Geol. Soc. London Speéc. Publ. 2016, 437, 35–56. [Google Scholar] [CrossRef]
- Bani, P.; Alfianti, H.; Aiuppa, A.; Oppenheimer, C.; Sitinjak, P.; Tsanev, V.; Saing, U.B. First study of the heat and gas budget for Sirung volcano, Indonesia. Bull. Volcanol. 2017, 79. [Google Scholar] [CrossRef]
- Bani, P.; Tamburello, G.; Rose-Koga, E.F.; Liuzzo, M.; Aiuppa, A.; Cluzel, N.; Amat, I.; Syahbana, D.K.; Gunawan, H.; Bitetto, M. Dukono, the predominant source of volcanic degassing in Indonesia, sustained by a depleted Indian-MORB. Bull. Volcanol. 2018, 80, 5. [Google Scholar] [CrossRef]
- Primulyana, S.; Kern, C.; LerneriD, A.; Saing, U.B.; Kunrat, S.L.; Alfianti, H.; Marlia, M.; Marlia, M. Gas and ash emissions associated with the 2010–present activity of Sinabung Volcano, Indonesia. J. Volcanol. Geotherm. Res. 2019, 382, 184–196. [Google Scholar] [CrossRef]
- Saing, U.B.; Bani, P.; Haerani, N.; Aiuppa, A.; Primulyana, S.; Alfianti, H.; Syahbana, D.K. Kristianto First characterization of Gamkonora gas emission, North Maluku, East Indonesia. Bull. Volcanol. 2020, 82, 1–11. [Google Scholar] [CrossRef]
- Le Guern, F. Les débits de CO2 et de SO2 volcaniques dans l’atmosphère. Bull. Volcanol. 1982, 45, 197–202. [Google Scholar] [CrossRef]
- Spiro, P.A.; Jacob, D.J.; Logan, J.A. Global inventory of sulfur emissions with 1°×1° resolution. J. Geophys. Res. Space Phys. 1992, 97, 6023–6036. [Google Scholar] [CrossRef]
- Halmer, M.M.; Schmincke, H.-U.; Graf, H.-F. The annual volcanic gas input into the atmosphere, in particular into the stratosphere: A global data set for the past 100 years. J. Volcanol. Geotherm. Res. 2002, 115, 511–528. [Google Scholar] [CrossRef]
- Carn, S.A.; Fioletov, V.E.; McLinden, C.A.; Li, C.; Krotkov, N.A. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 2017, 7, srep44095. [Google Scholar] [CrossRef] [Green Version]
- Aiuppa, A.; Fischer, T.P.; Plank, T.; Bani, P. CO2 flux emissions from the Earth’s most actively degassing volcanoes, 2005–2015. Sci. Rep. 2019, 9, 5442. [Google Scholar] [CrossRef]
- Fischer, T.P.; Arellano, S.; Carn, S.; Aiuppa, A.; Galle, B.; Allard, P.; Lopez, T.; Shinohara, H.; Kelly, P.; Werner, C.; et al. The emissions of CO2 and other volatiles from the world’s subaerial volcanoes. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Morrice, M.; Jezek, P.; Gill, J.; Whitford, D.; Monoarfa, M. An introduction to the Sangihe arc: Volcanism accompanying arc—Arc collision in the Molucca Sea, Indonesia. J. Volcanol. Geotherm. Res. 1983, 19, 135–165. [Google Scholar] [CrossRef]
- Hanyu, T.; Gill, J.; Tatsumi, Y.; Kimura, J.-I.; Sato, K.; Chang, Q.; Senda, R.; Miyazaki, T.; Hirahara, Y.; Takahashi, T.; et al. Across- and along-arc geochemical variations of lava chemistry in the Sangihe arc: Various fluid and melt slab fluxes in response to slab temperature. Geochem. Geophys. Geosystems 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Bani, P.; Kunrat, S.; Syahbana, D.K. Kristianto Insights into the recurrent energetic eruptions that drive Awu, among the deadliest volcanoes on Earth. Nat. Hazards Earth Syst. Sci. 2020, 20, 2119–2132. [Google Scholar] [CrossRef]
- Gill, J. Compilation of Whole Rock Geochemistry and Petrography of Samples from the Sangihe Arc, Northern Sulawesi, Indonesia, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). Available online: https://doi.org/10.26022/IEDA/111503 (accessed on 24 September 2020).
- Hall, R.; Wilson, M. Neogene sutures in eastern Indonesia. J. Asian Earth Sci. 2000, 18, 781–808. [Google Scholar] [CrossRef]
- Cardwell, R.K.; Isacks, B.L.; Karig, D.E. The spatial distribution of earthquakes, focal mechanism solutions and subducted lithosphere in the Philippine and northeast Indonesian islands. Am. Geophys. Union Geophys. Monogr. 1980, 23, 1–36. [Google Scholar]
- Newhall, C.G.; Self, S. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. Space Phys. 1982, 87, 1231–1238. [Google Scholar] [CrossRef]
- Global Volcanism Program. Awu (267040), in Volcanoes of the World, v.4.9.1 (17 Sep 2020). Smithsonian Institution. Available online: https://volcano.si.edu/volcano.cfm?vn=267040 (accessed on 17 November 2020).
- Badan-Geologi. Data Dasar Gunung Api, Wilaya Timur, 2nd ed.; Kementerian Energi dan Sumber Daya Mineral: Jakarta, Indonesia, 2011; pp. 1–450. [Google Scholar]
- Robock, A. A latitudinally dependent volcanic dust veil index, and its effect on climate simulations. J. Volcanol. Geotherm. Res. 1981, 11, 67–80. [Google Scholar] [CrossRef]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Handler, P. Possible association of stratospheric aerosols and El Nino type events. Geophys. Res. Lett. 1984, 11, 1121–1124. [Google Scholar] [CrossRef]
- Zielinski, G.A.; Fiacco, R.J.; Whitlow, S.; Twickler, M.S.; Germani, M.S.; Endo, K.; Yasui, M. Climatic impact of the AD 1783 eruption of Asama (Japan) was minimal: Evidence from the GISP2 ice core. Geophys. Res. Lett. 1994, 21, 2365–2368. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Briffa, K.R.; Schweingruber, F.H. Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophys. Res. Lett. 1995, 22, 1333–1336. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A.S.; Van Ommen, T.; Curran, M.A.J.; Morgan, V.; Souney, J.M.; Mayewski, P.A. High-precision dating of volcanic events (A.D. 1301-1995) using ice cores from Law Dome, Antarctica. J. Geophys. Res. Space Phys. 2001, 106, 28089–28095. [Google Scholar] [CrossRef] [Green Version]
- Donarummo, J.; Ram, M.; Stolz, M.R. Sun/dust correlations and volcanic interference. Geophys. Res. Lett. 2002, 29, 1–75. [Google Scholar] [CrossRef]
- Guevara-Murua, A.; Hendy, E.J.; Rust, A.C.; Cashman, K.V. Consistent decrease in North Atlantic Tropical Cyclone frequency following major volcanic eruptions in the last three centuries. Geophys. Res. Lett. 2015, 42, 9425–9432. [Google Scholar] [CrossRef] [Green Version]
- Latter, J.H. Tsunamis of volcanic origin: Summary of causes, with particular reference to Krakatoa, 1883. Bull. Volcanol. 1981, 44, 467–490. [Google Scholar] [CrossRef]
- Paris, R.; Switzer, A.D.; Belousova, M.; Belousov, A.; Ontowirjo, B.; Whelley, P.L.; Ulvrova, M. Volcanic tsunami: A review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Nat. Hazards 2013, 70, 447–470. [Google Scholar] [CrossRef] [Green Version]
- Van Padang, N. History of volcanology in the former Netherlands East Indies. Scripta Geol. 1983, 71, 1–76. [Google Scholar]
- Tanguy, J.-C.; Ribière, C.; Scarth, A.; Tjetjep, W.S. Victims from volcanic eruptions: A revised database. Bull. Volcanol. 1998, 60, 137–144. [Google Scholar] [CrossRef]
- Witham, C.S. Volcanic disasters and incidents: A new database. J. Volcanol. Geotherm. Res. 2005, 148, 191–233. [Google Scholar] [CrossRef]
- Lagmay, A.M.F.; Rodolfo, K.S.; Siringan, F.P.; Uy, H.; Remotigue, C.; Zamora, P.; Lapus, M.; Rodolfo, R.; Ong, J. Geology and hazard implications of the Maraunot notch in the Pinatubo Caldera, Philippines. Bull. Volcanol. 2007, 69, 797–809. [Google Scholar] [CrossRef]
- Aiuppa, A.; Bani, P.; Moussallam, Y.; Di Napoli, R.; Allard, P.; Gunawan, H.; Hendrasto, M.; Tamburello, G. First determination of magma-derived gas emissions from Bromo volcano, eastern Java (Indonesia). J. Volcanol. Geotherm. Res. 2015, 304, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Buck, A.L. New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 1981, 20, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Tamburello, G. Ratiocalc: Software for processing data from multicomponent volcanic gas analyzers. Comput. Geosci. 2015, 82, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy; Springer Science and Business Media LLC: New York, NY, USA, 2008; p. 597. [Google Scholar]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Harmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with SCIAMACHY preflight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region. J. Photochem. Photobiol. Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Voigt, S.; Orphal, J.; Bogumil, K.; Burrows, J.P. The temperature dependence (203–293 K) of the absorption cross-sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. 2001, 143, 1–9. [Google Scholar] [CrossRef]
- Bani, P.; Hendrasto, M.; Gunawan, H.; Primulyana, S.; Surono, M. Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes. Nat. Hazards Earth Syst. Sci. 2013, 13, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Fischer, T.P.; Aiuppa, A.; Edmonds, M.; Cardellini, C.; Carn, S.; Chiodini, G.; Cottrell, E.; Burton, M.; Shinohara, H.; et al. Carbon Dioxide Emissions from Subaerial Volcanic Regions. In Deep Carbon; Cambridge University Press (CUP): Cambridge, UK, 2019; pp. 188–236. [Google Scholar]
- Holland, H.D. Some applications of thermochemical data to problems of ore deposits II. Mineral assemblages and the composition of ore-forming fluids. Econ. Geol. 1965, 60, 1101–1166. [Google Scholar] [CrossRef]
- Symonds, R.; Gerlach, T.; Reed, M. Magmatic gas scrubbing: Implications for volcano monitoring. J. Volcanol. Geotherm. Res. 2001, 108, 303–341. [Google Scholar] [CrossRef]
- Aiuppa, A.; Fischer, T.P.; Plank, T.; Robidoux, P.; Di Napoli, R. Along arc, inter-arc and arc-to-arc variations in volcanic gas SO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci. Rev. 2017, 168, 24–47. [Google Scholar] [CrossRef]
- Aiuppa, A.; Shinohara, H.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R. Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Clor, L.E.; Fischer, T.; Hilton, D.R.; Sharp, Z.D.; Hartono, U. Volatile and N isotope chemistry of the Molucca Sea collision zone: Tracing source components along the Sangihe Arc, Indonesia. Geochem. Geophys. Geosystems 2005, 6. [Google Scholar] [CrossRef]
- Stix, J.; De Moor, J.M. Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth Plan. Space 2018, 70, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christenson, B.; Németh, K.; Rouwet, D.; Tassi, F.; Vandemeulebrouck, J.; Varekamp, J.C. Volcanic Lakes. In Advances in Volcanology; Springer Science and Business Media LLC: New York, NY, USA, 2015; pp. 1–20. [Google Scholar]
- Primulyana, S.; Bani, P.; Harris, A. The effusive-explosive transitions at Rokatenda 2012–2013: Unloading by extrusion of degassed magma with lateral gas flow. Bull. Volcanol. 2017, 79, 22. [Google Scholar] [CrossRef]
- Matthews, S.J.; Gardeweg, M.C.; Sparks, R.S.J. The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: Cycles of dome growth, dome subsidence, degassing and explosive eruptions. Bull. Volcanol. 1997, 59, 72–82. [Google Scholar] [CrossRef]
- Sparks, R.S.J. Dynamics of magma degassing. Geol. Soc. London Speéc. Publ. 2003, 213, 5–22. [Google Scholar] [CrossRef]
- Plank, T.; Manning, C.E. Subducting carbon. Nat. Cell Biol. 2019, 574, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.P. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem. J. 2008, 42, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, L.; Hilton, D.; Fischer, T.; Hartono, U. Tracing magma sources in an arc-arc collision zone: Helium and carbon isotope and relative abundance systematics of the Sangihe Arc, Indonesia. Geochem. Geophys. Geosyst. 2004, 5. [Google Scholar] [CrossRef]
- Morris, J.D.; Jezek, P.A.; Hart, S.R.; Hill, J.B.; Hayes, D.E. The Halmahera Island Arc, Molucca Sea collision zone, Indonesia: A geochemical survey. In Sea Ice; American Geophysical Union (AGU): Washington, DC, USA, 1983; Volume 27, pp. 373–387. [Google Scholar]
- McCaffrey, R. Seismic wave propagation beneath the Molucca Sea arc-arc collision zone, Indonesia. Tectonophysics 1983, 96, 45–57. [Google Scholar] [CrossRef]
- Pubellier, M.; Quebral, R.; Rangin, C.; Deffontaines, B.; Muller, C.; Butterlin, J.; Manzano, J. The Mindanao collision zone: A soft collision event within a continuous Neogene strike-slip setting. J. Asian Earth Sci. 1991, 6, 239–248. [Google Scholar] [CrossRef]
- Peacock, S.M.; Rushmer, T.; Thompson, A.B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 1994, 121, 227–244. [Google Scholar] [CrossRef]
- Deegan, F.M.; Troll, V.R.; Freda, C.; Misiti, V.; Chadwick, J.P.; McLeod, C.L.; Davidson, J.P. Magma–Carbonate Interaction Processes and Associated CO2 Release at Merapi Volcano, Indonesia: Insights from Experimental Petrology. J. Pet. 2010, 51, 1027–1051. [Google Scholar] [CrossRef] [Green Version]
- Di Rocco, T.; Freda, C.; Gaeta, M.; Mollo, S.; Dallai, L. Magma chamber emplacement in carbonate substrate: Petrologenesis of skarn and cumulate rocks and implication fpr CO2 degassing in volcanic areas. J. Petrol. 2012, 53, 2307–2332. [Google Scholar] [CrossRef] [Green Version]
- Whitley, S.; Gertisser, R.; Halama, R.; Preece, K.; Troll, V.R.; Deegan, F.M. Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Kodera, K.; Hori, M.E.; Yukimoto, S.; Sigmond, M. Solar modulation of the Northern Hemisphere winter trends and its implications with increasing CO2. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Haywood, J.M.; Jones, A.; Bellouin, N.; Stephenson, D.B. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Chang. 2013, 3, 660–665. [Google Scholar] [CrossRef]
Year | Eruptive Events |
---|---|
1640 | Magmatic eruption. |
1641 | Phreatic eruption, lahar event. |
1677 | Phreatic eruption. |
1711 | Violent eruption (VEI 3) triggered a pyroclastic flow and hot lahar claiming about 3000 victims. |
1812 | Large phreatomagmatic eruption (VEI 4). Lahar and pyroclastic events. Villages destroyed, 963 victims. |
1856 | Large phreatomagmatic eruption (VEI 3). Pyroclastic and lahar flows killed 2806 inhabitants. |
1875 | Phreatic eruption (VEI 2) was reported with no further detail. |
1883 | Possible phreatic eruption (VEI 2) was reported with no further detail. |
1885 | Phreatic eruption (VEI 2) was reported with no further detail. |
1892 | Large phreatomagmatic eruption (VEI 3) with lahar events claiming 1532 victims. |
1893 | Phreatic eruption (VEI 2). |
1913 | Phreatic eruption (VEI 2). |
1921 | Phreatic eruption—crater lake activity. |
1922 | Phreatic eruption—crater lake activity. |
1931 | Lava dome developed through a crater lake. |
1966 | Large VEI 4 eruption. Violent blast, heavy ashfall, pyroclastic flow, lahars events. 39 victims and 11,000 inhabitants evacuated. |
1992 | Phreatic eruption (VEI 1). |
2004 | Magmatic eruption (VEI 2), 18,648 inhabitants evacuated. |
Start Time (LT) | Scan Step (m) | Nber of Spectra | Mean CA (mg/m2) | SO2 Flux | ||
---|---|---|---|---|---|---|
kg/s | t/d | |||||
Scan 1 | 08:38 | 15 | 33 | 62 | 0.04 | 4 |
Scan 2 | 08:44 | 47 | 24 | 74 | 0.11 | 9 ± 4 |
Scan 3 | 08:52 | 47 | 24 | 189 | 0.27 | 23 ± 10 |
Scan 4 | 09:00 | 47 | 24 | 80 | 0.11 | 10 ± 4 |
Scan 5 | 09:08 | 47 | 24 | 89 | 0.13 | 11 ± 5 |
Scan 6 | 09:12 | 47 | 24 | 48 | 0.05 | 6 |
Scan 7 | 09:16 | 47 | 24 | 96 | 0.14 | 12 ± 5 |
Scan 8 | 09:19 | 47 | 24 | 118 | 0.17 | 15 ± 7 |
Scan 9 | 09:25 | 47 | 24 | 102 | 0.15 | 13 ± 6 |
Scan 10 | 09:33 | 47 | 24 | 104 | 0.15 | 13 ± 5 |
Scan 11 | 09:41 | 47 | 24 | 24 | 0.03 | 3 |
Scan 12 | 09:53 | 47 | 9 | 170 | 0.03 | 3 |
Scan 13 | 09:59 | 15 | 23 | 23 | 0.01 | 1 |
Scan 14 | 10:02 | 15 | 23 | 30 | 0.01 | 1 |
Scan 15 | 10:05 | 15 | 23 | 63 | 0.03 | 2 |
Scan 16 | 10:07 | 15 | 23 | 48 | 0.02 | 2 |
Scan 17 | 10:10 | 15 | 23 | 46 | 0.02 | 2 |
Scan 18 | 10:14 | 15 | 23 | 54 | 0.02 | 2 |
Scan 19 | 10:18 | 15 | 23 | 88 | 0.05 | 4 |
Scan 20 | 10:23 | 15 | 23 | 58 | 0.03 | 3 |
Scan 21 | 10:24 | 15 | 23 | 52 | 0.03 | 3 |
Scan 22 | 10:27 | 15 | 23 | 64 | 0.04 | 3 |
Scan 23 | 10:30 | 15 | 23 | 66 | 0.04 | 3 |
Scan 24 | 10:33 | 15 | 23 | 53 | 0.03 | 2 |
Mean SO2 emission rate: 13 ± 6 t/day |
Sampling Date | 28 July 2015 | 3 August 2001 * | ||||||
---|---|---|---|---|---|---|---|---|
Sample. ID | MG_Pt1 | MG_Pt2 | MG_Pt3 | IND-15 | IND-16 | IND-17 | ||
Vent type | Fumarole | Fumarole | Fumarole | Fumarole | Fumarole | Spring | ||
H2O (ppm v) | 10,000–20,000 mean val. 16091 | 5000–18,000 mean val. 13395 | 20,000–30,000 mean val. 27080 | |||||
CO2 (ppm v) | 400–2100 mean val. 510 | 450–2050 mean val. 549 | 400–2050 mean val. 867 | |||||
SO2 (ppm v) | <0.1 mean val. 0.017 | <0.1–1.5 mean val. 0.027 | 1–6 mean val. 2.43 | |||||
H2S (ppm v) | 0.5–22 mean val. 1.03 | 2–57 mean val. 10.34 | 27–57 (saturation) mean val. 51.21 | |||||
H2 (ppm v) | 0.1–1.2 mean val. 0.27 | 0.1–1.5 mean val. 0.31 | 0.1–2.2 mean val. 0.84 | |||||
H2S/SO2 | 230 ± 110 | 163 ± 62 | 49 ± 20 | H2S/SO2 | 0.81 | 0.93 | 0.81 | |
CO2/SO2 | 1824 ± 850 | 600 ± 230 | 287 ± 164 | CO2/SO2 | 115 | 113 | 2175 | |
H2/SO2 | 6 ± 4 | 0.8 ± 0.1 | 0.3 ± 0.1 | H2/SO2 | 0.003 | 0.002 | 0.91 | |
H2O/SO2 | - | - | 1596 ± 670 | H2O/SO2 | 62349 | 62356 | 2175 | |
CO2/ST | 7.9 ± 3.7 | 3.6 ± 1.4 | 5.7 ± 3.2 | CO2/ST | 63 | 58 | 1199 | |
Composition (mol %) | Flux (t/d) * | Composition (mol %) | ||||||
H2O | 82.5 ± 34.1 | 5800 ± 2400 | H2O | 99.80 | 99.81 | 95.55 | ||
CO2 | 14.8 ± 6.8 | 2600 ± 1200 | CO2 | 0.18 | 0.18 | 4.44 | ||
SO2 | 0.05 ± 0.02 | 13 ± 6 | SO2 | 0.002 | 0.002 | 0.002 | ||
H2S | 2.5 ± 1.1 | 340 ± 150 | H2S | 0.001 | 0.002 | 0.002 | ||
H2 | 0.02 ± 0.01 | 0.1 ± 0.04 | H2 | 0.000 | 0.000 | 0.002 | ||
HCl | 0.018 | 0.009 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani, P.; Le Glas, E.; Kristianto; Aiuppa, A.; Bitetto, M.; Syahbana, D.K. Elevated CO2 Emissions during Magmatic-Hydrothermal Degassing at Awu Volcano, Sangihe Arc, Indonesia. Geosciences 2020, 10, 470. https://doi.org/10.3390/geosciences10110470
Bani P, Le Glas E, Kristianto, Aiuppa A, Bitetto M, Syahbana DK. Elevated CO2 Emissions during Magmatic-Hydrothermal Degassing at Awu Volcano, Sangihe Arc, Indonesia. Geosciences. 2020; 10(11):470. https://doi.org/10.3390/geosciences10110470
Chicago/Turabian StyleBani, Philipson, Etienne Le Glas, Kristianto, Alessandro Aiuppa, Marcello Bitetto, and Devy Kamil Syahbana. 2020. "Elevated CO2 Emissions during Magmatic-Hydrothermal Degassing at Awu Volcano, Sangihe Arc, Indonesia" Geosciences 10, no. 11: 470. https://doi.org/10.3390/geosciences10110470