Water Conservation Practices and Nitrogen Fertility for the Reduction of Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Irrigation Practices
2.3. Fertilizers Evaluated
2.4. Experimental Design
2.5. Greenhouse Gas Analysis
2.6. Turfgrass Color and Quality
2.7. Environmental Conditions
2.8. General Plot Maintenance
2.9. Statistical Analysis
3. Results and Discussion
3.1. Canopy Temperature, Soil Temperature, and Soil Moisture
3.2. GHG Emissions
3.2.1. CO2 Emissions
3.2.2. N2O Emissions
3.2.3. CH4 Emissions
3.3. Turfgrass Color and Turfgrass Quality
3.4. Global Warming Potential Contributions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, R.C.; Straw, C.M.; Soldat, D.J.; Bekken, M.A.H.; Patton, A.J.; Lonsdorf, E.V.; Horgan, B.P. Strategies for Reducing Inputs and Emissions in Turfgrass Systems. Crop Forage Turfgrass Manag. 2023, 9, e20218. [Google Scholar] [CrossRef]
- Braun, R.C.; Bremer, D.J. Nitrous Oxide Emissions from Turfgrass Receiving Different Irrigation Amounts and Nitrogen Fertilizer Forms. Crop Sci. 2018, 58, 1762–1775. [Google Scholar] [CrossRef]
- Christians, N.E.; Patton, A.J.; Law, Q.D. Fundamentals of Turfgrass Management; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gelernter, W.D.; Stowell, L.J.; Johnson, M.E.; Brown, C.D.; Beditz, J.F. Documenting Trends in Water Use and Conservation Practices on U.S. Golf Courses. Crop Forage Turfgrass Manag. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Braun, R.C.; Bremer, D.J.; Ebdon, J.S.; Fry, J.D.; Patton, A.J. Review of Cool-Season Turfgrass Water Use and Requirements: I. Evapotranspiration and Responses to Deficit Irrigation. Crop Sci. 2022, 62, 1661–1684. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Qian, Y.; Follett, R.F.; Kimble, J.M. Soil Organic Carbon Input from Urban Turfgrasses. Soil Sci. Soc. Am. J. 2010, 74, 366–371. [Google Scholar] [CrossRef]
- Beesley, L. Carbon Storage and Fluxes in Existing and Newly Created Urban Soils. J. Environ. Manag. 2012, 104, 158–165. [Google Scholar] [CrossRef]
- Prokhorov, I.; Karev, S. Particulates of Artificial Soil-Ground Production for Landscape and Shade Gardening. Agrochem. Vestn. 2012, 3, 21–25. [Google Scholar]
- Vasenev, V.; Epikhina, A.; Fatiev, M.; Prokhorov, I. Experimental Modelling of Urban Soils’ Constructions with Minimal Emissions of Greenhouse Gases. Agroecology 2014, 1, 43–49. [Google Scholar]
- Kunnemann, T.; Cannavo, P.; Guerin, V.; Guenon, R. Soil CO2, CH4 and N2O Fluxes in Open Lawns, Treed Lawns and Urban Woodlands in Angers, France. Urban Ecosyst. 2023, 26, 1659–1672. [Google Scholar] [CrossRef]
- Braun, R.C.; Bremer, D.J. Nitrous Oxide Emissions in Turfgrass Systems: A Review. Agron. J. 2018, 110, 2222–2232. [Google Scholar] [CrossRef]
- Braun, R.C.; Bremer, D.J. Carbon Sequestration in Zoysiagrass Turf under Different Irrigation and Fertilization Management Regimes. Agrosyst. Geosci. Environ. 2019, 2, 180060. [Google Scholar] [CrossRef]
- Reeburg, W.; Whalen, S.; Alpern, M. The Role of Methyllotrophic in the Global Methan Budget. In Microbial Growth on C1 Compounds; Murrell, J.C., Kelley, D.P., Eds.; Intercept Press, Ltd.: Andover, UK, 1993. [Google Scholar]
- Knowles, R. Methane: Processes of Production and Consumption. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1993; pp. 145–156. ISBN 978-0-89118-321-1. [Google Scholar]
- Bremner, J.M. Sources of Nitrous Oxide in Soils. Nutr. Cycl. Agroecosyst. 1997, 49, 7–16. [Google Scholar] [CrossRef]
- Bremer, D.J. Nitrous Oxide Fluxes in Turfgrass: Effects of Nitrogen Fertilization Rates and Types. J. Environ. Qual. 2006, 35, 1678–1685. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.E.; Walker, K.S. The Effects of Fertilizer Sources and Site Location on Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens and Kentucky Bluegrass Roughs. Grasses 2023, 2, 78–97. [Google Scholar] [CrossRef]
- Gillette, K.L.; Qian, Y.; Follett, R.F.; Del Grosso, S. Nitrous Oxide Emissions from a Golf Course Fairway and Rough after Application of Different Nitrogen Fertilizers. J. Environ. Qual. 2016, 45, 1788–1795. [Google Scholar] [CrossRef]
- USDA ARS GRACEnet Protocols. Available online: https://www.ars.usda.gov/anrds/gracenet/gracenet-protocols/ (accessed on 2 April 2024).
- Mosier, A.R. Exchange of Gaseous Nitrogen Compounds between Agricultural Systems and the Atmosphere. Plant Soil 2001, 228, 17–27. [Google Scholar] [CrossRef]
- Morris, K.N.; Shearman, R.C. NTEP Turfgrass Evaluation Guidelines. In Proceedings of the NTEP Turfgrass Evaluation Workshop, Beltsville, MD, USA, 17 October 1998; pp. 1–5. [Google Scholar]
- Bell, G.E.; Martin, D.L.; Wiese, S.G.; Dobson, D.D.; Smith, M.W.; Stone, M.L.; Solie, J.B. Vehicle-Mounted Optical Sensing: An Objective Means for Evaluating Turf Quality. Crop Sci. 2002, 42, 197–201. [Google Scholar] [CrossRef]
- Bremer, D.J.; Lee, H.; Su, K.; Keeley, S.J. Relationships between Normalized Difference Vegetation Index and Visual Quality in Cool-Season Turfgrass: II. Factors Affecting NDVI and Its Component Reflectances. Crop Sci. 2011, 51, 2219–2227. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrow, R.N. Assessment of Narrow-Band Canopy Spectral Reflectance and Turfgrass Performance under Drought Stress. HortScience 2005, 40, 242–245. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrow, R.N. Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Sci. 2007, 47, 1611–1618. [Google Scholar] [CrossRef]
- Lee, H.; Bremer, D.J.; Su, K.; Keeley, S.J. Relationships between Normalized Difference Vegetation Index and Visual Quality in Turfgrasses: Effects of Mowing Height. Crop Sci. 2011, 51, 323–332. [Google Scholar] [CrossRef]
- Trenholm, L.E.; Carrow, R.N.; Duncan, R.R. Relationship of Multispectral Radiometry Data to Qualitative Data in Turfgrass Research. Crop Sci. 1999, 39, 763–769. [Google Scholar] [CrossRef]
- Leinauer, B.; VanLeeuwen, D.M.; Serena, M.; Schiavon, M.; Sevostianova, E. Digital Image Analysis and Spectral Reflectance to Determine Turfgrass Quality. Agron. J. 2014, 106, 1787–1794. [Google Scholar] [CrossRef]
- Tolomio, M.; Casa, R. Dynamic Crop Models and Remote Sensing Irrigation Decision Support Systems: A Review of Water Stress Concepts for Improved Estimation of Water Requirements. Remote Sens. 2020, 12, 3945. [Google Scholar] [CrossRef]
- Bijoor, N.S.; Czimczik, C.I.; Pataki, D.E.; Billings, S.A. Effects of Temperature and Fertilization on Nitrogen Cycling and Community Composition of an Urban Lawn. Glob. Chang. Biol. 2008, 14, 2119–2131. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological Basis of NO and N2O Production and Consumption in Soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; John Wiley & Sons: Chichester, UK, 1989; Volume 47, pp. 7–21. [Google Scholar]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating Root and Soil Microbial Contributions to Soil Respiration: A Review of Methods and Observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse Gas Emissions from Soils—A Review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Rastogi, M.; Singh, S.; Pathak, H. Emission of Carbon Dioxide from Soil. Curr. Sci. 2002, 82, 510–517. [Google Scholar]
- Neilson, J.W.; Pepper, I.L. Soil Respiration as an Index of Soil Aeration. Soil Sci. Soc. Am. J. 1990, 54, 428–432. [Google Scholar] [CrossRef]
- Birch, H.F.; Friend, M.T. Humus Decomposition in East African Soils. Nature 1956, 178, 500–501. [Google Scholar] [CrossRef]
- Sapkota, A.; Haghverdi, A.; Avila, C.C.E.; Ying, S.C. Irrigation and Greenhouse Gas Emissions: A Review of Field-Based Studies. Soil Syst. 2020, 4, 20. [Google Scholar] [CrossRef]
- Dutt, N.; Tanwar, T. Nitrous Oxide Emissions from Turfgrass Lawns as a Result of Fertilizer Application: A Meta-Analysis of Available Literature. Curr. Sci. 2020, 118, 1219–1226. [Google Scholar] [CrossRef]
- Mosier, A.R.; Duxbury, J.M.; Freney, J.R.; Heinemeyer, O.; Minami, K. Assessing and Mitigating N2O Emissions from Agricultural Soils. Clim. Chang. 1998, 40, 7–38. [Google Scholar] [CrossRef]
- Ryden, J.C. N2O Exchange between a Grassland Soil and the Atmosphere. Nature 1981, 292, 235–237. [Google Scholar] [CrossRef]
- Powlen, J.S.; Bigelow, C.A. Cool-Season Golf Course Fairway Species Irrigation Requirements under Limited Irrigation. Crop Forage Turfgrass Manag. 2023, 9, e20205. [Google Scholar] [CrossRef]
- Beard, J.B. Turfgrass: Science and Culture; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- DiPaola, J.M. Syringing Effects on the Canopy Temperatures of Bentgrass Greens. Agron. J. 1984, 76, 951–953. [Google Scholar] [CrossRef]
- Walker, K.S.; Bigelow, C.A.; Smith, D.R.; Van Scoyoc, G.E.; Reicher, Z.J. Aboveground Responses of Cool-Season Lawn Species to Nitrogen Rates and Application Timings. Crop Sci. 2007, 47, 1225–1236. [Google Scholar] [CrossRef]
Canopy Temperature | Soil Temperature | Soil Moisture | |||||
---|---|---|---|---|---|---|---|
Year | Treatment | Mean | Median | Mean | Median | Mean | Median |
2016 | °C | °C | % | ||||
BAU | 23.2 a | 23.2 | 22.0 a | 24.4 | 21.7 b | 20.8 | |
SRF | 22.9 b | 22.9 | 21.6 a | 23.4 | 24.1 a | 24.5 | |
SYR | 21.9 c | 21.9 | 21.3 a | 23.9 | 20.4 c | 20.3 | |
Source of Variation | |||||||
Irrigation | *** | NS | *** | ||||
Fertilizer | NS | NS | NS | ||||
Irrigation × Fertilizer | NS | NS | NS | ||||
2017 | |||||||
BAU | 21.3 a | 21.2 | 21.0 b | 21.5 | 19.5 b | 18.9 | |
SRF | 20.6 b | 20.2 | 21.7 a | 21.4 | 24.4 a | 24.8 | |
SYR | 20.0 b | 20.0 | 20.0 c | 21.2 | 16.0 c | 14.9 | |
Source of Variation | |||||||
Irrigation | *** | *** | *** | ||||
Fertilizer | NS | NS | NS | ||||
Irrigation × Fertilizer | NS | NS | NS |
CO2 | N2O | CH4 | |||||
---|---|---|---|---|---|---|---|
Year | Treatment | Mean | Median | Mean | Median | Mean | Median |
2016 | g CO2-C m−2 h−1 | µg N2O-N m−2 h−1 | µg CH4-C m−2 h−1 | ||||
Milorganite | 0.43 a | 0.43 | 46.44 a | 27.55 | −78.13 a | −3.42 | |
Urea | 0.44 a | 0.44 | 40.75 a | 23.87 | −72.20 a | −1.53 | |
Control | 0.40 a | 0.42 | 12.31 b | 7.12 | −98.78 a | −3.97 | |
147 kg N | 0.43 a | 0.44 | 30.91 b | 19.33 | −87.09 a | −6.25 | |
294 kg N | 0.43 a | 0.43 | 56.66 a | 36.25 | −63.22 a | −1.30 | |
BAU | 0.35 c | 0.36 | 33.99 a | 18.70 | −158.84 b | −12.05 | |
SRF | 0.51 a | 0.51 | 51.02 a | 27.54 | −185.61 b | −4.02 | |
SYR | 0.43 b | 0.45 | 26.38 b | 14.62 | 112.73 a | 4.59 | |
Source of Variation | |||||||
Irrigation (I) | *** | *** | *** | ||||
Rate (R) | NS | *** | NS | ||||
Fertilizer (F) | NS | *** | NS | ||||
I × R | NS | NS | NS | ||||
I × F | NS | NS | NS | ||||
R × F | NS | NS | NS | ||||
I × R × F | NS | NS | NS | ||||
2017 | |||||||
Milorganite | 0.40 a | 0.41 | 27.11 a | 16.37 | −97.33 a | −26.50 | |
Urea | 0.39 a | 0.38 | 33.97 a | 18.31 | 30.14 a | −24.27 | |
Control | 0.33 b | 0.34 | 7.97 b | 5.08 | −109.59 a | −39.96 | |
147 kg N | 0.38 a | 0.38 | 15.90 b | 11.92 | 49.87 a | −15.20 | |
294 kg N | 0.41 a | 0.41 | 45.50 a | 29.93 | −116.03 a | −35.08 | |
BAU | 0.44 a | 0.45 | 35.45 a | 21.19 | −101.3 a | −43.40 | |
SRF | 0.34 c | 0.33 | 26.88 a | 14.85 | 15.55 a | −6.21 | |
SYR | 0.37 b | 0.39 | 15.74 b | 9.17 | −62.07 a | −34.46 | |
Source of Variation | |||||||
Irrigation (I) | *** | *** | NS | ||||
Rate (R) | * | *** | NS | ||||
Fertilizer (F) | ** | *** | NS | ||||
I × R | NS | NS | NS | ||||
I × F | NS | NS | NS | ||||
R × F | NS | NS | NS | ||||
I × R × F | NS | NS | NS |
Treatment | Turfgrass Color | Turfgrass Quality | |||
---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | ||
NDVI | Visual Rating (1–9 Scale) | ||||
Irrigation | |||||
BAU | 0.83 A | 0.86 A | 7.3 A | 7.2 A | |
SRF | 0.90 A | 0.85 A | 7.0 B | 7.3 A | |
SRY | 0.83 A | 0.84 B | 6.9 B | 7.2 A | |
Fertilizer | |||||
MILH | 0.83 a | 0.86 a | 7.5 a | 7.8 a | |
MILL | 0.83 a | 0.85 ab | 7.2 b | 7.5 b | |
UREH | 0.85 a | 0.86 ab | 6.9 c | 7.2 c | |
UREL | 0.84 a | 0.86 ab | 6.9 bc | 7.2 c | |
UNTC | 0.92 a | 0.84 c | 6.9 bc | 6.6 d | |
Source of Variation | |||||
Irrigation (I) | NS | *** | *** | NS | |
Fertilizer (F) | NS | *** | *** | *** | |
I × F | NS | NS | *** | NS |
CO2 | N2O | CH4 | ||
---|---|---|---|---|
Year | Treatment | GWP | Mean | Mean |
2016 | ||||
Fertilizer | ||||
Control | 99% | 1% | 0 | |
Milorganite | 98% | 2% | 0 | |
Urea | 98% | 2% | 0 | |
Fertilizer Rate | ||||
147 kg N | 98% | 2% | 0 | |
294 kg N | 97% | 3% | 0 | |
Irrigation | ||||
BAU | 99% | 1% | 0 | |
SRF | 97% | 3% | 0 | |
SYR | 98% | 2% | 0 | |
2017 | ||||
Fertilizer | ||||
Control | 99.9% | 0.1% | 0 | |
Milorganite | 98.5% | 2% | 0 | |
Urea | 99.9% | 0.1% | 0 | |
Fertilizer Rate | ||||
147 kg N | 99.1% | 0.9% | 0 | |
294 kg N | 99.1% | 0.9% | 0 | |
Irrigation | ||||
BAU | 98% | 2% | 0 | |
SRF | 98% | 2% | 0 | |
SYR | 99% | 1% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, K.S.; Chapman, K.E. Water Conservation Practices and Nitrogen Fertility for the Reduction of Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens. Grasses 2024, 3, 221-239. https://doi.org/10.3390/grasses3030016
Walker KS, Chapman KE. Water Conservation Practices and Nitrogen Fertility for the Reduction of Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens. Grasses. 2024; 3(3):221-239. https://doi.org/10.3390/grasses3030016
Chicago/Turabian StyleWalker, Kristina S., and Katy E. Chapman. 2024. "Water Conservation Practices and Nitrogen Fertility for the Reduction of Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens" Grasses 3, no. 3: 221-239. https://doi.org/10.3390/grasses3030016
APA StyleWalker, K. S., & Chapman, K. E. (2024). Water Conservation Practices and Nitrogen Fertility for the Reduction of Greenhouse Gas Emissions from Creeping Bentgrass Putting Greens. Grasses, 3(3), 221-239. https://doi.org/10.3390/grasses3030016