Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy
Abstract
:1. Introduction
Plastic Waste as a Hydrogen Source
2. Methodology
- -
- The process operates under steady-state conditions and isothermal;
- -
- The char produced includes only plastic residue;
- -
- The gaseous products comprise light hydrocarbons such as methane, ethane, ethylene, propane, propylene, butane and butylene.
Validation of Model
3. Results and Discussion
3.1. Effect of Reforming Temperature
3.2. Effect of Steam–Plastic Ratio
3.3. Effect of Temperature and Steam–Plastic Ratio
3.4. Effect of Pressure and Steam–Plastic Ratio
3.5. Hydrogen Yield Optimization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lahafdoozian, M.; Khoshkroudmansouri, H.; Zein, S.H.; Jalil, A.A. Hydrogen production from plastic waste: A comprehensive simulation and machine learning study. Int. J. Hydrogen Energy 2024, 59, 465–479. [Google Scholar] [CrossRef]
- Jakovac, P. The Influence of Energy Trends on the Global Economy. In Book of Abstracts. 2022, pp. 299–308. Available online: https://eman-conference.org/energy-trends-on-global-economy/ (accessed on 30 September 2024).
- Kamara-Esteban, O.; Pijoan, A.; Alonso-Vicario, A.; Borges, C.E. On-demand energy monitoring and response architecture in a ubiquitous world. Pers. Ubiquitous Comput. 2017, 21, 537–551. [Google Scholar] [CrossRef]
- Soroush, M.; Shahbakhti, M. Special issue on ‘Optimal design and operation of energy systems. Optim. Control. Appl. Methods 2023, 44, 351–354. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Rohland, B.; Nitsch, J.; Wendt, H. Hydrogen and fuel cells—The clean energy system. J. Power Sources 1992, 37, 271–277. [Google Scholar] [CrossRef]
- Hosseini, S.E.; Wahid, M.A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Mohr, T.; Aliyu, H.; Biebinger, L.; Gödert, R.; Hornberger, A.; Cowan, D.; de Maayer, P.; Neumann, A. Effects of different operating parameters on hydrogen production by Parageobacillus thermoglucosidasius DSM 6285. AMB Express 2019, 9, 207. [Google Scholar] [CrossRef]
- Singla, M.K.; Nijhawan, P.; Oberoi, A.S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626. [Google Scholar] [CrossRef]
- Shadidi, B.; Najafi, G.; Yusaf, T. A Review of Hydrogen as a Fuel in Internal Combustion Engines. Energies 2021, 14, 6209. [Google Scholar] [CrossRef]
- Gholami, S.; Rostaminikoo, E.; Khajenoori, L.; Nasriani, H.R. Density determination of CO2-Rich fluids within CCUS processes. In Measurement: Sensors; Elsevier Ltd.: Amsterdam, The Netherlands, 2025. [Google Scholar] [CrossRef]
- Nasriani, H.R.; Jamiolahmady, M. Optimising Flowback Strategies in Unconventional Reservoirs: The Critical Role of Capillary Forces and Fluid Dynamics. Energies 2024, 17, 5822. [Google Scholar] [CrossRef]
- Gandomkar, A.; Torabi, F.; Nasriani, H.R.; Enick, R.M. Decreasing Asphaltene Precipitation and Deposition during Immiscible Gas Injection Via the Introduction of a CO2-Soluble Asphaltene Inhibitor. SPE J. 2023, 28, 2316–2328. [Google Scholar] [CrossRef]
- Nasriani, H.R.; Kalantari Asl, A. Choke Performance in High-rate Gas Condensate Wells Under Subcritical Flow Condition. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 37, 192–199. [Google Scholar] [CrossRef]
- Nasriani, H.R.; Jamiolahmady, M. Flowback cleanup mechanisms of post-hydraulic fracturing in unconventional natural gas reservoirs. J. Nat. Gas Sci. Eng. 2019, 66, 316–342. [Google Scholar] [CrossRef]
- Nasriani, H.R.; Jamiolahmady, M.; Saif, T.; Sánchez, J. A systematic investigation into the flowback cleanup of hydraulic-fractured wells in unconventional gas plays. Int. J. Coal Geol. 2018, 193, 46–60. [Google Scholar] [CrossRef]
- Alvarez, J.; Kumagai, S.; Wu, C.; Yoshioka, T.; Bilbao, J.; Olazar, M.; Williams, P.T. Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrogen Energy 2014, 39, 10883–10891. [Google Scholar] [CrossRef]
- Smith, L. Plastic Waste. Mar. 2024, House of Commons Library, Research Briefing. Available online: https://researchbriefings.files.parliament.uk/documents/CBP-8515/CBP-8515.pdf (accessed on 10 September 2024).
- Medaiyese, F.J.; Nasriani, H.R.; Khajenoori, L.; Khan, K.; Badiei, A. From Waste to Energy: Enhancing Fuel and Hydrogen Production through Pyrolysis and In-Line Reforming of Plastic Wastes. Sustainability 2024, 16, 4973. [Google Scholar] [CrossRef]
- Barbarias, I.; Lopez, G.; Artetxe, M.; Arregi, A.; Bilbao, J.; Olazar, M. Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Convers. Manag. 2018, 156, 575–584. [Google Scholar] [CrossRef]
- Cortazar, M.; Gao, N.; Quan, C.; Suarez, M.A.; Lopez, G.; Orozco, S.; Santamaria, L.; Amutio, M.; Olazar, M. Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. Fuel Process. Technol. 2022, 225, 107044. [Google Scholar] [CrossRef]
- Koike, M.; Li, D.; Watanabe, H.; Nakagawa, Y.; Tomishige, K. Comparative study on steam reforming of model aromatic compounds of biomass tar over Ni and Ni–Fe alloy nanoparticles. Appl. Catal. A Gen. 2015, 506, 151–162. [Google Scholar] [CrossRef]
- Devi, L.; Ptasinski, K.J.; Janssen, F.J. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003, 24, 125–140. [Google Scholar] [CrossRef]
- Shah, H.H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A.M.; Galal, A.M. A review on gasification and pyrolysis of waste plastics. Front. Chem. 2023, 10, 960894. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Kaewpanha, M.; Hao, X.; Abudula, A. Catalytic steam reforming of biomass tar: Prospects and challenges. Renew. Sustain. Energy Rev. 2016, 58, 450–461. [Google Scholar] [CrossRef]
- Anis, S.; Zainal, Z.A. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review. Renew. Sustain. Energy Rev. 2011, 15, 2355–2377. [Google Scholar] [CrossRef]
- Tsuji, T.; Hatayama, A. Gasification of waste plastics by steam reforming in a fluidized bed. J. Mater. Cycles Waste Manag. 2009, 11, 144–147. [Google Scholar] [CrossRef]
- Park, Y.; Namioka, T.; Sakamoto, S.; Min, T.; Roh, S.; Yoshikawa, K. Optimum operating conditions for a two-stage gasification process fueled by polypropylene by means of continuous reactor over ruthenium catalyst. Fuel Process. Technol. 2010, 91, 951–957. [Google Scholar] [CrossRef]
- Erkiaga, A.; Lopez, G.; Barbarias, I.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. HDPE pyrolysis-steam reforming in a tandem spouted bed-fixed bed reactor for H2 production. J. Anal. Appl. Pyrolysis 2015, 116, 34–41. [Google Scholar] [CrossRef]
- Namioka, T.; Saito, A.; Inoue, Y.; Park, Y.; Min, T.J.; Roh, S.A.; Yoshikawa, K. Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst. Appl. Energy 2011, 88, 2019–2026. [Google Scholar] [CrossRef]
- Barbarias, I.; Lopez, G.; Alvarez, J.; Artetxe, M.; Arregi, A.; Bilbao, J.; Olazar, M. A sequential process for hydrogen production based on continuous HDPE fast pyrolysis and in-line steam reforming. Chem. Eng. J. 2016, 296, 191–198. [Google Scholar] [CrossRef]
- Arregi, A.; Lopez, G.; Amutio, M.; Barbarias, I.; Bilbao, J.; Olazar, M. Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. RSC Adv. 2016, 6, 25975–25985. [Google Scholar] [CrossRef]
- Bashir, M.A.; Tuo, J.; Weidman, J.; Soong, Y.; Gray, M.L.; Shi, F.; Wang, P. Plastic waste gasification for low-carbon hydrogen production: A comprehensive review. Energy Adv. 2025. [Google Scholar] [CrossRef]
- Jeong, Y.-S.; Park, K.-B.; Kim, J.-S. Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon. Appl. Energy 2020, 262, 114495. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Erkiaga, A.; Lopez, G.; Amutio, M.; Bilbao, J.; Olazar, M. Syngas from steam gasification of polyethylene in a conical spouted bed reactor. Fuel 2013, 109, 461–469. [Google Scholar] [CrossRef]
- Chai, Y.; Gao, N.; Wang, M.; Wu, C. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chem. Eng. J. 2020, 382, 122947. [Google Scholar] [CrossRef]
- Williams, P.T. Hydrogen and Carbon Nanotubes from Pyrolysis-Catalysis of Waste Plastics: A Review; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Arregi, A.; Seifali Abbas-Abadi, M.; Lopez, G.; Santamaria, L.; Artetxe, M.; Bilbao, J.; Olazar, M. CeO2 and La2O3 Promoters in the Steam Reforming of Polyolefinic Waste Plastic Pyrolysis Volatiles on Ni-Based Catalysts. ACS Sustain. Chem. Eng. 2020, 8, 17307–17321. [Google Scholar] [CrossRef]
- Arregi, A.; Lopez, G.; Amutio, M.; Artetxe, M.; Barbarias, I.; Bilbao, J.; Olazar, M. Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis. Fuel 2018, 216, 233–244. [Google Scholar] [CrossRef]
- Bobek-Nagy, J.; Gao, N.; Quan, C.; Miskolczi, N.; Rippel-Pethő, D.; Kovács, K. Catalytic co-pyrolysis of packaging plastic and wood waste to achieve H2 rich syngas. Int. J. Energy Res. 2020, 44, 10832–10845. [Google Scholar] [CrossRef]
- Pandey, B.; Prajapati, Y.K.; Sheth, P.N. Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state of the art review. Int. J. Hydrogen Energy 2019, 44, 25384–25415. [Google Scholar] [CrossRef]
- Arregi, A.; Amutio, M.; Lopez, G.; Bilbao, J.; Olazar, M. Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Convers. Manag. 2018, 165, 696–719. [Google Scholar] [CrossRef]
- Joonaki, E.; Rostaminikoo, E.; Ghanaatian, S.; Nasriani, H.R. Thermodynamic properties of hydrogen containing systems and calculation of gas critical flow factor. In Measurement: Sensors; Elsevier Ltd.: Amsterdam, The Netherlands, 2025. [Google Scholar] [CrossRef]
- Rostaminikoo, E.; Ghanaatian, S.; Joonaki, E.; Nasriani, H.R.; Whitton, J. Advanced thermodynamics of hydrogen and natural gas blends for gas transmission and distribution networks. In Measurement: Sensors; Elsevier Ltd.: Amsterdam, The Netherlands, 2025. [Google Scholar] [CrossRef]
- Joonaki, E.; Rostaminikoo, E.; Ghanaatian, S.; Nasriani, H. Thermodynamics of Hydrogen; Analysing and Refining of Critical Flow Factor Through Comprehensive Uncertainty Assessment and Experimental Data Integration. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 4–7 November 2024. [Google Scholar] [CrossRef]
- Alshareef, R.; Nahil, M.A.; Williams, P.T. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic. Energy Fuels 2023, 37, 3894–3907. [Google Scholar] [CrossRef]
- Han, D.; Shin, S.; Jung, H.; Cho, W.; Baek, Y. Hydrogen Production by Steam Reforming of Pyrolysis Oil from Waste Plastic over 3 wt.% Ni/Ce-Zr-Mg/Al2O3 Catalyst. Energies 2023, 16, 2656. [Google Scholar] [CrossRef]
- Pawelczyk, E.; Wysocka, I.; Gębicki, J. Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. Catalysts 2022, 12, 362. [Google Scholar] [CrossRef]
- Soleimani, S.; Methane, M.L.T.-R.O.; Conditions, O. Reactor Technology and Efficiency Evaluation—A Review. Energies 2022, 15, 7159. [Google Scholar] [CrossRef]
- Barbarias, I.; Artetxe, M.; Lopez, G.; Arregi, A.; Bilbao, J.; Olazar, M. Influence of the conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke. Fuel Process. Technol. 2018, 171, 100–109. [Google Scholar] [CrossRef]
- Isicheli, P.; Oji, A.; Okwonna, O.; Muwarure, P.; Ibrahim, A.D.; Erazele, A. Analysing the effects of process parameters on HDPE pyrolysis and in-line reforming. Glob. J. Eng. Technol. Adv. 2023, 17, 139–149. [Google Scholar] [CrossRef]
- Sachin, S.; Kumar, K. Conversion of Waste High-Density Polyethylene into Liquid Fuels, National Institute of Technology Rourkela. Chem. Eng. 2014. Available online: https://core.ac.uk/download/pdf/53189114.pdf (accessed on 8 October 2024).
- Sarker, M. Converting waste plastic to hydrocarbon fuel materials. Energy Eng. J. Assoc. Energy Eng. 2011, 108, 35–43. [Google Scholar] [CrossRef]
- Jaafar, Y.; Abdelouahed, L.; El Hage, R.; El Samrani, A.; Taouk, B. Pyrolysis of common plastics and their mixtures to produce valuable petroleum-like products. Polym. Degrad. Stab. 2022, 195, 109770. [Google Scholar] [CrossRef]
- Gebre, S.H.; Sendeku, M.G.; Bahri, M. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Levine, S.E.; Broadbelt, L.J. Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution. Polym. Degrad. Stab. 2009, 94, 810–822. [Google Scholar] [CrossRef]
- Kruse, T.M.; Wong, H.-W.; Broadbelt, L.J. Mechanistic modeling of polymer pyrolysis: Polypropylene. Macromolecules 2003, 36, 9594–9607. [Google Scholar] [CrossRef]
- Kruse, T.M.; Woo, O.S.; Wong, H.-W.; Khan, S.S.; Broadbelt, L.J. Mechanistic Modeling of Polymer Degradation: A Comprehensive Study of Polystyrene. Macromolecules 2002, 35, 7830–7844. [Google Scholar] [CrossRef]
- Aspen Technology. Pyrolysis of High-Density Polyethylene; Aspen Technology: Bedford, MA, USA, 2022. [Google Scholar]
- Aspen Technology. Polypropylene Pyrolysis; Aspen Technology: Bedford, MA, USA, 2022. [Google Scholar]
- Aspen Technology. Polystyrene Pyrolysis; Aspen Technology: Bedford, MA, USA, 2022. [Google Scholar]
- Phan, T.S.; Minh, D.P.; Espitalier, F.; Nikou, A.; Grouset, D. Hydrogen production from biogas: Process optimization using ASPEN Plus®. Int. J. Hydrogen Energy 2022, 47, 42027–42039. [Google Scholar] [CrossRef]
- Miranda, R.; Yang, J.; Roy, C.; Vasile, C. Vacuum pyrolysis of commingled plastics containing PVC I. Kinetic study. Polym. Degrad. Stab. 2001, 72, 469–491. [Google Scholar] [CrossRef]
- López, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor. Chem. Eng. J. 2011, 173, 62–71. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhu, G.; Yang, L.; Zhu, Y. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust. J. Therm. Anal. Calorim. 2018, 132, 1783–1794. [Google Scholar] [CrossRef]
- Wilk, V.; Hofbauer, H. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 2013, 107, 787–799. [Google Scholar] [CrossRef]
- Lopez, G.; Erkiaga, A.; Artetxe, M.; Amutio, M.; Bilbao, J.; Olazar, M. Hydrogen Production by High Density Polyethylene Steam Gasification and In-Line Volatile Reforming. Ind. Eng. Chem. Res. 2015, 54, 9536–9544. [Google Scholar] [CrossRef]
- Li, Y.; Nahil, M.A.; Williams, P.T. Pyrolysis-catalytic steam reforming of waste plastics for enhanced hydrogen/syngas yield using sacrificial tire pyrolysis char catalyst. Chem. Eng. J. 2023, 467, 143427. [Google Scholar] [CrossRef]
- Turn, S. An experimental investigation of hydrogen production from biomass gasification. Int. J. Hydrogen Energy 1998, 23, 641–648. [Google Scholar] [CrossRef]
- Li, J.; Liao, S.; Dan, W.; Jia, K.; Zhou, X. Experimental study on catalytic steam gasification of municipal solid waste for bioenergy production in a combined fixed bed reactor. Biomass Bioenergy 2012, 46, 174–180. [Google Scholar] [CrossRef]
- Wang, Y.; Kinoshita, C.M. Experimental analysis of biomass gasification with steam and oxygen. Solar Energy 1992, 49, 153–158. [Google Scholar] [CrossRef]
- Pinto, F.; Franco, C.; André, R.N.; Miranda, M.; Gulyurtlu, I.; Cabrita, I. Co-gasification study of biomass mixed with plastic wastes. Fuel 2002, 81, 291–297. [Google Scholar] [CrossRef]
- Barbarias, I.; Arregi, A.; Artetxe, M.; Santamaria, L.; Lopez, G.; Cortazar, M.; Amutio, M.; Bilbao, J.; Olazar, M. Waste Plastics Valorization by Fast Pyrolysis and in Line Catalytic Steam Reforming for Hydrogen Production. In Recent Advances in Pyrolysis; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Lopez, G.; Erkiaga, A.; Amutio, M.; Alvarez, J.; Barbarias, I.; Bilbao, J.; Olazar, M. Steam Gasification of Waste Plastics in a Conical Spouted Bed Reactor. In Proceedings of the 14th International Conference on Fluidization—From Fundamentals to Products, Noordwijkerhout, The Netherlands, 26–31 May 2013. ECI Symposium Series. [Google Scholar]
- Wu, C.; Nahil, M.A.; Miskolczi, N.; Huang, J.; Williams, P.T. Processing Real-World Waste Plastics by Pyrolysis-Reforming for Hydrogen and High-Value Carbon Nanotubes. Environ. Sci. Technol. 2014, 48, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nahil, M.A.; Williams, P.T. Hydrogen/Syngas Production from Different Types of Waste Plastics Using a Sacrificial Tire Char Catalyst via Pyrolysis–Catalytic Steam Reforming. Energy Fuels 2023, 37, 6661–6673. [Google Scholar] [CrossRef]
- Barbarias, I.; Lopez, G.; Artetxe, M.; Arregi, A.; Santamaria, L.; Bilbao, J.; Olazar, M. Pyrolysis and in-line catalytic steam reforming of polystyrene through a two-step reaction system. J. Anal. Appl. Pyrolysis 2016, 122, 502–510. [Google Scholar] [CrossRef]
Polymer | Monomer | Repeat Unit/Segment | Repeat Unit ID |
---|---|---|---|
High-density polyethylene (HDPE) | C2H4 | Ethylene-R | ETH |
Polypropylene (PP) | C3H6 | Propylene-R | PP-SEG |
Polystyrene (PS) | C8H8 | Styrene-R | STY |
Compound Name | Compound Formula/Component ID |
---|---|
1-Nonene | C9H18 |
Nonane | C9H20 |
1-Decene | C10H20 |
Decane | C10H22 |
1-Undecene | C11H22 |
Undecane | C11H24 |
1-Dodecene | C12H24 |
Dodecane | C12H26 |
1-Tridecene | C13H28 |
Tridecane | C13H28 |
1-Tetradecene | C14H28 |
Tetradecane | C14H30 |
1-Pentadecene | C15H30 |
Pentadecane | C15H32 |
Hexadecane | C16H34 |
1-Heptadecene | C17H34 |
1-Nonadecene | C19H38 |
Eicosane | C20H42 |
Heneicosane | C16H34 |
Docosane | C22H46 |
Tricosane | C23H48 |
Tetracosane | C24H50 |
N-Tetracosanol-1 | C24H50O |
4,6-Dimethyldodecane | 3:5-D-01 |
Compound Name | Chemical Formula | Component ID |
---|---|---|
Pentane | C5H12 | N-PEN-01 |
Cyclopropane,1,2-dimethyl-, cis- | C5H10 | 1:2-C-01 |
Pentane, 2-methyl- | C6H12 | 2-MET-01 |
1-Pentene, 2-methyl- | C6H14 | 2-MET-02 |
2-Pentene, 4-methyl-, (z) | C6H12 | 4-MET-01 |
Isopropenylcyclopropane | C6H10 | 2-CYC-01 |
1,3-Pentadiene, 2-methyl-,(E) | C6H10 | TRANS-01 |
1-Pentene, 2,4-dimethyl- | C6H10 | 2:4-D-01 |
2-Pentene, 3-ethyl- | C7H14 | 3-ETH-01 |
2,4-Dimethyl 1,4-pentadiene | C7H12 | (E)-2-01 |
Pentane, 2-bromo-2-methyl- | C6H13BR | PENTA-01 |
Hexane, 3-methyl- | C7H16 | 3-MET-01 |
2-Pentanone | C5H10O | METHY-01 |
1-Hexene, 2-methyl- | C7H14 | 2-MET-03 |
Heptane, 4-methyl- | C8H18 | 4-MET-02 |
Cyclohexane, 1,3,5-trimethyl- | C9H18 | CIS-1-01 |
2,4-Dimethyl-1-heptene | C9H18 | 2:6-D-01 |
Cyclohexane,1,3,5- | C9H18 | 1-TRA-01 |
C10-C13 |
Compound Name | Chemical Formula | Component ID |
---|---|---|
Benzene | C6H6 | C6H6 |
Toluene | C7H8 | C7H8 |
Ethylbenzene | C8H10 | C8H10 |
Styrene | C8H8 | STYRENE |
Alpha-methylstyrene | C9H10 | C9H10 |
Indene | C9H8 | C9H8 |
Naphthalene | C10H8 | C10H8 |
1,2 Diphenylethane (bibenzyl) | C14H14 | C14H14 |
2,4-Diphenyl-1-butene | C16H16 | C16H16 |
(E)-Stilbene | C14H12 | C14H12 |
1-Phenylnaphthalene | C16H12 | C16H12 |
o-Terphenyl | C18H14 | C18H14 |
2-methylphenanthrene | C15H12 | C15H12 |
2-phenylnaphthalene | C16H12 | BETA-01 |
m-Terphenyl | C18H14 | M-TER-01 |
p-Terphenyl | C18H14 | P-TER-01 |
1,3,5-Triphenylcyclohexane | C27H30 | C27H3-01 |
Compound Name | Chemical Formula | Component ID |
---|---|---|
Hydrogen | H2 | H2 |
Methane | CH4 | C1 |
Ethane | C2H6 | C2 |
Ethene/ethylene | C2H4 | C2H4 |
Propane | C3H8 | C3 |
Propene/propylene | C3H6 | C3H6 |
Butane | C4H10 | C4 |
Isobutylene | C4H8 | ISOBU-01 |
Polymer | Chemical Formula | MWN | MWW | PDI | SFRAC |
---|---|---|---|---|---|
HDPE | (C2H4)n | 125,000 | - | 2 | 1 |
PP | (C3H6)n | 54,000 | 127,000 | - | 1 |
PS | (C8H8)n | 98,100 | 111,800 | - | 1 |
Reaction | Pre-Exponential Factor (1/s) | Activation Energy (kcal/mol) |
---|---|---|
Random scission | 9.00 × 1016 | 89.7 |
H-abstraction | 2.75 × 108 | 11.2 |
H-shift | 1.00 × 1010 | 18.3 |
Mid-chain beta scission | 5.35 × 1014 | 28.9 |
Depolymerization | 1.29 × 1012 | 28.4 |
Termination by disproportion | 1.10 × 1010 | 2.3 |
Termination by combination | 1.10 × 1011 | 2.3 |
Reaction | Pre-Exponential Factor (1/s) | Activation Energy (kcal/mol) |
---|---|---|
Random scission | 7.00 × 1016 | 82 |
H-abstraction | 1.00 × 108 | 10.5 |
H-shift | 5.00 × 106 | 18.5 |
Mid-chain beta scission | 9.40 × 1014 | 28.1 |
Depolymerization | 5.40 × 1013 | 28 |
Termination by disproportion | 1.10 × 1010 | 2.3 |
Termination by combination | 1.10 × 1011 | 2.3 |
Reaction | Pre-Exponential Factor (1/s) | Activation Energy (kcal/mol) |
---|---|---|
Random scission | 5.00 × 1017 | 67.3 |
H-abstraction | 2.10 × 106 | 10.5 |
H-shift | 5.00 × 106 | 10.5 |
Mid-chain beta scission | 4.10 × 1012 | 28.1 |
Depolymerization | 2.10 × 1012 | 24.7 |
Termination by disproportion | 5.50 × 109 | 2.3 |
Termination by combination | 1.10 × 1011 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medaiyese, F.J.; Nasriani, H.R.; Khan, K.; Khajenoori, L. Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy. Hydrogen 2025, 6, 15. https://doi.org/10.3390/hydrogen6010015
Medaiyese FJ, Nasriani HR, Khan K, Khajenoori L. Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy. Hydrogen. 2025; 6(1):15. https://doi.org/10.3390/hydrogen6010015
Chicago/Turabian StyleMedaiyese, Fiyinfoluwa Joan, Hamid Reza Nasriani, Khalid Khan, and Leila Khajenoori. 2025. "Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy" Hydrogen 6, no. 1: 15. https://doi.org/10.3390/hydrogen6010015
APA StyleMedaiyese, F. J., Nasriani, H. R., Khan, K., & Khajenoori, L. (2025). Sustainable Hydrogen Production from Plastic Waste: Optimizing Pyrolysis for a Circular Economy. Hydrogen, 6(1), 15. https://doi.org/10.3390/hydrogen6010015