Virtual Reality Gaming Elevates Heart Rate but Not Energy Expenditure Compared to Conventional Exercise in Adult Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Procedures
2.2. Measurements
2.3. Statistical Analyses
3. Results
3.1. General Results
3.2. Effect of Game Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
Abbreviations | Detailed Factors |
HMD | Head-Mounted Displays |
AG | Active Gaming |
AGw | Active Gaming With Wrist-Worn Weights |
EE | Relative energy Expenditure |
HR | Heart Rate |
HR% | Percentage of HRmax |
HRmax | Age-Predicted Maximal HR |
RER | Respiratory Exchange Ratio |
RM | Repeated-Measures |
SD | Standard Deviation |
VO2 | Oxygen Consumption |
VR | Virtual Reality |
W6 | Walking at 6 km·h−1 |
References
- World Health Organization. Global Strategy on Diet, Physical Activity and Health. Physical Activity and Adults. Recommended Levels of Physical Activity for Adults Aged 18–64 Years. Information Sheet, Updated 2018. Available online: https://www.who.int/dietphysicalactivity/factsheet_adults/en/ (accessed on 8 November 2019).
- Borusiak, P.; Bouikidis, A.; Liersch, R.; Russell, J.B. Cardiovascular effects in adolescents while they are playing video games: A potential health risk factor? Psychophysiology 2008, 45, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.S.; Lange, B.; Suma, E.A.; Bolas, M. Virtual reality and interactive digital game technology: New tools to address obesity and diabetes. J. Diabetes Sci. Technol. 2011, 5, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R. The Health Benefits of Active Gaming: Separating the Myths from the Virtual Reality. Curr. Cardiovasc. Risk Rep. 2013, 7, 251–255. [Google Scholar] [CrossRef]
- Graves, L.E.F.; Ridgers, N.D.; Williams, K.; Stratton, G.; Atkinson, G.; Cable, N.T. The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J. Phys. Act. Health 2011, 7, 393–401. [Google Scholar] [CrossRef]
- McDonough, D.J.; Pope, Z.C.; Zeng, N.; Lee, J.E.; Gao, Z. Comparison of college students’ energy expenditure, physical activity, and enjoyment during exergaming and traditional exercise. J. Clin. Med. 2018, 7, 433. [Google Scholar] [CrossRef] [PubMed]
- Plante, T.G.; Aldridge, A.; Bogden, R.; Hanelin, C. Might virtual reality promote the mood benefits of exercise? Comput. Hum. Behav. 2013, 19, 495–509. [Google Scholar] [CrossRef]
- Monedero, J.; Lyons, E.J.; O’Gorman, D.J. Interactive video game cycling leads to higher energy expenditure and is more enjoyable than conventional exercise in adults. PLoS ONE 2015, 10, e0118470. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, J.; Tenzek, K.E.; Lee, K.M. The effects of competition and competitiveness upon intrinsic motivation in exergames. Comput. Hum. Behav. 2013, 29, 1702–1708. [Google Scholar] [CrossRef]
- Staiano, A.E.; Flynn, R. Therapeutic Uses of Active Videogames: A Systematic Review. Games Health J. 2014, 3, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Perusek, K.; Sparks, K.; Little, K.; Motley, M.; Patterson, S.; Wieand, J.A. A comparison of energy expenditure during “Wii Boxing” versus heavy bag boxing in young adults. Games Health J. 2014, 3, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Barry, G.; Tough, D.; Sheerin, P.; Mattinson, O.; Dawe, R.; Board, E. Assessing the physiological cost of active videogames (Xbox Kinect) versus sedentary videogames in young healthy males. Games Health J. 2016, 5, 68–74. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Schofield, G.; Kilding, A.E. Energy expended by boys playing active video games. J. Sci. Med. Sport 2012, 14, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Foley, L.; Maddison, R. Use of Active Video Games to Increase Physical Activity in Children: A (Virtual) Reality? Pediatric Exerc. Sci. 2010, 22, 7–20. [Google Scholar] [CrossRef]
- Bailey, B.W.; McInnis, K. Energy cost of exergaming: A comparison of the energy cost of 6 forms of exergaming. JAMA Pediatrics 2011, 165, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Jennett, C.; Cox, A.L.; Cairns, P.; Dhoparee, S.; Epps, A.; Tijs, T.; Walton, A. Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud. 2008, 66, 641–661. [Google Scholar] [CrossRef]
- Farrow, M.; Lutteroth, C.; Rouse, P.C.; Bilzon, J.L.J. Virtual-reality exergaming improves performance during high-intensity interval training. Eur. J. Sport Sci. 2019, 19, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.E.; Martin, A.D.; Miltenberger, L.A.; Pollock, M.L. Physiological responses to walking with hand weights, wrist weights, and ankle weights. Med. Sci. Sports Exerc. 1988, 20, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seal, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 1, 153–156. [Google Scholar] [CrossRef]
- Peronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can. J. Appl. Physiol. 1991, 16, 23–29. [Google Scholar]
- Jamovi Project. Jamovi (Version 0.9) [Computer Software]. Available online: https://www.jamovi.org (accessed on 8 November 2019).
- Finkelstein, S.; Nickel, A.; Lipps, Z.; Barnes, T.; Wartell, Z.; Suma, E.A. Astrojumper: Motivating exercise with an immersive virtual reality exergame. Presence Teleoperators Virtual Environ. 2011, 20, 78–92. [Google Scholar] [CrossRef]
- Sveistrup, H.; McComas, J.; Thornton, M.; Marshall, S.; Finestone, H.; McCormick, A.; Babulic, K.; Mayhew, A. Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. CyberPsychol. Behav. 2003, 6, 245–249. [Google Scholar] [CrossRef] [PubMed]
Rest | W6 | AG | AGW | p-Value | η2p | |
---|---|---|---|---|---|---|
HR% | 33 ± 6 | 51 ± 5 A | 47 ± 5 A | 54 ± 4 A C | <0.001 | 0.883 |
EE (kJ/kg·h) | 4.6 ± 0.7 | 21.1 ± 1.2 A | 11.7 ± 2.5 A B | 13.7 ± 4.9 A B | <0.001 | 0.954 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrin, T.; Faure, C.; Nay, K.; Cattozzo, G.; Sorel, A.; Kulpa, R.; Kerhervé, H.A. Virtual Reality Gaming Elevates Heart Rate but Not Energy Expenditure Compared to Conventional Exercise in Adult Males. Int. J. Environ. Res. Public Health 2019, 16, 4406. https://doi.org/10.3390/ijerph16224406
Perrin T, Faure C, Nay K, Cattozzo G, Sorel A, Kulpa R, Kerhervé HA. Virtual Reality Gaming Elevates Heart Rate but Not Energy Expenditure Compared to Conventional Exercise in Adult Males. International Journal of Environmental Research and Public Health. 2019; 16(22):4406. https://doi.org/10.3390/ijerph16224406
Chicago/Turabian StylePerrin, Théo, Charles Faure, Kévin Nay, Giammaria Cattozzo, Anthony Sorel, Richard Kulpa, and Hugo A. Kerhervé. 2019. "Virtual Reality Gaming Elevates Heart Rate but Not Energy Expenditure Compared to Conventional Exercise in Adult Males" International Journal of Environmental Research and Public Health 16, no. 22: 4406. https://doi.org/10.3390/ijerph16224406
APA StylePerrin, T., Faure, C., Nay, K., Cattozzo, G., Sorel, A., Kulpa, R., & Kerhervé, H. A. (2019). Virtual Reality Gaming Elevates Heart Rate but Not Energy Expenditure Compared to Conventional Exercise in Adult Males. International Journal of Environmental Research and Public Health, 16(22), 4406. https://doi.org/10.3390/ijerph16224406