Study of the Percentage of Greenhouse Gas Emissions from Aviation in the EU-27 Countries by Applying Multiple-Criteria Statistical Methods
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Sources
2.2. Statistical Methods
2.2.1. PCA Method
2.2.2. Cluster Analysis
3. Result and Discussion
- analyze aviation’s contribution to the production of greenhouse gas emissions in the air of the EU-27 member states;
- compare the EU-27 member states in terms of the impact of aviation on greenhouse gas emissions and other parameters that characterize a particular country by applying the PCA method and a cluster analysis.
3.2. Comparison of EU-27 Countries by Applying Multiple-Criteria Statistical Methods
3.2.1. PCA Method
3.2.2. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Environment Agency. Air Quality in Europe-2019 Report; EEA Report; European Environment Agency: Copenhagen, Denmark, 2019; p. 99. [Google Scholar]
- Ragazzi, M. Pollution and the Atmosphere: Designs for Reduced Emissions; Apple Academic Press: New York, NY, USA, 2017; p. 320. [Google Scholar]
- Greenhouse Gas Emissionstatistics—Emissioninventories. Available online: https://ec.europa.eu/eurostat/statistics-explained/pdfscache/1180.pdf (accessed on 20 April 2020).
- United Nations Framework Convention on Climate Change—Declarations. Available online: https://eur-lex.europa.eu/eli/convention/1994/69/oj (accessed on 20 April 2020).
- Kyoto Protocol on Climate Change. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:l28060&from=SK (accessed on 20 April 2020).
- Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 Establishing a Scheme for Greenhouse Gas Emission Allowance Trading within the Community and Amending Council Directive 96/61/EC. Available online: https://eur-lex.europa.eu/eli/dir/2003/87/oj (accessed on 20 April 2020).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Available online: https://eur-lex.europa.eu/eli/dir/2008/50/oj (accessed on 20 April 2020).
- Baldauf, R.; Watkins, N.; Heist, D.; Bailey, C.; Rowley, P.; Shores, R. Near-road air quality monitoring: Factors affecting network design and interpretation of data. Air Qual. Atmos. Health 2009, 2, 1–9. [Google Scholar]
- Ren, C.; Tong, S. Health effects of ambient air pollution–recent research development and contemporary methodological challenges. Environ. Health 2008, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Anderson, H.; Ponce de Leon, A.; Bland, J.; Bower, J.S.; Strachan, D.P. Airpollution and daily mortality in London: 1987–92. BMJ 1996, 312, 665–669. [Google Scholar]
- Burnett, B.; Brook, J.; Yung, W.; Dales, R.E.; Krewski, D. Associationbetween ozone and hospitalization for respiratory diseasesin 16 Canadian cities. Environ. Res 1997, 72, 24–31. [Google Scholar]
- Hoek, G.; Brunekreef, B.; Fischer, P.; Wijnen, J.V. The associationbetween air pollution and heart failure, arrhythmia, embo-lism, thrombosis, and other cardiovascular causes of death ina time series study. Epidemiology 2001, 12, 355–357. [Google Scholar]
- Mar, T.; Norris, G.; Koenig, J.; Larson, T.V. Associations between airpollution and mortality in Phoenix, 1995–1997. Environ. Health Perspect. 2000, 108, 347–353. [Google Scholar]
- European Enviroment Agency. Air quality in Europe-2015 Report; EEA Report; European Enviroment Agency: Copenhagen, Denmark, 2015; p. 57. [Google Scholar]
- Skrucany, T.; Kendra, M. Environmental assessment of selected impacts of the regional transport services. Svet. Dopravy 2020, 1, 1–7. [Google Scholar]
- European Aviation Environmental Report 2019. Available online: https://ec.europa.eu/transport/sites/transport/files/2019-aviation-environmental-report.pdf (accessed on 20 April 2020).
- Koblen, I.; Szabo, S.; Krnacova, K. Selected information on European Union research and development programmes and projects focused on reducing emissions from air transport. Naše More 2013, 60, 113–122. [Google Scholar]
- Polishchuk, V.; Kelemen, M.; Gavurova, B.; Varotsos, C.; Andoga, R.; Gera, M.; Christodoulakis, J.; Sousek, R.; Kozuba, J.; Blistan, P.; et al. Correction: A Fuzzy Model of Risk Assessment for Environmental Start-Up Projects in the Air Transport Sector. Int. J. Environ. Res. Public Health 2019, 16, 3573. [Google Scholar] [CrossRef] [Green Version]
- Koscak, P.; Berezny, S.; Vajdova, I.; Koblen, I.; Ojciec, M.; Matiskova, M.; Puskas, T. Reducing the Negative Environmental Impact of Winter Airport Maintenance through Its Model Design and Simulation. Int. J. Environ. Res. Public Health 2020, 17, 1296. [Google Scholar] [CrossRef] [Green Version]
- Jakubiak, M. Environmental impact of air transport-Case study of Krakow Airport. Logistyka 2015, 2, 276–283. [Google Scholar]
- Cerro, J.C.; Cerdà, V.; Querol, X.; Alastuey, A.; Bujosa, C.; Pey, J. Variability of air pollutants, and PM composition and sources at a regional background site in the Balearic Islands: Review of western Mediterranean phenomenology from a 3-year study. Sci. Total Environ. 2020, 717, 137177. [Google Scholar] [CrossRef]
- Mocerino, L.; Murena, F.; Quaranta, F.; Toscano, D. A methodology for the design of an effective air quality monitoring network in port areas. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.; Kimbrough, S.; Krabbe, S.; Logan, R.; Isakov, V.; Baldauf, R. Identifying air pollution source impacts in urban communities using mobile monitoring. Sci. Total Environ. 2020, 71, 136979. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, X.; Peng, F.; Wang, D. Population based Air Pollution Exposure and its influence factors by Integrating Air Dispersion Modeling with GIS Spatial Analysis. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Vichi, F.; Frattoni, M.; Imperiali, A.; Balducci, C.; Cecinato, A.; Perilli, M.; Romagnoli, P. Civil aviation impacts on local air quality: A survey inside two international airports in central Italy. Atmos. Environ. 2016, 142, 393–405. [Google Scholar]
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.C. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar]
- Wilkerson, J.T.; Jacobson, M.Z.; Malwitz, A.; Balasubramanian, S.; Wayseon, R.; Naiman, A.D.; Lele, S.K. Analysis of emission data from global commercial aviation: 2004 and 2006. Atmos. Chem. Phys. 2010, 10, 6391–6408. [Google Scholar]
- Ivković, I.; Čokorilo, O.; Kaplanović, S. The estimation of GHG emission costs in road and air transport sector: Case study of Serbia. Transport 2018, 33, 260–267. [Google Scholar]
- Peeters, J.H.A.M. Aviation and air pollution. Stud. Environ. Sci. 1998, 72, 601–613. [Google Scholar]
- Vasilaki, V.; Volcke, E.I.P.; Nandi, A.K.; Loosdrecht, M.C.M.; Katsou, E. Relating N2O emissions during biological nitrogen removal with operating conditions using multivariate statistical techniques. Water Res. 2018, 140, 387–402. [Google Scholar]
- Bellandi, G.; Weijers, S.; Gori, R.; Nopens, I. Towards an online mitigation strategy for N2O emissions through principal components analysis and clustering techniques. J. Environ. Manag. 2020, 261, 110219. [Google Scholar] [CrossRef]
- Miranda, I.N.G.; Macías, F.V.; Mesa, G.A.P. Application of multivariate methods and geoestatistics to model the relationship between CO2 emissions and physicochemical variables in the hidrosogamoso reservoir, Colombi. Acta Limnol. Bras. 2020, 32, 32. [Google Scholar] [CrossRef]
- Ni, X.; Wang, H.; Che, C.; Hong, J.; Sun, Z. Civil aviation safety evaluation based on deep belief network and principal component analysis. Saf. Sci. 2019, 112, 90–95. [Google Scholar]
- Yang, Y.; Wu, W.; Fang, P. Comprehensive Evaluation Approach to Aviation Maintenance Support Ability Based on PCA. Adv. Intell. Syst. Comput. 2018, 690, 596–602. [Google Scholar]
- Azid, A.; Juahir, H.; Toriman, M.E.; Kamarudin, M.K.A.; Saudi, A.S.M.; Hasnam, C.N.C.; Aziz, N.A.A.; Azaman, F.; Latif, M.T.; Zainuddin, S.F.M.; et al. Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: A case study in Malaysia. Water Air Soil Pollut. 2014, 225, 225. [Google Scholar] [CrossRef]
- Kwon, Y.; Lee, H.; Lee, H. Implication of the cluster analysis using greenhouse gas emissions of Asian countries to climate change mitigation. Mitig. Adapt. Strat. Glob. Chang. 2018, 23, 1225–1249. [Google Scholar]
- Map of EU Countries after Brexit. Available online: https://maproom.net/shop/eu-map/ (accessed on 20 April 2020).
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1992; p. 642. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis and Factor Analysis, Chap 7. Principal Component Analysis; Springer: New York, NY, USA, 2002; pp. 150–166. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis; Wiley: London, UK, 2001; p. 237. [Google Scholar]
- Hartigan, J.A. Clustering Algorithms; John Wiley & Sons, Inc.: New York, NY, USA, 1975; p. 351. [Google Scholar]
- White Paper. Available online: https://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF (accessed on 20 April 2020).
- Greenhouse Gas Emission from Transport in Europe. Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-12 (accessed on 20 April 2020).
- Emissions from Planes and Ships: Facts and Figures. Available online: https://www.europarl.europa.eu/news/en/headlines/priorities/climate-change/20191129STO67756/emissions-from-planes-and-ships-facts-and-figures-infographic (accessed on 20 April 2020).
- European Commission. Report from the Commission to the European Parliament and the Council EU and the Paris Climate Agreement: Taking Stock of Progress at Katowice COP; European Commission: Brussels, Belgium, 2018; p. 23. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/climate-change/data/database (accessed on 20 April 2020).
- OECD Statistics. Available online: https://stats.oecd.org/ (accessed on 20 April 2020).
Attribute Designation | Attribute |
---|---|
A1 | Population (million inhabitants) |
A2 | Area (km2) |
A3 | Gross domestic product per capita |
A4 | Healthy life years (years) |
A5 | Life expectancy (years) |
A6 | Number of commercial airports with more than 15,000 passengers per year |
A7 | Number of aviation transported passengers |
A8 | Amount of aviation transported goods (tonnes) |
A9 | Total greenhouse gas (GHG) emissions (thousand tonnes) |
A10 | Aviation share of total GHG emissions (thousand tonnes) |
A11 | Aviation share of CO2 emissions (thousand tonnes) |
A12 | Aviation share of N2O emissions (thousand tonnes) |
A13 | Aviation share of CH4 emissions (thousand tonnes) |
A14 | Aviation share of HFC emissions (thousand tonnes) |
A15 | Amount of PM2.5 (tonnes) |
Variables | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1 | ||||||||||||||
A2 | 0.49 | 1 | |||||||||||||
A3 | −0.08 | −0.11 | 1 | ||||||||||||
A4 | 0.40 | 0.08 | 0.20 | 1 | |||||||||||
A5 | 0.30 | −0.05 | 0.55 | 0.45 | 1 | ||||||||||
A6 | 0.87 | 0.56 | −0.02 | 0.44 | 0.46 | 1 | |||||||||
A7 | 0.73 | 0.48 | 0.06 | 0.40 | 0.49 | 0.83 | 1 | ||||||||
A8 | 0.42 | 0.53 | 0.28 | 0.21 | 0.36 | 0.58 | 0.76 | 1 | |||||||
A9 | 0.64 | 0.58 | 0.02 | 0.30 | 0.26 | 0.71 | 0.86 | 0.85 | 1 | ||||||
A10 | 0.56 | 0.44 | 0.35 | 0.34 | 0.48 | 0.69 | 0.86 | 0.90 | 0.82 | 1 | |||||
A11 | 0.56 | 0.44 | 0.36 | 0.33 | 0.48 | 0.68 | 0.86 | 0.90 | 0.82 | 0.99 | 1 | ||||
A12 | 0.56 | 0.59 | 0.04 | 0.14 | 0.18 | 0.72 | 0.59 | 0.71 | 0.66 | 0.70 | 0.70 | 1 | |||
A13 | 0.09 | 0.00 | 0.20 | 0.15 | 0.39 | 0.18 | 0.30 | 0.36 | 0.20 | 0.31 | 0.31 | 0.16 | 1 | ||
A14 | 0.53 | 0.47 | 0.25 | 0.26 | 0.43 | 0.65 | 0.83 | 0.96 | 0.83 | 0.93 | 0.93 | 0.68 | 0.48 | 1 | |
A15 | 0.74 | 0.50 | −0.21 | 0.24 | 0.09 | 0.70 | 0.69 | 0.42 | 0.75 | 0.44 | 0.44 | 0.55 | 0.13 | 0.42 | 1 |
Component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Eigenvalue | 8.3 | 2.1 | 1.3 | 0.87 | 0.57 | 0.53 | 0.41 | 0.36 | 0.25 | 0.12 | 0.06 | 0.03 | 0.01 | 0.002 | 0.0001 |
Variance (%) | 55.3 | 14.3 | 8.9 | 5.8 | 3.8 | 3.5 | 2.7 | 2.4 | 1.7 | 0.83 | 0.40 | 0.23 | 0.11 | 0.013 | 0.0009 |
Cumulative Variance (%) | 55.3 | 69.6 | 78.5 | 84.3 | 88.1 | 91.6 | 94.3 | 96.7 | 98.4 | 99.23 | 99.63 | 99.86 | 99.97 | 99.98 | 100.00 |
PCA | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dim1 | 0.75 | 0.59 | 0.19 | 0.41 | 0.48 | 0.86 | 0.93 | 0.88 | 0.91 | 0.93 | 0.93 | 0.78 | 0.34 | 0.92 | 0.67 |
Dim2 | −0.34 | −0.46 | 0.79 | 0.23 | 0.64 | −0.22 | −0.04 | 0.15 | −0.18 | 0.21 | 0.21 | −0.21 | 0.48 | 0.19 | −0.50 |
Dim3 | 0.41 | −0.22 | −0.05 | 0.67 | 0.40 | 0.32 | 0.12 | −0.38 | −0.10 | −0.17 | −0.18 | −0.22 | −0.05 | −0.26 | 0.24 |
Method | CC | Method | CC |
---|---|---|---|
Average linkage method | 0.923 | Nearest neighbor algorithm | 0.902 |
Ward’s method | 0.864 | Median method | 0.891 |
Cluster | Countries |
---|---|
Cluster 1 | France, Germany |
Cluster 2 | Sweden, Italy, Spain |
Cluster 3 | Belgium, Netherlands, Luxembourg, Denmark, Ireland |
Cluster 4 | Poland, Romania, Latvia, Lithuania, Estonia, Slovac Republic, Croatia, Hungary, Bulgaria, Malta, Austria, Slovenia, Cyprus, Greece, Finland, Czech Republic, Portugal |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrejiová, M.; Grincova, A.; Marasová, D. Study of the Percentage of Greenhouse Gas Emissions from Aviation in the EU-27 Countries by Applying Multiple-Criteria Statistical Methods. Int. J. Environ. Res. Public Health 2020, 17, 3759. https://doi.org/10.3390/ijerph17113759
Andrejiová M, Grincova A, Marasová D. Study of the Percentage of Greenhouse Gas Emissions from Aviation in the EU-27 Countries by Applying Multiple-Criteria Statistical Methods. International Journal of Environmental Research and Public Health. 2020; 17(11):3759. https://doi.org/10.3390/ijerph17113759
Chicago/Turabian StyleAndrejiová, Miriam, Anna Grincova, and Daniela Marasová. 2020. "Study of the Percentage of Greenhouse Gas Emissions from Aviation in the EU-27 Countries by Applying Multiple-Criteria Statistical Methods" International Journal of Environmental Research and Public Health 17, no. 11: 3759. https://doi.org/10.3390/ijerph17113759
APA StyleAndrejiová, M., Grincova, A., & Marasová, D. (2020). Study of the Percentage of Greenhouse Gas Emissions from Aviation in the EU-27 Countries by Applying Multiple-Criteria Statistical Methods. International Journal of Environmental Research and Public Health, 17(11), 3759. https://doi.org/10.3390/ijerph17113759