Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation
Abstract
:1. Introduction
Study Objectives
2. Materials and Methods
2.1. Test Specimens
2.2. Aerosol Generation and Collection
2.3. Coil Resistance Testing Apparatus
2.4. Data Acquisition
2.5. Puffing Profile
3. Results
3.1. Illustration of Coil Lifetime
3.2. Impact of Initial Coil Resistance on Coil Lifetime and TPM Yield
3.3. Impact of Initial Pod Mass on Coil Lifetime and Coil Resistance Variation
3.4. Impact of Initial Pod Mass on TPM Yield
4. Discussion
4.1. Why Did Initial Coil Resistance Not Affect TPM Yield?
4.2. What Are the Mechanisms of Coil Failure?
4.3. Potential Health Impact of Coil Failure and Product Misuse
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cirillo, S.; Urena, J.F.; Lambert, J.D.; Vivarelli, F.; Canistro, D.; Paolini, M.; Cardenia, V.; Rodriguez-Estrada, M.T.; Richie, J.P.; Elias, R.J. Impact of electronic cigarette heating coil resistance on the production of reactive carbonyls, reactive oxygen species and induction of cytotoxicity in human lung cancer cells in vitro. Regul Toxicol Pharm. 2019, 109, 104500. [Google Scholar] [CrossRef]
- Cirillo, S.; Vivarelli, F.; Turrini, E.; Fimognari, C.; Burattini, S.; Falcieri, E.; Rocchi, M.B.L.; Cardenia, V.; Rodriguez-Estrada, M.T.; Paolini, M. The Customizable E-cigarette Resistance Influences Toxicological Outcomes: Lung Degeneration, Inflammation, and Oxidative Stress-Induced in a Rat Model. Toxicol. Sci. 2019, 172, 132–145. [Google Scholar] [CrossRef]
- Gillman, I.G.; Kistler, K.A.; Stewart, E.W.; Paolantonio, A.R. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 2016, 75, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Hiler, M.; Karaoghlanian, N.; Talih, S.; Maloney, S.; Breland, A.; Shihadeh, A.; Eissenberg, T. Effects of electronic cigarette heating coil resistance and liquid nicotine concentration on user nicotine delivery, heart rate, subjective effects, puff topography, and liquid consumption. Exp. Clin. Psychopharmacol. 2019, 28, 527–539. [Google Scholar] [CrossRef]
- Soulet, S.; Duquesne, M.; Toutain, J.; Pairaud, C.; Lalo, H. Influence of Coil Power Ranges on the E-Liquid Consumption in Vaping Devices. Int. J. Environ. Res. Public Health 2018, 15, 1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitzer, Z.T.; Goel, R.; Reilly, S.M.; Foulds, J.; Muscat, J.; Elias, R.J.; Richie, J.P., Jr. Effects of solvent and temperature on free radical formation in electronic cigarette aerosols. Chem. Res. Toxicol. 2018, 31, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Behar, R.Z.; Luo, W.; McWhirter, K.J.; Pankow, J.F.; Talbot, P. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Farsalinos, K.E.; Voudris, V. Do flavouring compounds contribute to aldehyde emissions in e-cigarettes? Food Chem. Toxicol. 2018, 115, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Eddingsaas, N.; Pagano, T.; Cummings, C.; Rahman, I.; Robinson, R.; Hensel, E. Qualitative analysis of e-liquid emissions as a function of flavor additives using two aerosol capture methods. Int. J. Environ. Res. Public Health 2018, 15, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, R.J.; Eddingsaas, N.C.; DiFrancesco, A.G.; Jayasekera, S.; Hensel Jr, E.C. A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. PLoS ONE 2018, 13, e0206341. [Google Scholar] [CrossRef]
- Kosmider, L.; Sobczak, A.; Fik, M.; Knysak, J.; Zaciera, M.; Kurek, J.; Goniewicz, M.L. Carbonyl compounds in electronic cigarette vapors: Effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 2014, 16, 1319–1326. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Spyrou, A.; Tsimopoulou, K.; Stefopoulos, C.; Romagna, G.; Voudris, V. Nicotine absorption from electronic cigarette use: Comparison between first and new-generation devices. Sci. Rep. 2014, 4, 4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Irshad, H.; Dye, W.W.; Wu, G.; Tellez, C.S.; Belinsky, S.A. Voltage and e-liquid composition affect nicotine deposition within the oral cavity and carbonyl formation. Tob. Control 2020. [Google Scholar] [CrossRef] [PubMed]
- Hensel, E.C.; Eddingsaas, N.C.; DiFrancesco, A.G.; Jayasekera, S.; O’Dea, S.; Robinson, R.J. Framework to estimate total particulate mass and nicotine delivered to E-cig users from natural environment monitoring data. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Robinson, R.J.; Hensel, E.C. Behavior-based yield for electronic cigarette users of different strength eliquids based on natural environment topography. Inhal. Toxicol. 2019, 31, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.; Hensel, E.; Al-Olayan, A.; Nonnemaker, J.; Lee, Y. Effect of e-liquid flavor on electronic cigarette topography and consumption behavior in a 2-week natural environment switching study. PLoS ONE 2018, 13, e0196640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, Q.M.; Hensel, E.C.; Robinson, R.J. Method for Quantifying Variation in the Resistance of Electronic Cigarette Coils. Int. J. Environ. Res. Public Health 2020, 17, 7779. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.; Dang, M.; Kim, J.; Talbot, P. Nicotine Concentrations in Electronic Cigarette Refill and Do-It-Yourself Fluids. Nicotine Tob. Res. 2014, 17, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Goniewicz, M.; Yu, S.; Kim, B.; Gupta, R. Variations in Label Information and Nicotine Levels in Electronic Cigarette Refill Liquids in South Korea: Regulation Challenges. Int. J. Environ. Res. Public Health 2015, 12, 4859–4868. [Google Scholar] [CrossRef] [Green Version]
- Goniewicz, M.L.; Hajek, P.; McRobbie, H. Nicotine content of electronic cigarettes, its release in vapour and its consistency across batches: Regulatory implications: Nicotine content of electronic cigarettes. Addiction 2014, 109, 500–507. [Google Scholar] [CrossRef]
- Pagano, T.; DiFrancesco, A.G.; Smith, S.B.; George, J.; Wink, G.; Rahman, I.; Robinson, R.J. Determination of nicotine content and delivery in disposable electronic cigarettes available in the United States by gas chromatography-mass spectrometry. Nicotine Tob. Res. 2016, 18, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Kosmider, L.; Cox, S.; Zaciera, M.; Kurek, J.; Goniewicz, M.L.; McRobbie, H.; Kimber, C.; Dawkins, L. Daily exposure to formaldehyde and acetaldehyde and potential health risk associated with use of high and low nicotine e-liquid concentrations. Sci. Rep. 2020, 10, 6546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuse Website. Available online: https://vusevapor.com/alto-complete-kit (accessed on 4 October 2020).
- Cullen, K.A.; Gentzke, A.S.; Sawdey, M.D.; Chang, J.T.; Anic, G.M.; Wang, T.W.; Creamer, M.R.; Jamal, A.; Ambrose, B.K.; King, B.A. E-Cigarette use among youth in the United States, 2019. JAMA 2019, 322, 2095–2103. [Google Scholar] [CrossRef]
- Tan, A.S.; Soneji, S.S.; Choi, K.; Moran, M.B. Prevalence of using pod-based vaping devices by brand among youth and young adults. Tob. Control 2020, 29, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Hensel, E.C.; Jayasekera, S.; Robinson, R.J. Accounting for effects of system dynamics to improve accuracy of emissions reported in e-cig vaping machines. Inhal. Toxicol. 2018, 30, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Mettler Toledo Analytical Balance Operating Instructions AE240 Dual Range Balance. Available online: https://www.mt.com/de/en/home/library/operating-instructions/laboratory-weighing/AE240_BA.html (accessed on 21 November 2020).
- Sarles, S.E. Development of Topography Monitors for Inhaled Nicotine Delivery Systems. Master’s Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2019. [Google Scholar]
- Saleh, Q.; Hensel, E.C.; Robinson, R. Coil Resistance Testing Apparatus for VUSE ALTO. Available online: https://dx.doi.org/10.17504/protocols.io.bibnkame (accessed on 23 October 2020).
- Digital Multimeters 34460A, 34461A, 34465A (6½ Digit), 34470A (7½ Digit). Available online: https://www.keysight.com/us/en/assets/7018-03846/data-sheets/5991-1983.pdf (accessed on 4 October 2020).
- Saleh, Q.; Hensel, E.C.; Eddingsaas, N.C.; Robinson, R. Measure Effects of Manufacturing Variations of ENDS on coil Lifetime and Aerosol Generation. Available online: https://dx.doi.org/10.17504/protocols.io.brbvm2n6 (accessed on 17 April 2021).
- Nelson, W. Accelerated Life Testing-Step-Stress Models and Data Analyses. IEEE Trans. Reliab. 1980, 29, 103–108. [Google Scholar] [CrossRef]
- Starr, C.D. Life Testing of Enclosed Heating Elements. J. Test. Eval. 1975, 3, 278–288. [Google Scholar] [CrossRef]
- CORESTA Recommended Method No81, 2015. Routine Analytical Machine for e-Cigarette Aerosol Generation and Collection–Definitions and Standard Conditions. Available online: https://www.coresta.org/sites/default/files/technical_documents/main/CRM_81.pdf (accessed on 15 September 2020).
- Vuse/ALTO FAQ. Available online: https://vusevapor.com/faqs#vuse-alto (accessed on 15 September 2020).
- Henry, J.R.C.; Philippe, A.F. Aerosol Delivery System and Related Method, Apparatus, and Computer Program Product for Providing Control Information to an Aerosol Delivery Device via a Cartridge. U.S. Patent No. 9,597,466, 21 March 2017. [Google Scholar]
- Galloway, M.R.; Kimsey, G.; East, A.M.; Henry, J.R.R.C.; Anderson, K.W.; Ingham, S.; Ampolini, F.P. Heating Control Arrangement for an Electronic Smoking Article and Associated System and Method. U.S. Patent No. 9,423,152, 23 August 2016. [Google Scholar]
- Talih, S.; Salman, R.; El-Hage, R.; Karam, E.; Salam, S.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Shihadeh, A. A comparison of the electrical characteristics, liquid composition, and toxicant emissions of JUUL USA and JUUL UK e-cigarettes. Sci. Rep. 2020, 10, 7322. [Google Scholar] [CrossRef]
- Talih, S.; Salman, R.; El-Hage, R.; Karam, E.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Shihadeh, A. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob. Control 2019, 28, 678–680. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C.; et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.E.; Navas-Acien, A.; et al. Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Navas-Acien, A.; Ilievski, V.; Slavkovich, V.; Olmedo, P.; Adria-Mora, B.; Domingo-Relloso, A.; Aherrera, A.; Kleiman, N.J.; Rule, A.M.; et al. Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environ. Res. 2019, 174, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Voudris, V.; Poulas, K. Are metals emitted from electronic cigarettes a reason for health concern? A risk-assessment analysis of currently available literature. Int. J. Environ. Res. Public Health 2015, 12, 5215–5232. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, Q.M.; Hensel, E.C.; Eddingsaas, N.C.; Robinson, R.J. Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation. Int. J. Environ. Res. Public Health 2021, 18, 4380. https://doi.org/10.3390/ijerph18084380
Saleh QM, Hensel EC, Eddingsaas NC, Robinson RJ. Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation. International Journal of Environmental Research and Public Health. 2021; 18(8):4380. https://doi.org/10.3390/ijerph18084380
Chicago/Turabian StyleSaleh, Qutaiba M., Edward C. Hensel, Nathan C. Eddingsaas, and Risa J. Robinson. 2021. "Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation" International Journal of Environmental Research and Public Health 18, no. 8: 4380. https://doi.org/10.3390/ijerph18084380