Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis of Monitoring Parameters
Un-Ionized Ammonia Determination from Total Ammonium Nitrogen (TAN)
2.3. Weighted Arithmetic Water Quality Index Method (WA WQI)
Methodology in Calculating WQI Using the WA WQI Method
2.4. Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI)
CCME WQI Calculation Methods
2.5. Evaluation of the Trophic Status Using Carlson Trophic State Index (TSI) Model
Method to Determine Trophic State Index
3. Result and Discussion
3.1. Water Quality Status for Envisioned Purposes
3.1.1. pH
3.1.2. Turbidity
3.1.3. Nitrate (NO3−), Nitrate-Nitrogen (NO3-N) and Nitrite (NO2−), Nitrite Nitrogen (NO2-N)
Nitrite-Nitrogen (NO2-N)
3.1.4. Dissolved Oxygen (DO)
3.1.5. Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD5)
Chemical Oxygen Demand (COD)
Biological Oxygen Demand (BOD5)
3.1.6. Total Ammonia Nitrogen (NH4-N + NH3-N)
3.1.7. Soluble Reactive Phosphorus (SRP)
3.2. Summary of Irrigation Indices
3.2.1. Total Dissolved Solids (TDS) and Electrical Conductivity (EC)
3.2.2. Sodium Adsorption Ratio (SAR) and Kelly Ratio (KR)
3.2.3. Soluble Sodium Percentage (SSP) and Magnesium Adsorption Ratio (MAR)
3.3. Determination of WQI and Status of Lake Hawassa Watershed
3.3.1. Weighted Arithmetic Water Quality Index (WA WQI)
3.3.2. Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI)
3.4. Estimation of the Trophic Status of Lake Hawassa
3.4.1. Analysis of Trophic State Variables
Total Phosphorus (TP) and Total Nitrogen (TN)
Total Nitrogen to Total Phosphorus (TN:TP) Ratio
Secchi Depth (SD) Chlorophyll a (Chl-a)
3.4.2. Evaluation of the Trophic Status Using Carlson Trophic State Index (TSI) Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Zadeh, H.T. Multivariate Statistical Analysis of Surface Water Quality Based on Correlations and Variations in the Data Set. Desalination 2010, 260, 129–136. [Google Scholar] [CrossRef]
- Olal, F.O. Assessment of the Impact of Urban Runoff from Migori Town on the Concentration Levels of Selected Heavy Metals in Migori. J. Environ. Earth Sci. 2015, 5, 24–30. [Google Scholar]
- Fan, X.; Cui, B.; Zhao, H.; Zhang, Z.; Zhang, H. Assessment of River Water Quality in Pearl River Delta Using Multivariate Statistical Techniques. Procedia Environ. Sci. 2010, 2, 1220–1234. [Google Scholar] [CrossRef] [Green Version]
- Duressa, G.; Assefa, F.; Jida, M. Assessment of Bacteriological and Physicochemical Quality of Drinking Water from Source to Household Tap Connection in Nekemte, Oromia, Ethiopia. Hindawi J. Environ. Public Health 2019, 2019, 2129792. [Google Scholar] [CrossRef] [PubMed]
- Angello, Z.A.; Behailu, B.M.; Tränckner, J. Selection of Optimum Pollution Load Reduction and Water Quality Improvement Approaches Using Scenario Based Water Quality Modeling in Little Akaki River, Ethiopia. Water 2021, 13, 584. [Google Scholar] [CrossRef]
- Worako, A.W. Physicochemical and Biological Water Quality Assessment of Lake Hawassa for Multiple Designated Water Uses. J. Urban Environ. Eng. 2015, 9, 146–157. [Google Scholar] [CrossRef]
- Gilbertson, M.; Carpenter, D.O. An Ecosystem Approach to the Health Effects of Mercury in the Great Lakes Basin Ecosystem. Environ. Res. 2004, 95, 240–246. [Google Scholar] [CrossRef]
- Kassaye, Y.A.; Skipperud, L.; Meland, S.; Dadebo, E.; Einset, J.; Salbu, B. Trace Element Mobility and Transfer to Vegetation within the Ethiopian Rift Valley Lake Areas. J. Environ. Monit. 2012, 14, 2698–2709. [Google Scholar] [CrossRef]
- Zigde, H.; Tsegaye, M.E. Evaluation of the Current Water Quality of Lake Hawassa, Ethiopia. Int. J. Water Resour. Environ. Eng. 2019, 11, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Zemed, M.; Mogesse, B.; Reddythota, D. Evaluation of Water Quality and Eutrophication Status of Hawassa Lake Based on Different Water Quality Indices. Appl. Water Sci. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Lakshmi, E.; Madhu, G. An Assessment of Water Quality in River Periyar, Kerala, South India Using Water Quality Index. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 11–16. [Google Scholar] [CrossRef]
- Puri, P.J.; Yenkie, M.K.; Rana, D.B.; Meshram, S.U. Application of Water Quality Index (WQI) for the Assessment of Surface Water Quality (Ambazari Lake). Eur. J. Exp. Biol. 2015, 5, 37–52. [Google Scholar]
- Sarkar, C.; Abbasi, S.A. Qualidex—A New Software for Generating Water Quality Indice. Environ. Monit. Assess. 2006, 119, 201–231. [Google Scholar] [CrossRef] [PubMed]
- Briciu, A.; Graur, A.; Oprea, D.I. Water Quality Index of Suceava River in Suceava City Metropolitan Area. Water 2020, 12, 2111. [Google Scholar] [CrossRef]
- Bonanno, G.; Giudice, R.L. Application of Two Quality Indices as Monitoring and Management Tools of Rivers. Case Study: The Imera Meridionale River, Italy. Springer Sci. Media Environ. Manag. 2010, 45, 856–867. [Google Scholar] [CrossRef]
- CCME. Canadian Water Quality Index 1.0 Technical Report and User’s Manual. In Canadian Water Quality Guidelines for the Protection of Aquatic Life; Canadian Council of Ministers of the Environment: Ontario, ON, Canada, 2001; pp. 1–5. [Google Scholar]
- Koçer, M.T.; Sevgili, H. Parameters Selection for Water Quality Index in the Assessment of the Environmental Impacts of Land-Based Trout Farms. Ecol. Indic. 2014, 36, 672–681. [Google Scholar] [CrossRef]
- Ocampo-Duque, W.; Ferré-Huguet, N.; Domingo, J.L.; Schuhmacher, M. Assessing Water Quality in Rivers with Fuzzy Inference Systems: A Case Study. Environ. Int. 2006, 32, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Boyacioglu, H. Development of a Water Quality Index Based on a European Classification Scheme. Water SA 2007, 33, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Chandra, D.S.; Asadi, S.; Raju, M.V. Estimation of Water Quality Index by Weighted Arithmetic Water Quality Index Method: A Model Study. Int. J. Civ. Eng. Technol. 2017, 8, 1215–1222. [Google Scholar]
- Vollenweider, R.A.; Kerekes, J. Eutrophication of Waters: Monitoring, Assessment and Control; Organization for Economic Co-Operation and Development (OECD): Paris, France, 1982; p. 156. [Google Scholar]
- Kratzer, C.R.; Brezonik, P.L. A Carlson-Type Trophic State Index for Nitrogen in Florida Lakes. Water Resour. Bull. Am. Water Resour. Assoc. 1981, 17, 713–715. [Google Scholar] [CrossRef]
- Boyle, S.O.; Mcdermott, G.; Noklegaard, T.; Wilkes, R. A Simple Index of Trophic Status in Estuaries and Coastal Bays Based on Measurements of PH and Dissolved Oxygen. Estuaries Coasts 2013, 36, 158–173. [Google Scholar] [CrossRef]
- Hailin, Z.; Baoyin, H. Evaluating Lake Eutrophication with Enhanced Thematic Mapper Data in Wuhan. Chin. J. Oceanol. Limnol. 2006, 24, 285–290. [Google Scholar] [CrossRef]
- Köklüa, R.; Alkış, A. A New Statistical Perspective on Trophic Indexes for Shallow Lakes. Water Resour. 2021, 48, 324–330. [Google Scholar] [CrossRef]
- Carlson, R.E. A Trophic State Index for Lakes1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, N.; Krishnaiah, S. Assessment of Trophic Status of Bellandur Lake, Bangalore, India by Using USEPA Technique. Int. J. Curr. Eng. Technol. 2014, 4, 3467–3472. [Google Scholar]
- Mereta, S.T.; Ambelu, A.; Ermias, A.; Abdie, Y.; Moges, M.; Haddis, A.; Hailu, D.; Beyene, H.; Kebede, B.; Mulat, W.L. Effects of Untreated Industrial Effluents on Water Quality and Benthic Macroinvertebrate Assemblages of Lake Hawassa and Its Tributaries, Southern Ethiopia. Afr. J. Aquat. Sci. 2020, 45, 285–295. [Google Scholar] [CrossRef]
- Tilahun, G.; Ahlgren, G. Seasonal Variations in Phytoplankton Biomass and Primary Production in the Ethiopian Rift Valley Lakes Ziway, Awassa and Chamo—The Basis for Fish Production. Limnologica 2010, 40, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Kebede, W.; Tefera, M.; Habitamu, T.; Alemayehu, T. Impact of Land Cover Change on Water Quality and Stream Flow in Lake Hawassa Watershed of Ethiopia. Agric. Sci. 2014, 5, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Tekle-Giorgis, Y. Prediction of Bio-Economically Sustainable Yield and Optimum Fishing Effort for the Nile Tilapia (Oreochromis Niloticus L.) Fishery of Lake Hawassa, Ethiopia. Ethiop. J. Sci. Technol. 2018, 11, 57. [Google Scholar] [CrossRef]
- Ayenew, T.; Becht, R.; van Lieshour, A.; Gebreegziabher, Y.; Legesse, D.; Onyando, J. Hydrodynamics of Topographically Closed Lakes in the Ethio-Kenyan Rift: The Case of Lakes Awassa and Naivasha. J. Spat. Hydrol. 2007, 7, 81–100. [Google Scholar]
- Abiye, T.A. Environmental Resources and Recent Impacts in the Awassa Collapsed Caldera, Main Ethiopian Rift. Quat. Int. 2008, 189, 152–162. [Google Scholar] [CrossRef]
- Abebe, Y.; Bitew, M.; Ayenew, T.; Alo, C.; Cherinet, A.; Dadi, M. Morphometric Change Detection of Lake Hawassa in the Ethiopian Rift Valley. Water 2018, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R.B., Eaton, A.D., Rice, E.W., Brigewater, L.L., Eds.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federati; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thuston, R.V. Aqueous Ammonia Equilibrium Calculations: Effect of PH and Temperature. Fish Res. Board Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Mishra, D.K.; Tripathi, S.; Singh, P. Determination of Water Quality Index and Suitability of Ground Water in a College in Balrampur, U.P. Nat. Environ. Pollut. Technol. 2007, 6, 315–319. [Google Scholar]
- Alobaidy, J.A.; Abid, H.S.; Maulood, B.K. Application of Water Quality Index for Assessment of Dokan Lake Ecosystem, Kurdistan Region, Iraq. J. Water Resour. Prot. 2010, 2, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, D.V.; Take, S.S.; Shirke, S.B. Assessment of Physicochemical Parameters of Well Water of Villages in Roha Tahsil, Dist-Raigad (Maharashtra). Int. J. Appl. Pure Sci. Agric. 2017, 3, 42–47. [Google Scholar] [CrossRef]
- Debels, P.; Figueroa, R.; Urrutia, R.; Barra, R.; Niell, X. Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index. Environ. Monit. Assess. 2005, 110, 301–322. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Water pollu.Cont. Fed. 1965, 37, 300–305. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A Water Quality Index -Crashing the Psychological Barrier. Indic. Environ. Qual. 1972, 173–182. [Google Scholar] [CrossRef]
- Boah, D.K.; Twum, S.B.; Pelig-Ba, K.B. Mathematical Computation of Water Quality Index of Vea Dam in Upper East Region of Ghana. Environ. Sci. 2015, 3, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Yogendra, K.; Puttaiah, E.T. Determination of Water Quality Index and Suitability of an Urban Waterbody in Shimoga Town, Karnataka. In Proceedings of the Taal2007: The 12th World Lake Conference, Jaipur, Rajasthan, India, 28 October–2 November 2007; pp. 342–346. [Google Scholar]
- Tripathy, J.K.; Sahu, K.C. Seasonal Hydrochemistry of Groundwater in the Barrier Spit System of the Chilika Lagoon, India. J. Environ. Hydrol. 2005, 13, 1–9. [Google Scholar]
- Chatterjee, P.R.; Raziuddin, M. Studies on the Water Quality of a Water Body at Asansol town, West Bengal. Nat. Environ. Pollut. Technol. 2007, 6, 289–292. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.; Perera, C. Development of River Water Quality Indices—A Review Arief. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyacioglu, H. Utilization of the Water Quality Index Method as a Classification Tool. Environ. Monit. Assess. 2010, 167, 115–124. [Google Scholar] [CrossRef]
- Sharma, D.; Kansal, A. Water Quality Analysis of River Yamuna Using Water Quality Index in the National Capital Territory, India (2000–2009). Appl. Water Sci. 2011, 1, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.M.K.; Mahesh, M.K.; Sushmitha, B.R. CCME Water Quality Index and Assessment of Physico- Chemical Parameters of Chikkakere, Periyapatna, Mysore District, Karnataka State, India. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3. [Google Scholar] [CrossRef]
- Damo, R.; Icka, P. Evaluation of Water Quality Index for Drinking Water. Pol. J. Environ. Stud. 2013, 22, 1045–1051. [Google Scholar]
- Rabee, A.M.; Hassoon, H.A.; Mohammed, A.J. Application of CCME Water Quality Index to Assess the Suitability of Water for Protection of Aquatic Life in Al- Radwaniyah-2 Drainage in Baghdad Region. J. Al-Nahrain Univ. Sci. 2017, 17, 137–146. [Google Scholar] [CrossRef]
- Mostafaei, A. Application of Multivariate Statistical Methods and Water-Quality Index to Evaluation of Water Quality in the Kashkan River. Environ. Manag. 2014, 53, 865–881. [Google Scholar] [CrossRef]
- Keraga, A.S.; Kiflie, Z.; Engida, A.N. Evaluating Water Quality of Awash River Using Water Quality Index. Int. J. Water Resour. Environ. Eng. 2017, 9, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Teshome, F. Seasonal Water Quality Index and Suitability of the Water Body to Designated Uses at the Eastern Catchment of Lake Hawassa. Environ. Sci. Pollut. Res. 2020, 27, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Marvin, C.; Grapentine, L.; Painter, S. Application of a Sediment Quality Index to the Lower Laurentian Great Lakes. Environ. Monit. Assess. 2004, 91, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nikoo, M.R.; Kerachian, R.; Malakpour-Estalaki, S.; Bashi Azghadi, S.N.; Azimi-Ghadikolaee, M.M. A Probabilistic Water Quality Index for River Water Quality Assessment: A Case Study. Environ. Monit. Assess. 2011. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.P.; Kumar, A.; Rajvanshi, S. Assessment of Trophic State of Lakes: A Case of Mansi Ganga Lake in India. Hydro Nepal J. Water Energy Environ. 2010, 6, 65–72. [Google Scholar] [CrossRef]
- Tan, L.; Cai, Q.; Zhang, H.; Shen, H.; Ye, L. Trophic Status of Tributary Bay Aggregate and Their Relationships with Basin Characteristics in a Large, Subtropical Dendritic Reservoir, China. Fresenius Environ. Bull. 2014, 23, 650–659. [Google Scholar]
- Barki, D.N.; Singa, P. Assessment of Trophic State of Lakes in Terms of Carlson’s Trophic State Index. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 14297–14302. [Google Scholar]
- Lau, S.S.; Lane, S.N. Biological and Chemical Factors Influencing Shallow Lake Eutrophication: A Long-Term Study. Sci. Total Environ. 2002, 288, 167–181. [Google Scholar] [CrossRef]
- Srebotnjak, T.; Polzin, C.; Giljum, S.; Herbert, S.; Lutter, S. Establishing Environmental Sustainability Thresholds and Indicators. Vienna, Austria. Ecol. Inst. SERI 2010, 139. [Google Scholar]
- Gurung, D.P.; Githinji, L.J.; Ankumah, R.O. Assessing the Nitrogen and Phosphorus Loading in the Alabama (USA) River Basin Using PLOAD Model. Air Soil Water Res. 2014, 6, 23–36. [Google Scholar] [CrossRef]
- ESA. Compulsory Ethiopian Standard, Drimking Water Specifications, 1st ed.; CES 58; Ethiopian Standards Agency: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality Fourth Edition Incorporsting the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- EEPA. Guideline Ambient Environment Standards for Ethiopia. Prepared by EPA and UNIDO under ESDI Project US/ETH/99/068/Ethiopia; Ethiopian Environmental Protection Authority: Addis Ababa, Ethiopia, 2003. [Google Scholar]
- Walakira, P.; Okot-Okumu, J. Impact of Industrial Effluents on Water Quality of Streams in Nakawa-Ntinda, Uganda. J. Appl. Sci. Environ. Manag. 2011, 15, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Lammers, J.M.; Reichart, C.J.; Schubert, J.J.; Middelburg, G.J. Carbon Flows in Eutrophic Lake Rotsee: A Experiment C-Labelling. Biogeochemistry 2016, 131, 147–162. [Google Scholar] [CrossRef] [Green Version]
- USEPA. National Management Measures for the Control of Nonpoint Pollution from Agirculture EPA 841-B-03-004; US Environmental Protection Agency Office of Water: Washington, DC, USA, 2003; pp. 243–246.
- Bhateria, R.; Jain, D. Water Quality Assessment of Lake Water: A Review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.; Soo, C.; Heng, T.; Nyanti, L.; Sim, S.; Grinang, J.; Lee, K.S.; Ganyai, T. Water Quality Assessment of Tributaries of Batang Baleh in Sarawak Using Cluster Analysis. Sci. World J. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- HC. Guidelines for Canadian Recreational Water Quality, 3rd ed.; Health Canada: Ottowa, ON, Canada, 2012; ISBN 978-100-20892-3. [Google Scholar]
- Tiwari, A.K.; Singh, A.K. Hydrogeochemical Investigation and Groundwater Quality Assessment of Pratapgarh District, Uttar Pradesh. J. Geol. Soc. India 2014, 83, 329–343. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality, an Introduction; Springer International Publishing: Cham, Switzerland, 2015; pp. 101–112. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, Á. Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Tibebe, D.; Zewge, F.; Lemma, B.; Kassa, Y.; Bhaskarwar, A.N. External Nutrient Load and Determination of the Trophic Status of Lake Ziway. CSVTU Int. J. Biotechnol. Bioinforma. Biomed. 2018, 3, 1–16. [Google Scholar] [CrossRef]
- Fetahi, T. Plankton Communities and Ecology of Tropical Lakes Hayq and Awasa; Ethiopia, Universitat Wien: Vienna, Austria, 2010. [Google Scholar]
- Tamire, G.; Mengistou, S. Macrophyte Species Composition, Distribution and Diversity in Relation to Some Physicochemical Factors in the Littoral Zone of Lake Ziway, Ethiopia. Afr. J. Ecol. 2012, 66–77. [Google Scholar] [CrossRef]
- USEPA. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms, 3rd ed.; United States Environmental Protection Agency, Office of Research and Development: Washingron, DC, USA, 1998.
- Bojarczuk, A.; Jelonkiewicz, Ł.; Lenart-Boroń, A. The Effect of Anthropogenic and Natural Factors on the Prevalence of Physicochemical Parameters of Water and Bacterial Water Quality Indicators along the River Białka, Southern Poland. Environ. Sci. Pollut. Res. 2018, 25, 10102–10114. [Google Scholar] [CrossRef] [Green Version]
- Jothivel, N.; Paul, V.I. International Journal of Modern Research and Reviews Original Article Comparative Physico-Chemical Profiling of Two Coastal Water Bodies from South East Coast of India with Special Reference to Their Pollution Status. Int. J. Mod. Res. Rev. 2014, 2, 544–553. [Google Scholar]
- Kramer, D.L. Dissolved Oxygen and Fish Behavior. Environ. Biol. Fishes 1987, 18, 81–92. [Google Scholar] [CrossRef]
- Franklin, P.A. Dissolved Oxygen Criteria for Freshwater Fish in New Zealand: A Revised Approach. N. Zeal. J. Mar. Freshw. Res. 2014, 48, 112–126. [Google Scholar] [CrossRef]
- Penn, M.R.; Pauer, J.J.; Mihelcic, J.R. Biochemical Oxygen Demand. Environmental and Ecological Chemistry. In Environmental and Ecological Chemistry; Sabjic, A., Ed.; UNESCO-EOLSS: Wisconsin, DC, USA, 2013; Volume II, pp. 278–297. [Google Scholar]
- Breen, B.; Curtis, J.; Hynes, S. Water Quality and Recreational Use of Public Waterways. J. Environ. Econ. Policy 2018, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Downing, K.M.; Merkens, J.C. The Influence of Dissolved-Oxygen Concentration on the Toxicity of Un-Ionized Ammonia to Rainbow Trout (Salmo GairdnerII Richardson). Ann. Appl. Biol. 1955, 43, 243–246. [Google Scholar] [CrossRef]
- Körner, S.; Sanjeev, K.D.; Veenstra, S.; Vermaat, J.E. The Effect of PH Variation at the Ammonium/Ammonia Equilibrium in Wastewater and Its Toxicity to Lemna Gibba. Aquat. Bot. 2001, 71, 71–78. [Google Scholar] [CrossRef]
- Molins-Legua, C.; Meseguer-Lloret, S.; Moliner-Martinez, Y.; Campıns-Falco, P. A Guide for Selecting the Most Appropriate Method for Ammonium Determination in Water Analysis. Trends Anal. Chem. 2006, 25, 282–290. [Google Scholar] [CrossRef]
- Lin, K.; Zhu, Y.; Zhang, Y.; Lin, H. Determination of Ammonia Nitrogen in Natural Waters: Recent Advances and Applications. Trends Environ. Anal. Chem. 2019, 24, e00073. [Google Scholar] [CrossRef]
- Thurston, R.V.; Russo, R.C. Ammonia Toxicity to Fishes. Effect of PH on the Toxicity of the Un-Ionized Ammonia Species. Am. Chem. Soc. 1981, 15, 837–840. [Google Scholar]
- Liew, H.J.; Sinha, A.K.; Nawatab, C.M.; Ronny, B.; Wood, C.M.; Gudrun, D.B. Differential Responses in Ammonia Excretion, Sodium Fluxes and Gill Permeability Explain Different Sensitivities to Acute High Environmental Ammonia in Three Freshwater Teleosts. Aquat. Toxicol. 2020, 126, 63–76. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, S.; Li, S.; Zhang, L.; Wang, G.; Zhang, L.; Wang, J.; Li, Z. The Cycle of Nitrogen in River Systems: Sources, Transformation and Flux. Environ. Sci. Process. Impacts 2018, 20. [Google Scholar] [CrossRef] [PubMed]
- Francis-floyd, R.; Watson, C.; Petty, D.; Pouder, D.B. Ammonia in Aquatic Systems; Institute of Food and Agricultural Sciences (IFAS): Gainesville, FL, USA, 2014. [Google Scholar]
- Eddy, F.B. Ammonia in Estuaries and Effects on Fish. J. Fish Biol. 2005, 67, 1495–1513. [Google Scholar] [CrossRef]
- Zinabu, G.M.; Kebede-Westhead, E.; Desta, Z. Long-Term Changes in Chemical Features of Waters of Seven Ethiopian Rift-Valley Lakes. Hydrobiol. Kluwer Acad. Publ. 2002, 477, 81–91. [Google Scholar] [CrossRef]
- Fadiran, A.O.; Dlamini, S.C.; Mavuso, A. A Comparative Study of the Phosphate Levels in Some Surface and Ground Water Bodies of Swaziland. Bull. Chem. Soc. Ethiop. 2008, 22, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Alagbe, S.A. Preliminary Evaluation of Hydrochemistry of the Kalambaina Formation, Sokoto Basin, Nigeria. Environ. Geol. 2006, 51, 39–45. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture. Food and Agriculture Organization of the United Nations; FAO Irrigation and Drainage: Rome, Italy, 1985. [Google Scholar]
- Hengsdijk, H.; Jansen, H. Agricultural Development in the Central Ethiopian Rift Valley: A Desk-Study Agricultural Development in the Central Ethiopian Rift Valley: A Desk-Study on Water-Related Issues and Knowledge to Support a Policy Dialogue; Plant Research International B.V.: Wageningen, The Netherlands, 2006. [Google Scholar]
- Kumar, S.V.; Amarender, B.; Dhakate, R.; Sankaran, S.; Kumar, K.R. Assessment of Groundwater Quality for Drinking and Irrigation Use in Shallow Hard Rock Aquifer of Pudunagaram, Palakkad District Kerala. Appl. Water Sci. 2016, 6, 149–167. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Solids; Soil and Water Conservative Research Branch, Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar] [CrossRef]
- Singh, A.; Panda, S.N. Effect of Saline Irrigation Water on Mustard (Brassica Juncea) Crop Yield and Soil Salinity in a Semi-Arid Area of North India. Exp. Agric. 2011, 48, 99–110. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality Fourth Edition, 4th ed.; World Health organization: Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1. [Google Scholar]
- Zouahri, A.; Dakak, H.; Douaik, A.; El Khadir, M.; Moussadek, R. Evaluation of Groundwater Suitability for Irrigation in the Skhirat Region, Northwest of Morocco. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef]
- Kelly, W.P. Use of Saline Irrigation Water; University of Calfornia: Berkeley, CA, USA, 1963; Volume 17. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Waters; Department of Agriculture, United States: Washington, DC, USA, 1955; Volume 969. [Google Scholar]
- Thapa, R.; Gupta, S.; Reddy, D.V.; Kaur, H. An Evaluation of Irrigation Water Suitability in the Dwarka River Basin through the Use of GIS-Based Modelling. Environ. Earth Sci. 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Worako, A.W. Evaluation of the Water Quality Status of Lake Hawassa by Using Water Quality Index, Southern Ethiopia. Int. J. Water Resour. Environ. Eng. 2015, 7, 58–65. [Google Scholar] [CrossRef]
- USEPA. An Ecological Assessement of Western Streams and Rivers; EPA 620/R-05/005; United States Environmental protection Agency, Office of Research and Development: Washington, DC, USA, 2005. [Google Scholar]
- Smith, V.H. Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton. Science 1983, 221, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.M.; Reddy, K.R.; James, R.T. Internal Nutrient Loads from Sediments in a Shallow, Subtropical Lake. Lake Reserv. Manag. 2005, 21, 338–349. [Google Scholar] [CrossRef]
- Smith, L.M.; Engle, V.D.; Summers, J.K. Assessing Water Clarity as a Component of Water Quality in Gulf of Mexico Estuaries. Environ. Monit. Assess. 2006, 115, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Fetahi, T.; Mengistou, S. Trophic Analysis of Lake Awassa (Ethiopia) Using Mass-Balance Ecopath Model. Ecol. Model. 2007, 201, 398–408. [Google Scholar] [CrossRef]
Code | Monitoring Sites | Latitude (Y) | Longitude (X) | Altitude (Z) |
---|---|---|---|---|
MS1 | Wesha river | 783,404 | 457,401 | 1746 |
MS2 | Hallo river | 779,736 | 457,149 | 1724 |
MS3 | Wedessa river | 774,914 | 454,915 | 1764 |
MS4 | BGI effluent discharge site | 776,594 | 446,537 | 1686 |
MS5 | Moha soft drinks factory | 776,274 | 446,603 | 1671 |
MS6 | Tikur-Wuha river | 783,685 | 445,564 | 1677 |
MS7 | Amora-Gedel (Fish market) | 778,279 | 439,983 | 1676 |
MS8 | Amora-Gedel (Gudumale) | 778,862 | 439,661 | 1672 |
MS9 | Nearby Lewi resort | 779,941 | 439,791 | 1683 |
MS10 | Central part of lake (Towards FH) | 780,752 | 441,161 | 1681 |
MS11 | Fikerhayk(FH) Recreation center | 780,917 | 439,074 | 1690 |
MS12 | Center of the lake (towards HR) | 781,802 | 439,253 | 1682 |
MS13 | Nearby Haile resort | 783,146 | 440,463 | 1685 |
MS14 | Tikur-Wuha site | 784,000 | 441,060 | 1675 |
MS15 | Referral Hospital | 777,088 | 440,668 | 1686 |
MS16 | Ali-Girma site (opposite to HR) | 787,245 | 438,164 | 1690 |
MS17 | Sima site (opposite to mount tabor) | 782,325 | 436,885 | 1686 |
MS18 | Dore-Bafana Betemengist | 775,606 | 436,876 | 1683 |
MS19 | Hawassa Industrial Park | 782,669 | 442,464 | 1690 |
Parameters | Analytical Method and Instrument |
---|---|
pH, EC, TDS and Temperature | Portable multi-parameter analyzer, Zoto, Germany |
Turbidity | Nephelometeric (Hack, model 2100A) |
DO | Modified Winkler |
BOD5 | Manometric, BOD sensor |
COD | Closed Reflux, Colorimetric |
SRP and TP | Spectrophotometrically by molybdovandate, HACH, model DR3900 |
Secchi depth | Standard Secchi disk of 20 cm, Secchi disk, LaMotte 20 cmD, USA |
NO3− | Photometric measurements, Wagtech Photometer 7100 at 520 nm wavelength |
NO2- and TAN (NH4+-N + NH3-N) | Spectrophotometrically by salicylate, (Hach, model DR3900) |
TN | Spectrophotometrically by TNT Persulfate digestion, (HACH, model DR3900) |
Mg+2, Na+, K+ and Ca+2 | Atomic Absorption Spectrophotometer, AAS, (Hach, model NOVAA400) |
WQI | Water Quality Rating |
---|---|
0–25 | Excellent |
26–50 | Good |
51–75 | Poor |
76–100 | Very poor |
>100 | Unsuitable |
WQI | Water Quality Status | Remark |
---|---|---|
95–100 | Excellent | Water quality is protected with a virtual absence of threat or impairment; conditions very close to the natural or pristine conditions. These index value can be obtained if all measurements are within objectives virtually all of the time. |
80–94 | Good | Water quality is protected with only a minor degree of threat or impairment: conditions rarely depart from natural or desirable levels. |
65–79 | Fair | Water quality is usually protected but occasionally threatened or impaired; conditions sometimes depart from natural or desirable levels. |
45–64 | Marginal | Water quality is frequently threatened or impaired; conditions often depart from natural or desirable levels. |
0–44 | Poor | Water quality is almost always threatened or impaired; conditions usually depart from natural/desirable level. |
TSI | Classification | Description |
---|---|---|
<40 | Oligotrophic | Deep lakes still exhibit classical oligotrophy, but some shallower lakes become anoxic in the hypolimnion during the summer. |
40 ≤ TSI < 50 | Mesotrophic | Water moderately clear, but increasing pro ability of anoxic in hypolimnion during summer. |
50 ≤ TSI < 70 | Eutrophic | Dominance of blue-green algae, algal scum probable, extensive macrophyte problems. |
TSI ≥ 70 | Hypereutrophic | Algal scum, summer fish kills, few macrophytes, dominance of rough fish. |
Trophic State | TN (mg/L) | TP (mg/L) |
---|---|---|
Oligotrophic | <0.35 | <0.01 |
Mesotrophic | 0.35 ≤ TN < 0.65 | 0.01 ≤ TP < 0.03 |
Eutrophic | 0.65 ≤ TN < 1.2 | 0.03 ≤ TP < 0.1 |
Hypertrophic | TN > 1.2 | TP > 0.1 |
Parameters | S1/S2/S3/S4/S5 | MS1 | MS2 | MS3 | MS4 | MS5 | MS6 | MS7 | MS8 | MS9 | MS10 | MS11 | MS12 | MS13 | MS14 | MS15 | MS16 | MS17 | MS18 | MS19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Turbidity | 5 ac 50 d | 11.7 (3.7) | 27.3 (18.3) | 34.8 (8.7) | 20.5 (14.2) | 21.7 (10.1) | 12.2 (0.2) | 7.4 (2.5) | 7.4 (0.4) | 5.7 (1.3) | 6.1 (0.5) | 7.2 (0.1) | 6 (0.8) | 7.8 (1.7) | 7.3 (3.4) | 14 (1.7) | 8.8 (0.2) | 7.6 (0.1) | 46.5 (5.9) | 4.2 (0.6) |
TDS | 1000, 2000 ab | 84.3 (6.9) | 83 (24) | 79 (11.7) | 1704 (183) | 2129 (312) | 224 (132) | 391 (4) | 484 (48.6) | 417 (37) | 458 (21) | 464 (2.1) | 464 (4.7) | 412 (0.8) | 247 (157) | 1491 (199) | 476 (9.2) | 475 (5.1) | 518 (61) | 776 (409) |
EC | 1500, 3000 ab | 169 (14) | 166 (48) | 158 (23) | 3768 (81) | 4257 (623) | 446 (266) | 776 (16) | 835 (23) | 822 (104) | 932 (33) | 924 (62) | 928 (10) | 799 (11) | 491 (316) | 2984 (399) | 882 (75) | 908 (38) | 1084 (69) | 1614 (6.3) |
pH | 6.5–9 abcd | 7.6 (0.8) | 8.1 (0.8) | 8 (0.4) | 7.6 (0.7) | 9.1 (0.5) | 7.5 (0.03) | 8.9 (0.1) | 9 (0.1) | 8.7 (0.001) | 8.7 (0.2) | 8.7 (0.1) | 8.6 (0.04) | 8.5 (0.1) | 7.4 (0.1) | 8.1 (0.2) | 8.5 (0.2) | 8.6 (0.02) | 8.6 (0.2) | 8.3 (0.1) |
NH4-N | 2.33 (3.23) | 1.07 (1.24) | 1.0 (1.26) | 6.18 (4.1) | 5.09 (1.56) | 0.28 (0.29) | 1.87 (2.18) | 7.35 (3.52) | 0.83 (0.67) | 0.13 (0.003) | 4.1 (0.6) | 1.72 (0.53) | 0.66 (0.72) | 1.85 (0.93) | 16.81 (14.55) | 3.56 (0.01) | 3.1 (0.01) | 0.65 (0.18) | 0.12 (0.09) | |
NH3 | 1.5, 1.37 b | 0.14 (0.2) | 0.19 (0.27) | 0.1 (0.13) | 0.43 (0.36) | 8.9 (6.31) | 0.01 (0.01) | 1.23 (1.52) | 4.47 (1.29) | 0.29 (0.22) | 0.04 (0.01) | 1.34 (0.48) | 0.46 (0.14) | 0.14 (0.14) | 0.41 (0.15) | 2.25 (2.36) | 0.75 (0.22) | 0.95 (0.07) | 0.23 (0.14) | 0.02 (0.01) |
NO2− | 3 a | 0.03 (0.01) | 0.08 (0.08) | 0.08 (0.01) | 0.02 (0.01) | 0.13 (0.01) | 0.06 (0.01) | 0.03 (0.01) | 0.03 (0.002) | 0.14 (0.15) | 0.03 (0.03) | 0.02 (0.01) | 0.02 (0.02) | 0.04 (0.04) | 0.02 (0.001) | 0.03 (0.02) | 0.02 (0.01) | 0.08 (0.02) | 0.04 (0.02) | 0.08 (0.004) |
NO3− | 45, 1 ac | 2.9 (0.02) | 1.6 (0.04) | 3.1 (0.5) | 12.2 (0.1) | 2.3 (0.8) | 3.0 (2.3) | 3.6 (0.7) | 3.7 (0.7) | 11.2 (3.3) | 3.1 (0.8) | 17.4 (6.8) | 4.2 (0.4) | 19.4 (7.8) | 4.5 (1.6) | 11.5 (6) | 4 (0.4) | 4.4 (0.02) | 4.2 (0.02) | 3.8 (0.5) |
SRP | 5 b | 5.3 (1.9) | 14.3 (4.7) | 4.5 (4.8) | 20.2 (1.8) | 76.8 (47) | 4.1 (2.3) | 2.3 (0.2) | 3.2 (1.1) | 2.3 (0.8) | 2.5 (0.04) | 1.8 (0.2) | 2 (0.3) | 2.9 (0.2) | 3.6 (0.2) | 28 (9.8) | 3.5 (0.5) | 2.7 (0.1) | 6.9 (1) | 8 (2.1) |
DO | 5 cd | 5.4 (1.8) | 4.8 (1.8) | 5.1 (1) | 1.8 (0.4) | 0.9 (0.04) | 4.8 (1.2) | 4.9 (0.7) | 5.2 (0.1) | 4.1 (0.02) | 4.5 (0.3) | 3.4 (0.1) | 4.6 (0.04) | 3.6 (0.6) | 3.1 (0.5) | 1.5 (0.04) | 4.5 (0.2) | 4.3 (0.3) | 4.5 (0.4) | 4.4 (0.41) |
BOD | 5 acd | 10.9 (4.1) | 14.2 (13.4) | 41 (40) | 48 (21.6) | 218 (131) | 4.6 (0.9) | 8.1 (3.1) | 9.2 (0.4) | 11.9 (2.9) | 40.2 (44.7) | 7.4 (2.3) | 10.9 (1.0) | 35.6 (16.5) | 16.1 (5.8) | 56.4 (9.9) | 19.3 (4.6) | 45 (4.2) | 56.4 (1.3) | 104 (30.6) |
COD | 20 a | 129 (58) | 101 (9) | 186 (181) | 215 (69) | 589 (393) | 35 (12.4) | 178 (87.1) | 136 (1.4) | 52.4 (10.5) | 193 (189) | 90 (7.8) | 55.4 (13.2) | 171 (119) | 140 (8.8) | 252 (53.7) | 64.4 (15.7) | 150 14.1) | 188 (4.2) | 416 (5.7) |
Mg2+ | 200 a | 10 (4.2) | 16.9 (10) | 84 (98) | 12.2 (1.1) | 5 (3) | 4.3 (2) | 5.4 (0.5) | 4.1 (0.2) | 14.1 (1.9) | 5 (0.4) | 5.2 (0.3) | 7.5 (3.7) | 11.2 (3.3) | 5.7 (0.9) | 10.6 (44) | 2.9 (0.4) | 12.3 (2.5) | 14.7 (1.9) | 14.4 (5.5) |
Ca2+ | 100 a | 32.8 (18) | 17.4 (12) | 19 (20) | 43.8 (9.3) | 26.4 (16) | 22.5 (5.4) | 21.5 (7.4) | 22 (3.2) | 19.5 (3.7) | 25 (9.3) | 23.8 (4.1) | 28.8 (4.1) | 35 (8.3) | 20.5 (5.2) | 35.7 (2.8) | 7.8 (1.4) | 32.6 (1.7) | 32.4 (2.3) | 46.9 (9.7) |
Na+ | 200 a | 28.4 (5.8) | 22.6 (5.1) | 22 (5.3) | 429 (101) | 895 (259) | 83 (41) | 204 (26) | 217 (54) | 189 (4.6) | 217 (10.1) | 199.4 (8.1) | 218.2 (9.6) | 249 (45) | 110 (58) | 316 (148) | 182 (21) | 143 (22) | 232 (17) | 261 (58) |
K+ | 20 a | 6 (0.9) | 7.3 (1.1) | 5.7 (1.5) | 18 (2.5) | 18.2 (1.6) | 7.9 (2.2) | 19.2 (1.3) | 21.1 (1.5) | 20.4 (0.5) | 19.6 (0.6) | 19.1 (2.2) | 23.9 (0.8) | 18.5 (0.7) | 12.1 (6.5) | 94.6 (70.6) | 15.8 (3.2) | 15.7 (3.2) | 17.8 (1.8) | 21.7 (1.2) |
Temperature | 15–20 ac | 17.4 (2.5) | 16.6 (1.56) | 17.2 (1.2) | 33.6 (0.37) | 30 (1.4) | 23.2 (1.94) | 22.6 (0.26) | 22.3 (0.68) | 22.2 (0.79) | 20.6 (0.91) | 22.6 (0.83) | 21.6 (1.5) | 23.2 (1.1) | 20 (1.06) | 25.4 (2.12) | 22.1 (0.93) | 23.1 (1.6) | 23.8 (1.05) | 21.36 (0.16) |
SAR | 26 b | 0.25 (0.1) | 0.3 (0.03) | 0.14 (0.04) | 10.9 (0.05) | 0.93 (0.37) | 0.4 (0.12) | 0.97 (0.2) | 1.1 (0.02) | 0.85 (0.03) | 0.95 (0.15) | 0.93 (0.16) | 1.02 (0.06) | 0.7 (0.07) | 0.62 (0.37) | 3.62 (2.81) | 1.22 (0.12) | 0.59 (0.09) | 0.65 (0.04) | 0.7 (0.14) |
KR | 1 b | 0.13 (0.08) | 0.14 (0.01) | 0.05 (0.03) | 0.24 (0.01) | 0.6 (0.4) | 0.23 (0.08) | 0.57 (0.19) | 0.64 (0.02) | 0.4 (0.02) | 0.53 (0.12) | 0.52 (0.12) | 0.5 (0.04) | 0.3 (0.07) | 0.37 (0.23) | 1.6 (1.3) | 1.08 (0.02) | 0.26 (0.02) | 0.27 (0.002) | 0.28 (0.1) |
MAR | 50 b | 34.9 (3.5) | 60.2 (30.5) | 70.2 (39.7) | 32 (6.7) | 24 (0.25) | 24.4 (13.2) | 30.3 (5.5) | 23.8 (3.6) | 54.7 (8.1) | 26 (8.7) | 26.9 (4.53) | 30 (13.3) | 34.5 (1.3) | 32.2 (8.8) | 32.6 (10.9) | 38.6 (1.26) | 38.4 (3.67) | 42.9 (1.42) | 33.3 (4.1) |
SSP | 50 b | 30.8 (14.9) | 28.1 (1.96) | 12.9 (8.5) | 78.3 (1.97) | 92.6 (5.8) | 60.9 (12.8) | 79.2 (6.2) | 81.7 (1.8) | 72.7 (0.06) | 79.4 (5) | 78.5 (2.8) | 76.2 (0.3) | 73 (1.9) | 66.7 (14.7) | 82.1 (0.34) | 89.4 (0.33) | 62 (1.24) | 70.3 (0.42) | 68.5 (1.8) |
Parameters | MAY Rivers | JUNE Rivers | JULY Rivers | AUG Rivers | SEP Rivers | OCT Rivers | NOV Rivers | DEC Rivers | S1/S2/S3/S4/S5 |
---|---|---|---|---|---|---|---|---|---|
Turbidity | 37.4 | 31.7 | 26.0 | 20.3 | 18.9 | 17.5 | 16.0 | 14.8 | 5 ac 50 d |
TDS | 87.5 | 85.8 | 84.0 | 82.3 | 94.6 | 126.5 | 148.8 | 170.0 | 1000, 2000 ab |
EC | 178 | 173 | 169 | 165 | 179 | 253 | 298 | 340 | 1500, 3000 ab |
pH | 8.1 | 8.2 | 8.2 | 8.3 | 8.0 | 7.7 | 7.5 | 7.2 | 6.5–9 abcd |
NH3 | 0.4 | 0.33 | 0.17 | 0.02 | 0.04 | 0.003 | 0.002 | 0.001 | 1.5, 1.37 c |
NH3-N | 0.33 | 0.27 | 0.14 | 0.02 | 0.03 | 0.002 | 0.001 | 0.001 | 5 b |
NO2− | 0.13 | 0.10 | 0.08 | 0.05 | 0.05 | 0.04 | 0.04 | 0.04 | 3 a |
NO3− | 2.0 | 2.2 | 2.4 | 2.6 | 2.6 | 2.9 | 3.0 | 3.1 | 45, 1 ac |
NO3-N | 0.4 | 0.5 | 0.5 | 0.6 | 0.6 | 0.7 | 0.7 | 0.7 | 10 b |
DO | 6.2 | 6.2 | 6.1 | 6.1 | 5.6 | 4.7 | 3.9 | 3.4 | 5 cd |
BOD | 8.0 | 6.8 | 5.6 | 4.4 | 11.8 | 20.2 | 28.1 | 35.6 | 5 acd |
COD | 126 | 104 | 83 | 61 | 85 | 109 | 131 | 162 | 20 a |
Mg2+ | 7.6 | 7.2 | 6.8 | 6.4 | 22.4 | 38.8 | 54.9 | 71.6 | 200 a |
Ca2+ | 39.5 | 36.3 | 33.1 | 30.0 | 25.1 | 18.5 | 12.4 | 8.4 | 100 a |
Na+ | 30.2 | 28.6 | 27.0 | 25.3 | 33.9 | 41.2 | 49.2 | 56.8 | 200 a |
K+ | 5.5 | 5.6 | 5.6 | 5.6 | 6.3 | 7.1 | 7.8 | 8.4 | 20 a |
Temperature | 20.6 | 20.3 | 20.0 | 19.7 | 19.1 | 18.1 | 17.3 | 16.7 | 15–20 ac |
SAR | 1.2 | 1.2 | 1.2 | 1.2 | 1.5 | 1.8 | 2.2 | 2.5 | 26 b |
KR | 0.6 | 0.6 | 0.6 | 0.7 | 0.8 | 0.9 | 1.2 | 1.4 | 1 b |
MAR | 26.0 | 24.4 | 23.4 | 23.4 | 49.1 | 59.6 | 65.3 | 69.2 | 50 b |
SSP | 35.6 | 36.1 | 37.4 | 40.1 | 35.8 | 37.4 | 40.6 | 41.8 | 50 b |
Parameters | LH MAY | LH JUNE | LH JULY | LH AUG | LH SEPT | LH OCT | LH NOV | LH DEC | S1/S2/S3/S4/S5 |
---|---|---|---|---|---|---|---|---|---|
Turbidity | 9.8 | 10.9 | 10.9 | 11.4 | 11.1 | 10.7 | 10.4 | 10.0 | 5 ac 50 d |
TDS | 466 | 427 | 412 | 402 | 419 | 436 | 453 | 471 | 1000, 2000 ab |
EC | 941 | 852 | 821 | 778 | 811 | 844 | 876 | 911 | 1500, 3000 ab |
pH | 9 | 8.7 | 8.5 | 8.3 | 8.4 | 8.5 | 8.5 | 8.6 | 6.5–9 abcd |
NH3 | 2.8 | 1.3 | 0.45 | 0.1 | 0.22 | 0.4 | 0.54 | 0.9 | 1.5, 1.37 c |
NH3-N | 2.3 | 1 | 0.37 | 0.08 | 0.18 | 0.33 | 0.44 | 0.74 | 5 b |
NO2− | 0.1 | 0.1 | 0.1 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 3 a |
NO3− | 3.3 | 6.2 | 10.4 | 12.3 | 10.3 | 8.3 | 6.3 | 4.3 | 45, 1 ac |
NO3-N | 0.7 | 1.4 | 2.3 | 2.8 | 2.3 | 1.9 | 1.4 | 1.0 | 10 b |
PO43− | 3.8 | 6.7 | 9.6 | 12.6 | 11.8 | 11.0 | 10.3 | 9.4 | |
DO | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 | 4.2 | 4.2 | 4.1 | 5 cd |
BOD | 26.1 | 20.1 | 17.7 | 15.5 | 19.7 | 23.9 | 28.1 | 32.4 | 5 acd |
COD | 122.0 | 106.3 | 113.2 | 118.6 | 126.8 | 134.9 | 143.0 | 151.2 | 20 a |
Mg2+ | 8.4 | 7.2 | 8.4 | 7.3 | 7.8 | 8.2 | 8.6 | 9.2 | 200 a |
Ca2+ | 33.3 | 28.1 | 24.9 | 19.8 | 21.2 | 22.5 | 23.8 | 25.2 | 100 a |
Na+ | 211.1 | 182.7 | 175.6 | 164.9 | 181.4 | 197.6 | 213.7 | 230.8 | 200 a |
K+ | 16.8 | 17.1 | 18.2 | 18.1 | 18.9 | 19.8 | 20.4 | 16.9 | 20 a |
Temperature | 23.1 | 22.2 | 21.5 | 21.6 | 21.8 | 22.0 | 22.2 | 23.4 | 15–20 ac |
SAR | 10.3 | 11.4 | 11.5 | 11.7 | 12.3 | 13.1 | 13.9 | 14.7 | 26 b |
KR | 5.5 | 6.3 | 6.7 | 7.4 | 7.4 | 7.6 | 7.9 | 8.3 | 1 b |
MAR | 33.1 | 40.8 | 45.3 | 51.4 | 51.2 | 50.8 | 50.2 | 49.8 | 50 b |
SSP | 70.8 | 78.3 | 78.8 | 79.7 | 80.5 | 80.9 | 81.1 | 80.3 | 50 b |
SD | 83.1 | 74.7 | 78.4 | 71.4 | 73.9 | 76.1 | 78.1 | 81.3 | 120 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lencha, S.M.; Tränckner, J.; Dananto, M. Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices. Int. J. Environ. Res. Public Health 2021, 18, 8904. https://doi.org/10.3390/ijerph18178904
Lencha SM, Tränckner J, Dananto M. Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices. International Journal of Environmental Research and Public Health. 2021; 18(17):8904. https://doi.org/10.3390/ijerph18178904
Chicago/Turabian StyleLencha, Semaria Moga, Jens Tränckner, and Mihret Dananto. 2021. "Assessing the Water Quality of Lake Hawassa Ethiopia—Trophic State and Suitability for Anthropogenic Uses—Applying Common Water Quality Indices" International Journal of Environmental Research and Public Health 18, no. 17: 8904. https://doi.org/10.3390/ijerph18178904