Computational Study of Thermal Comfort and Reduction of CO2 Levels inside a Classroom
Abstract
:1. Introduction
2. Methodology
2.1. Physical Model
2.2. Governing Equations
2.3. Overall Ventilation Effectiveness Equations
2.4. Numerical Method
2.5. Validation
3. Results and Discussion
3.1. Velocity Fields
3.2. Temperatures Fields
3.3. CO2 Concentration Fields
3.4. Average Air Temperature
3.5. Overall Ventilation Effectiveness for Air Temperature Distribution
3.6. Average CO2 Concentration
3.7. Overall Ventilation Effectiveness for CO2 Removal
3.8. Proposal to Reduce the Number of Students in Cases Where the Maximum Allowed Value of CO2 Is Exceeded
4. Conclusions
- The most favorable flow patterns for adequate classroom ventilation were observed when the air-conditioning supply and the extractor exhaust were located on the same side (case III) because the air sweep covered all areas inside the classroom. Moreover, in case III, the classroom remained at thermal comfort temperatures and had the lowest CO2 concentration levels.
- The worst classroom ventilation arrangement occurred when the air-conditioning supply and the extractor exhaust were located on opposite sides (case VI) because the supplied cold air could not reach all of the regions in the classroom. In addition, in case VI, most of the classroom remained at high temperatures and presented the highest pollutant levels.
- At all pollutant concentrations and the three hours of the day considered in the study, the lowest average temperatures inside the classroom occurred in case III when Re = 15,000. These average temperature values were within the range of thermal comfort. Maximum average temperatures correspond to case VI and Re = 1000. Average temperatures increased slightly when the concentration of pollutant sources increased.
- The lowest average CO2 concentrations (i.e., best removal of pollutants) inside the classroom occurred in case III when Re = 15,000 for all concentrations of the pollutant sources and the three hours of the day considered in the study. However, these average concentration values were within the safe range of CO2 levels (<700 ppm) only at 11:30 a.m. with Cs = 35,000 ppm and Cs = 37,500 ppm, at 3:30 p.m. with Cs = 35,000 ppm, and at 6:30 p.m. with Cs = 35,000 ppm and Cs = 37,500 ppm. For the other cases, reducing the number of students to less than 30 is advisable. The highest average CO2 concentrations (i.e., worst removal of pollutants) occurred in case VI and Re = 1000.
- To comply with the maximum allowable CO2 concentration value (<700 ppm), we propose to reduce the number of students from 30 to 25 at 11:30 a.m. with Cs = 40,000 ppm, at 3:30 p.m. with Cs = 37,500 ppm, and 6:30 p.m. with Cs = 40,000 ppm. On the other hand, at 11:30 a.m. with Cs = 42,500 ppm, at 3:30 p.m. with Cs = 40,000 ppm and Cs = 42,500 ppm, and 6:30 p.m. with Cs = 42,500 ppm, the number of students must be reduced from 30 to 20 students.
- The proposed strategies can be used to prevent CO2 levels from exceeding the safe value of 700 ppm; in addition, thermal comfort and air quality are guaranteed, and the risk of contagion by COVID-19 in classrooms is reduced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turanjanin, V.; Vučićević, B.; Jovanović, M.; Mirkov, N.; Lazović, I. Indoor CO2 measurements in Serbian schools and ventilation rate calculation. Energy 2014, 77, 290–296. [Google Scholar] [CrossRef]
- di Gilio, A.; Palmisani, J.; Pulimeno, M.; Cerino, F.; Cacace, M.; Miani, A.; de Gennaro, G. CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of SARS-CoV-2 airborne transmission. Environ. Res. 2021, 202, 111560. [Google Scholar] [CrossRef]
- Rosbach, J.T.M.; Vonk, M.; Duijm, F.; van Ginkel, J.T.; Gehring, U.; Brunekreef, B. A ventilation intervention study in classrooms to improve indoor air quality: The FRESH study. Environ. Health Glob. 2013, 12, 110. [Google Scholar] [CrossRef] [Green Version]
- Hussin, M.; Ismail, M.R.; Ahmad, M.S. Air-conditioned university laboratories: Comparing CO2 measurement for centralized and split-unit systems. J. King SaudUni. Eng. Sci. 2017, 29, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Younsi, Z.; Koufi, L.; Naji, H. Numerical study of the effects of ventilated cavities outlet location on thermal comfort and air quality. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 4462–4483. [Google Scholar] [CrossRef]
- Serrano-Arellano, J.; Xamán, J.; Alvarez, G. Optimum ventilation based on the ventilation effectiveness for temperature and CO2 distribution in ventilated cavities. Int. J. Heat Mass Transf. 2013, 62, 9–21. [Google Scholar] [CrossRef]
- Koufi, L.; Cherif, Y.; Younsi, Z.; Naji, H. Double-diffusive natural convection in a mixture-filled cavity with walls’ opposite temperatures and concentrations. Heat Transf. Eng. 2019, 40, 1268–1285. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhong, H.Y.; Liu, D.; Zhao, F.Y.; Li, Y.; Wang, H.Q. Multi-objective-oriented removal of airborne pollutants from a slot-ventilated enclosure subjected to mechanical and multi component buoyancy flows. Appl. Math. Model. 2018, 60, 333–353. [Google Scholar] [CrossRef]
- Said, K.; Ouadha, A.; Sabeur, A. CFD-based analysis of entropy generation in turbulent double diffusive natural convection flow in square cavity. MATEC Web. Conf. 2020, 330, 01023. [Google Scholar] [CrossRef]
- Pei, G.; Rim, D.; Schiavon, S.; Vannucci, M. Effect of sensor position on the performance of CO2-based demand controlled ventilation. Energ Build. 2019, 202, 109358. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, R.K.; Khalil, E.E.; Abou-Deif, T.M. Numerical investigations of indoor air quality inside Al-Haram mosque in Makkah. Procedia Engineer. 2017, 205, 4179–4186. [Google Scholar] [CrossRef]
- Silva, S.; Monteiro, A.; Russo, M.A.; Valente, J.; Alves, C.; Nunes, T.; Pio, C.; Miranda, A.I. Modelling indoor air quality: Validation and sensitivity. Air Qual. Atmos. Health 2017, 10, 643–652. [Google Scholar] [CrossRef]
- Chati, D.; Bouabdallah, S.; Ghernaout, B.; Tunçbilek, E.; Arıcı, M.; Driss, Z. Turbulent mixed convective heat transfer in a ventilated enclosure with a cylindrical/cubical heat source: A 3D analysis. Energ. Source Part A 2021, 1–18. [Google Scholar] [CrossRef]
- Zhang, D.D.; Cai, Y.; Liu, D.; Zhao, F.Y.; Li, Y. Dual steady flow solutions of heat and pollutant removal from a slot ventilated welding enclosure containing a bottom heating source. Int. J. Heat Mass Transf. 2019, 132, 11–24. [Google Scholar] [CrossRef]
- Borro, L.; Mazzei, L.; Raponi, M.; Piscitelli, P.; Miani, A.; Secinaro, A. The role of air conditioning in the diffusion of SARS-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the Vatican State Children’s hospital. Environ. Res. 2021, 193, 110343. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, D.; Ayalur, B.K. Development and testing of condensate assisted pre-cooling unit for improved indoor air quality in a computer laboratory. Build. Environ. 2019, 163, 106321. [Google Scholar] [CrossRef]
- Lo, L.J.; Novoselac, A. Localized air-conditioning with occupancy control in an open office. Energy Build. 2010, 42, 1120–1128. [Google Scholar] [CrossRef]
- le Benchikh Hocine, A.E.; Poncet, S.; Fellouah, H. CFD modeling of the CO2 capture by range hood in a full-scale kitchen. Build Environ. 2020, 183, 107168. [Google Scholar] [CrossRef]
- Lyons, C.J.; Race, J.M.; Adefila, K.; Wetenhall, B.; Aghajani, H.; Aktas, B.; Hopkins, H.F.; Cleaver, P.; Barnett, J. Analytical and computational indoor shelter models for infiltration of carbon dioxide into buildings: Comparison with experimental data. Int. J. Greenh. Gas. Con. 2020, 92, 102849. [Google Scholar] [CrossRef]
- Jahanbin, A.; Semprini, G. Numerical study on indoor environmental quality in a room equipped with a combined HRV and radiator system. Sustainability 2020, 12, 10576. [Google Scholar] [CrossRef]
- Duill, F.F.; Schulz, F.; Jain, A.; Krieger, L.; van Wachem, B.; Beyrau, F. The impact of large mobile air purifiers on aerosol concentration in classrooms and the reduction of airborne transmission of SARS-CoV-2. Int. J. Environ. Res. Public Health 2021, 18, 11523. [Google Scholar] [CrossRef] [PubMed]
- Tahsildoost, M.; Zomorodian, Z.S. Indoor environment quality assessment in classrooms: An integrated approach. J. Build. Phys. 2018, 42, 336–362. [Google Scholar] [CrossRef]
- Bogdanovica, S.; Zemitis, J.; Bogdanovics, R. The Effect of CO2 Concentration on Children’s Well-Being during the Process of Learning. Energies 2020, 13, 6099. [Google Scholar] [CrossRef]
- Deng, S.; Zou, B.; Lau, J. The adverse associations of classrooms’ indoor air quality and thermal comfort conditions on students’ illness related absenteeism between heating and non-heating seasons—A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 1500. [Google Scholar] [CrossRef]
- Tamaddon-Jahromi, H.; Rolland, S.; Jones, J.; Coccarelli, A.; Sazonov, I.; Kershaw, C.; Tizaoui, C.; Holliman, P.; Worsley, D.; Thomas, H.; et al. Modelling ozone disinfection process for creating COVID-19 secure spaces. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 353–363. [Google Scholar] [CrossRef]
- Xia, Y.; Lin, W.; Gao, W.; Liu, T.; Li, Q.; Li, A. Experimental and numerical studies on indoor thermal comfort in fluid flow: A case study on primary school classrooms. Case Stud. Therm. Eng. 2020, 19, 100619. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, F.Y.; Kuckelkorn, J.; Liu, D.; Liu, J.; Zhang, J.L. Classroom energy efficiency and air environment with displacement natural ventilation in a passive public school building. Energy Build. 2014, 70, 258–270. [Google Scholar] [CrossRef]
- Arjmandi, H.; Amini, R.; Khani, F.; Fallahpour, M. Minimizing the respiratory pathogen transmission: Numerical study and multi-objective optimization of ventilation systems in a classroom. Therm. Sci. Eng. Prog. 2022, 28, 101052. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, Y.; Lan, X. Numerical Study of the Respiratory Aerosols Transportation in Ventilated Classroom. Appl. Mech. Mater. 2012, 204, 4298–4304. [Google Scholar] [CrossRef]
- Anghel, L.; Popovici, C.G.; Stătescu, C.; Sascău, R.; Verdeș, M.; Ciocan, V.; Șerban, I.L.; Mărănducă, M.A.; Hudișteanu, S.V.; Țurcanu, F.E. Impact of HVAC-systems on the dispersion of infectious aerosols in a cardiac intensive care unit. Int. J. Environ. Res. Public Health 2020, 17, 6582. [Google Scholar] [CrossRef]
- Thatiparti, D.S.; Ghia, U.; Mead, K.R. Assessing effectiveness of ceiling-ventilated mock airborne infection isolation room in preventing Hospital-acquired influenza transmission to health care workers. ASHRAE Trans. 2016, 122, 35–46. [Google Scholar] [PubMed]
- Thatiparti, D.S.; Ghia, U.; Mead, K.R. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room. Sci. Technol. Built. Environ. 2017, 23, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beggs, C.B.; Kerr, K.G.; Noakes, C.J.; Hathway, E.A.; Sleigh, P.A. The ventilation of multiple-bed hospital wards: Review and analysis. Am. J. Infect. Control 2008, 36, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Arellano, J.; Xamán, J.; Alvarez, G.; Gijón-Rivera, M. Heat and mass transfer by natural convection in square cavity filled with a mixture of Air-CO2. Int. J. Heat Mass Transf. 2013, 64, 725–734. [Google Scholar] [CrossRef]
- Awbi, H. Ventilation of Building, 2nd ed.; Spon Press: New York, NY, USA, 2005. [Google Scholar]
- Glowinski, R. Numerical Methods for Fluids, Handbook of Numerical Analysis, Part 3; Garlet, P.G., Lions, J.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Brenner, S.C.; Scott, L.R. The Mathematical Theory of Finite Element Methods, 3rd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Ampofo, F.; Karayiannis, T.G. Experimental benchmark data for turbulent natural convection in an air filled square cavity. Int. J. Heat Mass Transf. 2003, 46, 3551–3572. [Google Scholar] [CrossRef]
- Saury, D.; Rouger, N.; Djanna, F.; Penot, F. Natural convection in an air-filled cavity: Experimental results at large Rayleigh numbers. Int. Commun. Heat Mass Transf. 2011, 38, 679–687. [Google Scholar] [CrossRef]
- Ovando-Chacon, G.E.; Ovando-Chacon, S.L.; Rodriguez-Leon, A.; Diaz-Gonzalez, M.; Hernandez-Zarate, J.A.; Servin-Martinez, A. Numerical study of nanofluid irreversibilities in a heat exchanger used with an aqueous medium. Entropy 2020, 22, 86. [Google Scholar] [CrossRef] [Green Version]
- Ovando-Chacon, G.E.; Ovando-Chacon, S.L.; Prince-Avelino, J.C.; Rodriguez-Leon, A.; Garcia-Arellano, C. Simulation of thermal decomposition in an open cavity: Entropy analysys. Braz. J. Chem. Eng. 2019, 36, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Ovando-Chacon, G.E.; Ovando-Chacon, S.L.; Prince-Avelino, J.C.; Rodriguez-Leon, A.; Garcia-Arellano, C. Numerical optimization of double-diffusive mixed convection in a rectangular enclosure with a reactant fluid. Heat Transf. Res. 2017, 48, 1651–1668. [Google Scholar] [CrossRef]
- Ovando-Chacon, G.E.; Ovando-Chacon, S.L.; Prince-Avelino, J.C.; Romo-Medina, M.A. Numerical study of the heater length effect on the heating of a solid circular obstruction centered in an open cavity. Eur. J. Mech. B Fluids 2013, 42, 176–185. [Google Scholar] [CrossRef]
- Martinez, I.; Bruse, J.L.; Florez-Tapia, A.M.; Viles, E.; Olaizola, I. ArchABM: An agent-based simulator of human interaction with the built environment. CO2 and viral load analysis for indoor air quality. Build. Environ. 2022, 207, 108495. [Google Scholar] [CrossRef] [PubMed]
- Rojas, N.Y.; Rodriguez-Villamizar, L.A. COVID-19 Is in the Air: Why Are We Still Ignoring the Importance of Ventilation? Ing. Investig. 2021, 41, 2–5. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Katzourakis, A.; Wyatt, T.D.; Griffin, S. Rapid evidence review to inform safe return to campus in the context of coronavirus disease 2019 (COVID-19). Welcome Open Res. 2021, 6, 1–29. [Google Scholar]
- Tint, P.; Urbane, V.; Traumann, A.; Järvis, M. The prevention from infection with COVID-19 of students in auditoriums through carbon dioxide measurements—An evidence from Estonian and Latvian high schools. Saf. Health Work 2022, 13, S137. [Google Scholar] [CrossRef]
Cp (J/kg⋅K) | ρ (kg/m3) | µ (kg/m⋅s) | λ (W/m⋅K) | D (m2/s) |
---|---|---|---|---|
997.8 | 1.135 | 1.891 × 10−5 | 2.65 × 10−2 | 1.5 × 10−5 |
Mesh Nodes | 255825 | 350340 | 462348 | 550220 | 650450 | 751825 | 849246 |
---|---|---|---|---|---|---|---|
Case III, 11:30 a.m., Cs = 35,000 ppm, Re = 15,000 | |||||||
Ta (°C) | 17.04 | 19.84 | 21.86 | 23.30 | 24.19 | 24.35 | 24.49 |
ΔT (°C) | - | 2.8 | 2.02 | 1.44 | 0.89 | 0.16 | 0.14 |
Case III, 11:30 a.m., Cs = 37,500 ppm, Re = 15,000 | |||||||
Ta (°C) | 18.12 | 21.26 | 23.64 | 25.16 | 24.33 | 24.64 | 24.90 |
ΔT (°C) | - | 3.14 | 2.38 | 1.52 | 0.83 | 0.31 | 0.26 |
Case III, 3:30 p.m., Cs = 35,000 ppm, Re = 15,000 | |||||||
Ta (°C) | 23.37 | 18.99 | 21.71 | 23.62 | 24.88 | 25.12 | 25.32 |
ΔT (°C) | - | 4.83 | 2.72 | 1.91 | 2.26 | 0.24 | 0.20 |
Case III, 6:30 p.m., Cs = 37,500 ppm, Re = 15,000 | |||||||
Ta (°C) | 18.99 | 22.37 | 25.48 | 23.41 | 24.73 | 25.07 | 25.35 |
ΔT (°C) | 3.38 | 3.11 | 2.07 | 1.32 | 0.34 | 0.28 |
Exp. | Num. | Error | Exp. | Num. | Error | Exp. | Num. | Error | Exp. | Num. | Error |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 (°C) | T2 (°C) | T3 (°C) | T4 (°C) | ||||||||
X = 5.5 m | Y = 0.5 m | X = 5.5 m | Y = 2.5 m | X = 5.5 m | Y = 4.5 m | X = 4.5 m | Y = 0.5 m | ||||
24.52 | 24.07 | 1.8% | 24.71 | 24.14 | 2.3% | 24.77 | 24.39 | 1.5% | 24.82 | 24.34 | 1.9% |
T5 (°C) | T6 (°C) | T7 (°C) | T8 (°C) | ||||||||
X = 4.5 m | Y = 2.5 m | X = 4.5 m | Y = 4.5 m | X = 3.0 m | Y = 0.5 m | X = 3.0 m | Y = 1.5 m | ||||
23.18 | 22.85 | 1.4% | 23.45 | 23.05 | 1.7% | 23.68 | 23.15 | 2.2% | 23.39 | 22.99 | 1.7% |
T9 (°C) | T10 (°C) | T11 (°C) | T12 (°C) | ||||||||
X = 3.0 m | Y = 3.5 m | X = 3.0 m | Y = 4.5 m | X = 1.5 m | Y = 0.5 m | X = 1.5 m | Y = 2.5 m | ||||
22.84 | 22.72 | 0.5% | 23.14 | 23.07 | 0.3% | 22.93 | 23.31 | 1.6% | 23.54 | 23.09 | 1.9% |
T13 (°C) | T14 (°C) | T15 (°C) | T16 (°C) | ||||||||
X = 1.5 m | Y = 4.5 m | X = 0.5 m | Y = 0.5 m | X = 0.5 m | Y = 2.5 m | X = 0.5 m | Y = 4.5 m | ||||
23.67 | 23.48 | 0.8% | 23.54 | 23.88 | 1.4 | 23.61 | 24.07 | 1.9 | 23.58 | 24.11 | 2.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovando-Chacon, G.E.; Rodríguez-León, A.; Ovando-Chacon, S.L.; Hernández-Ordoñez, M.; Díaz-González, M.; Pozos-Texon, F.d.J. Computational Study of Thermal Comfort and Reduction of CO2 Levels inside a Classroom. Int. J. Environ. Res. Public Health 2022, 19, 2956. https://doi.org/10.3390/ijerph19052956
Ovando-Chacon GE, Rodríguez-León A, Ovando-Chacon SL, Hernández-Ordoñez M, Díaz-González M, Pozos-Texon FdJ. Computational Study of Thermal Comfort and Reduction of CO2 Levels inside a Classroom. International Journal of Environmental Research and Public Health. 2022; 19(5):2956. https://doi.org/10.3390/ijerph19052956
Chicago/Turabian StyleOvando-Chacon, Guillermo Efren, Abelardo Rodríguez-León, Sandy Luz Ovando-Chacon, Martín Hernández-Ordoñez, Mario Díaz-González, and Felipe de Jesús Pozos-Texon. 2022. "Computational Study of Thermal Comfort and Reduction of CO2 Levels inside a Classroom" International Journal of Environmental Research and Public Health 19, no. 5: 2956. https://doi.org/10.3390/ijerph19052956