Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller
Abstract
:1. Introduction
2. Methods
2.1. The Hover Stand Setup for Aeroacoustic Measurements
2.2. Propellers
2.3. Thrust Coefficient, Torque Coefficient, and Figure of Merit
2.4. Sound Signal Data Processing
2.5. Objective Psychoacoustic Metrics
3. Results
3.1. Aerodynamic Performance
3.2. Aerodynamic Noise Characteristics
3.2.1. Noise Spectra and Overall Sound Pressure Level (OASPL)
3.2.2. Tonal Noise and Broadband Noise
3.3. Objective Psychoacoustic Metrics
4. Discussion
5. Conclusions
- The loop-type propeller shows a comparatively higher aeroacoustic performance, capable of achieving a remarkable reduction of a maximum of 4.7 dB in the overall sound pressure level (OASPL) at 5400 RPM and a maximum of 3.5 dB in the OASPL at compared to the DJI Phantom III propeller. Our results demonstrate that the loop-type propeller, as an innovative drone propeller design, presents notable characteristics in the tonal noise components for harmonics suppression, particularly at the high-order () harmonics in the high-frequency range.
- It is verified that the loop-type structure enables the suppression of the tip vortex and the near-field turbulence while its broadband noise sound pressure level (SPL) shows notably higher values compared to the two-blade propeller.
- Utilizing the improved Zwicker’s psychoacoustic annoyance (PA) model by Di et al. (2016) [31] we find that the loop-type propeller enables lowering loudness, tonality, and roughness, hence leading to a pronounced improvement in the psychoacoustic annoyance (PA), even under similar condition of OASPL.
- Through directly measuring both thrusts and torques, it is verified that the loop-type propeller exhibits a slightly impaired aerodynamic performance in terms of the figure of merit (FM) and thrust coefficient (), thus resulting in an increase in the power and rotational speed at some specific thrusts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Floreano, D.; Wood, R.J. Science, Technology and the Future of Small Autonomous Drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, B.D.; Park, K.; Kim, J. Persistent UAV Delivery Logistics: MILP Formulation and Efficient Heuristic. Comput. Ind. Eng. 2018, 120, 418–428. [Google Scholar] [CrossRef]
- Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization Approaches for Civil Applications of Unmanned Aerial Vehicles (UAVs) or Aerial Drones: A Survey. Networks 2018, 72, 411–458. [Google Scholar] [CrossRef]
- Sinibaldi, G.; Marino, L. Experimental Analysis on the Noise of Propellers for Small UAV. Appl. Acoust. 2013, 74, 79–88. [Google Scholar] [CrossRef]
- Intaratep, N.; Alexander, W.N.; Devenport, W.J.; Grace, S.M.; Dropkin, A. Experimental Study of Quadcopter Acoustics and Performance at Static Thrust Conditions. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016. [Google Scholar]
- Tinney, C.E.; Sirohi, J. Multirotor Drone Noise at Static Thrust. AIAA J. 2018, 56, 2816–2826. [Google Scholar] [CrossRef]
- Bian, H.; Tan, Q.; Zhong, S.; Zhang, X. Assessment of UAM and Drone Noise Impact on the Environment Based on Virtual Flights. Aerosp. Sci. Technol. 2021, 118, 106996. [Google Scholar] [CrossRef]
- Torija, A.J.; Clark, C. A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of Unmanned Aerial Vehicles. Int. J. Environ. Res. Public Health 2021, 18, 682. [Google Scholar] [CrossRef]
- Christian, A.W.; Cabell, R. Initial Investigation into the Psychoacoustic Properties of Small Unmanned Aerial System Noise. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, USA, 5–9 June 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Rao, C.; Ikeda, T.; Nakata, T.; Liu, H. Owl-Inspired Leading-Edge Serrations Play a Crucial Role in Aerodynamic Force Production and Sound Suppression. Bioinspir. Biomim. 2017, 12, 046008. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Liu, Y.; Hu, H.; Li, Z. Noise Reduction and Aerodynamics of Isolated Multi-Copter Rotors with Serrated Trailing Edges during Forward Flight. J. Sound Vib. 2020, 489, 115688. [Google Scholar] [CrossRef]
- Ning, Z.; Wlezien, R.W.; Hu, H. An Experimental Study on Small UAV Propellers with Serrated Trailing Edges. In Proceedings of the 47th AIAA Fluid Dynamics Conference, Denver, CO, USA, 5–9 June 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Guo, J.; Zhou, T.; Fang, Y.; Zhang, X. Experimental Study on a Compact Lined Circular Duct for Small-Scale Propeller Noise Reduction. Appl. Acoust. 2021, 179, 108062. [Google Scholar] [CrossRef]
- Oleson, R.; Patrick, H. Small Aircraft Propeller Noise with Ducted Propeller. In Proceedings of the 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France, 2–4 June 1998; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998. [Google Scholar]
- Patterson, A.; Schiller, N.H.; Ackerman, K.A.; Gahlawat, A.; Gregory, I.M.; Hovakimyan, N. Controller Design for Propeller Phase Synchronization with Aeroacoustic Performance Metrics. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Mohamud, A.; Ashok, A. Drone Noise Reduction through Audio Waveguiding. In Proceedings of the Proceedings of the 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, Munich, Germany, 10–15 June 2018; ACM: New York, NY, USA, 2018; pp. 92–94. [Google Scholar]
- Shima, E.; Tsutsumi, S.; Fujimoto, K. Preliminary Study on Innovative Loop Propellers for Quiet EVTOL. In Proceedings of the 8th Asian/Australian Rotorcraft Forum, Ankara, Turkey, 30 October–2 November 2019. [Google Scholar]
- Sun, J.; Yonezawa, K.; Liu, H. Experimental Investigation of Aeroacoustic Interaction between Propeller and Duct. In Proceedings of the 28th AIAA/CEAS Aeroacoustics 2022 Conference, Southampton, UK, 14–17 June 2022; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2022. [Google Scholar]
- Made, J.E.; Kurtz, D.W. A Review of Aerodynamic Noise from Propellers, Rotors, and Lift Fans; NASA: Pasadena, CA, USA, 1970. [Google Scholar]
- Zwicker, E.; Fastl, H. Psychoacoustics: Facts and Models; Springer Science & Business Media: Berlin, Germany, 2013; Volume 22. [Google Scholar]
- Merino-Martínez, R.; Pieren, R.; Schäffer, B. Holistic Approach to Wind Turbine Noise: From Blade Trailing-Edge Modifications to Annoyance Estimation. Renew. Sustain. Energy Rev. 2021, 148, 111285. [Google Scholar] [CrossRef]
- Torija, A.J.; Li, Z.; Self, R.H. Effects of a Hovering Unmanned Aerial Vehicle on Urban Soundscapes Perception. Transp. Res. D Transp. Environ. 2020, 78, 102195. [Google Scholar] [CrossRef]
- Torija Martinez, A.J.; Li, Z. Metrics for Assessing the Perception of Drone Noise. In Proceedings of the Proceedings of Forum Acusticum 2020, Virtual Event, 7–11 December 2020; European Acoustics Association (EAA)/HAL: Stuttgart, Germany, 2020; pp. 3163–3168. [Google Scholar]
- Gwak, D.Y.; Han, D.; Lee, S. Sound Quality Factors Influencing Annoyance from Hovering UAV. J. Sound. Vib. 2020, 489, 115651. [Google Scholar] [CrossRef]
- Torija, A.J.; Self, R.H.; Lawrence, J.L.T. Psychoacoustic Characterisation of a Small Fixed-Pitch Quadcopter. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Madrid, Spain, 30 September 2019; Institute of Noise Control Engineering: Reston, VA, USA, 2019; Volume 259, pp. 1884–1894. [Google Scholar]
- Torija, A.J.; Li, Z.; Chaitanya, P. Psychoacoustic Modelling of Rotor Noise. J. Acoust. Soc. Am. 2022, 151, 1804–1815. [Google Scholar] [CrossRef]
- Schäffer, B.; Pieren, R.; Heutschi, K.; Wunderli, J.M.; Becker, S. Drone Noise Emission Characteristics and Noise Effects on Humans—A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5940. [Google Scholar] [CrossRef]
- Torija, A.J.; Chaitanya, P.; Li, Z. Psychoacoustic Analysis of Contra-Rotating Propeller Noise for Unmanned Aerial Vehicles. J. Acoust. Soc. Am. 2021, 149, 835–846. [Google Scholar] [CrossRef]
- Bu, H.; Wu, H.; Bertin, C.; Fang, Y.; Zhong, S. Aerodynamic and Acoustic Measurements of Dual Small-Scale Propellers. J. Sound Vib. 2021, 511, 116330. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Arcondoulis, E.; Wang, Y. Aerodynamic and Aeroacoustic Performance of an Isolated Multicopter Rotor During Forward Flight. AIAA J. 2020, 58, 1171–1181. [Google Scholar] [CrossRef]
- Di, G.-Q.; Chen, X.-W.; Song, K.; Zhou, B.; Pei, C.-M. Improvement of Zwicker’s Psychoacoustic Annoyance Model Aiming at Tonal Noises. Appl. Acoust. 2016, 105, 164–170. [Google Scholar] [CrossRef]
- Zwicker, E. Subdivision of the Audible Frequency Range into Critical Bands (Frequenzgruppen). J. Acoust. Soc. Am. 1961, 33, 248. [Google Scholar] [CrossRef]
- Aures, W. Procedure for Calculating the Sensory Euphony of Arbitrary Sound Signals. Acustica 1985, 59, 130–141. [Google Scholar]
- Hu, H.; Yang, Y.; Liu, Y.; Liu, X.; Wang, Y. Aerodynamic and Aeroacoustic Investigations of Multi-Copter Rotors with Leading Edge Serrations during Forward Flight. Aerosp. Sci. Technol. 2021, 112, 106669. [Google Scholar] [CrossRef]
- Ning, Z. Experimental Investigations on the Aerodynamic and Aeroacoustic Characteristics of Small UAS Propellers. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2018. [Google Scholar]
- Yang, Y.; Liu, Y.; Hu, H.; Liu, X.; Wang, Y.; Arcondoulis, E.J.G.; Li, Z. Experimental Study on Noise Reduction of a Wavy Multi-Copter Rotor. Appl. Acoust. 2020, 165, 107311. [Google Scholar] [CrossRef]
- Mahmoud, N.H.; El-Haroun, A.A.; Wahba, E.; Nasef, M.H. An Experimental Study on Improvement of Savonius Rotor Performance. Alex. Eng. J. 2012, 51, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, K.; Abe, K.; Sunada, S. Propeller Design and Loss Mechanisms in Low-Reynolds-Number Flows. J. Propuls. Power 2016, 32, 1378–1385. [Google Scholar] [CrossRef]
- Dobrzynski, W. Propeller Noise Reduction by Means of Unsymmetrical Blade-Spacing. J. Sound Vib. 1993, 163, 123–126. [Google Scholar] [CrossRef]
- Cattanei, A.; Ghio, R.; Bongiovı, A. Reduction of the Tonal Noise Annoyance of Axial Flow Fans by Means of Optimal Blade Spacing. Appl. Acoust. 2007, 68, 1323–1345. [Google Scholar] [CrossRef]
- Cattanei, A.; Mazzocut Zecchin, F.; di Pasquali, A.; Lazari, A. Effect of the Uneven Blade Spacing on the Noise Annoyance of Axial-Flow Fans and Side Channel Blowers. Appl. Acoust. 2021, 177, 107924. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Jin, S.; Wang, D.; Zhu, H.; Hu, P.; Sun, F. Influence Due to the Blade Number on the Stator Tonal and Broadband Noise. Acoust. Aust. 2021, 49, 345–353. [Google Scholar] [CrossRef]
- Hui, C.T.J.; Kingan, M.J.; Hioka, Y.; Schmid, G.; Dodd, G.; Dirks, K.N.; Edlin, S.; Mascarenhas, S.; Shim, Y.-M. Quantification of the Psychoacoustic Effect of Noise from Small Unmanned Aerial Vehicles. Int. J. Environ. Res. Public Health 2021, 18, 8893. [Google Scholar] [CrossRef]
- Bass, H.E.; Sutherland, L.C.; Zuckerwar, A.J.; Blackstock, D.T.; Hester, D.M. Atmospheric Absorption of Sound: Further Developments. J. Acoust. Soc. Am. 1995, 97, 680–683. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Yonezawa, K.; Shima, E.; Liu, H. Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller. Int. J. Environ. Res. Public Health 2023, 20, 1955. https://doi.org/10.3390/ijerph20031955
Sun J, Yonezawa K, Shima E, Liu H. Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller. International Journal of Environmental Research and Public Health. 2023; 20(3):1955. https://doi.org/10.3390/ijerph20031955
Chicago/Turabian StyleSun, Jianwei, Koichi Yonezawa, Eiji Shima, and Hao Liu. 2023. "Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller" International Journal of Environmental Research and Public Health 20, no. 3: 1955. https://doi.org/10.3390/ijerph20031955