Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors
Abstract
:1. Introduction
2. Results
2.1. Plasma Sample Characteristics
2.2. Profiling of Differentially Expressed miRNAs in the Plasma of CA, HB, MB vs. Be
2.3. Profiling of Differentially Expressed miRNAs in the Plasma of CA vs. HB
2.4. Plasma Proteome Profiling in Breast Cancer and High-Risk Benign Tumors
2.5. Building and Evaluating Diagnostics Models
2.6. miRNA Functional Analysis
3. Discussion
4. Materials and Methods
4.1. Plasma Sample Preparation
4.2. Total RNA Isolation from Plasma
4.3. Small RNA-seq Library Preparation
4.4. Analysis of Small RNA-seq Results of Breast Cancer and Benign Breast Tumors
4.5. Proteomics in Breast Cancer and High-Risk Benign Breast Tumors
4.6. Proteomic Profiling
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Facts & Figures 2023. American Cancer Society. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html (accessed on 17 March 2023).
- Danforth, D.N. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer. Breast Cancer Basic Clin. Res. 2016, 10, 109–146. [Google Scholar] [CrossRef] [PubMed]
- Myers, D.J.; Walls, A.L. Atypical Breast Hyperplasia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lewin, A.A.; Mercado, C.L. Atypical Ductal Hyperplasia and Lobular Neoplasia: Update and Easing of Guidelines. AJR Am. J. Roentgenol. 2020, 214, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Treatment by Cancer Type. Available online: https://www.nccn.org/guidelines/category_1 (accessed on 15 March 2023).
- Coopey, S.B.; Mazzola, E.; Buckley, J.M.; Sharko, J.; Belli, A.K.; Kim, E.M.H.; Polubriaginof, F.; Parmigiani, G.; Garber, J.E.; Smith, B.L.; et al. The role of chemoprevention in modifying the risk of breast cancer in women with atypical breast lesions. Breast Cancer Res. Treat. 2012, 136, 627–633. [Google Scholar] [CrossRef]
- Degnim, A.C.; Dupont, W.D.; Radisky, D.C.; Vierkant, R.A.; Frank, R.D.; Frost, M.H.; Winham, S.J.; Sanders, M.E.; Smith, J.R.; Page, D.L.; et al. Extent of atypical hyperplasia stratifies breast cancer risk in 2 independent cohorts of women. Cancer 2016, 122, 2971–2978. [Google Scholar] [CrossRef] [PubMed]
- Menes, T.S.; Kerlikowske, K.; Lange, J.; Jaffer, S.; Rosenberg, R.; Miglioretti, D.L. Subsequent Breast Cancer Risk Following Diagnosis of Atypical Ductal Hyperplasia on Needle Biopsy. JAMA Oncol. 2017, 3, 36–41. [Google Scholar] [CrossRef]
- Hartmann, L.C.; Radisky, D.C.; Frost, M.H.; Santen, R.J.; Vierkant, R.A.; Benetti, L.L.; Tarabishy, Y.; Ghosh, K.; Visscher, D.W.; Degnim, A.C. Understanding the premalignant potential of atypical hyperplasia through its natural history: A longitudinal cohort study. Cancer Prev. Res. Phila. Pa 2014, 7, 211–217. [Google Scholar] [CrossRef]
- Hartmann, L.C.; Degnim, A.C.; Santen, R.J.; Dupont, W.D.; Ghosh, K. Atypical hyperplasia of the breast--risk assessment and management options. N. Engl. J. Med. 2015, 372, 78–89. [Google Scholar] [CrossRef]
- Khoury, T.; Chen, X.; Wang, D.; Kumar, P.; Qin, M.; Liu, S.; Turner, B. Nomogram to predict the likelihood of upgrade of atypical ductal hyperplasia diagnosed on a core needle biopsy in mammographically detected lesions. Histopathology 2015, 67, 106–120. [Google Scholar] [CrossRef]
- Menen, R.S.; Ganesan, N.; Bevers, T.; Ying, J.; Coyne, R.; Lane, D.; Albarracin, C.; Bedrosian, I. Long-Term Safety of Observation in Selected Women Following Core Biopsy Diagnosis of Atypical Ductal Hyperplasia. Ann. Surg. Oncol. 2017, 24, 70–76. [Google Scholar] [CrossRef]
- Peña, A.; Shah, S.S.; Fazzio, R.T.; Hoskin, T.L.; Brahmbhatt, R.D.; Hieken, T.J.; Jakub, J.W.; Boughey, J.C.; Visscher, D.W.; Degnim, A.C. Multivariate model to identify women at low risk of cancer upgrade after a core needle biopsy diagnosis of atypical ductal hyperplasia. Breast Cancer Res. Treat. 2017, 164, 295–304. [Google Scholar] [CrossRef]
- Schiaffino, S.; Massone, E.; Gristina, L.; Fregatti, P.; Rescinito, G.; Villa, A.; Friedman, D.; Calabrese, M. Vacuum assisted breast biopsy (VAB) excision of subcentimeter microcalcifications as an alternative to open biopsy for atypical ductal hyperplasia. Br. J. Radiol. 2018, 91, 20180003. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, Z.; Styblo, T.M.; Arciero, C.A.; Wang, H.; Cohen, M.A. Management of high-risk breast lesions diagnosed on core biopsies and experiences from prospective high-risk breast lesion conferences at an academic institution. Breast Cancer Res. Treat. 2021, 185, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Kilgore, L.J.; Yi, M.; Bevers, T.; Coyne, R.; Marita, L.; Lane, D.; Albarracin, C.; Bedrosian, I. Risk of Breast Cancer in Selected Women With Atypical Ductal Hyperplasia Who do not Undergo Surgical Excision. Ann. Surg. 2022, 276, e932–e936. [Google Scholar] [CrossRef]
- Co, M.; Kwong, A.; Shek, T. Factors affecting the under-diagnosis of atypical ductal hyperplasia diagnosed by core needle biopsies—A 10-year retrospective study and review of the literature. Int. J. Surg. Lond. Engl. 2018, 49, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.C.; Fu, S.L.; Liao, J.; Bashir, A.; Sugg, S.L.; Erdahl, L.M.; Weigel, R.J.; Lizarraga, I.M. Risk management recommendations and patient acceptance vary with high-risk breast lesions. Am. J. Surg. 2022, 223, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Ying, S.-Y.; Chang, D.C.; Lin, S.-L. The MicroRNA (miRNA): Overview of the RNA Genes that Modulate Gene Function. Mol. Biotechnol. 2008, 38, 257–268. [Google Scholar] [CrossRef]
- Brennecke, J.; Hipfner, D.R.; Stark, A.; Russell, R.B.; Cohen, S.M. bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell 2003, 113, 25–36. [Google Scholar] [CrossRef]
- Arun, R.P.; Cahill, H.F.; Marcato, P. Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines 2022, 10, 651. [Google Scholar] [CrossRef]
- Thomas, P.S. Diagnosis and Management of High-Risk Breast Lesions. J. Natl. Compr. Cancer Netw. JNCCN 2018, 16, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Harbhajanka, A.; Gilmore, H.L.; Calhoun, B.C. High-risk and selected benign breast lesions diagnosed on core needle biopsy: Evidence for and against immediate surgical excision. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc 2022, 35, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.B.; Zhu, M.N.; Zhu, X.L. miRNA-215-5p suppresses the aggressiveness of breast cancer cells by targeting Sox9. FEBS Open Bio 2019, 9, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Han, X.; Mo, F.; Zeng, H.; Zhao, Y.; Wang, H.; Zheng, Y.; Ma, X. Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p. Phytomed. Int. J. Phytother. Phytopharm. 2021, 89, 153603. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, X.; Li, Q.; Jin, Y.; Liu, X.; Wang, F.; Mao, Y.; Hua, D. Integrated analysis identifies low microRNA-215 expression as associated with a poor prognosis of patients with colorectal cancer through the IKβ-α signaling pathway. Transl. Cancer Res. 2020, 9, 5233–5244. [Google Scholar] [CrossRef]
- Cavallari, I.; Ciccarese, F.; Sharova, E.; Urso, L.; Raimondi, V.; Silic-Benussi, M.; D’Agostino, D.M.; Ciminale, V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers 2021, 13, 5874. [Google Scholar] [CrossRef]
- Fontana, A.; Barbano, R.; Dama, E.; Pasculli, B.; Rendina, M.; Morritti, M.G.; Melocchi, V.; Castelvetere, M.; Valori, V.M.; Ravaioli, S.; et al. Combined analysis of miR-200 family and its significance for breast cancer. Sci. Rep. 2021, 11, 2980. [Google Scholar] [CrossRef]
- Madhavan, D.; Peng, C.; Wallwiener, M.; Zucknick, M.; Nees, J.; Schott, S.; Rudolph, A.; Riethdorf, S.; Trumpp, A.; Pantel, K.; et al. Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 2016, 37, 461–470. [Google Scholar] [CrossRef]
- Papadaki, C.; Stoupis, G.; Tsalikis, L.; Monastirioti, A.; Papadaki, M.; Maliotis, N.; Stratigos, M.; Mastrostamatis, G.; Mavroudis, D.; Agelaki, S. Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget 2019, 10, 966–981. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, C.; Lu, Z.; Guo, L.; Ge, Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin. Chim. Acta Int. J. Clin. Chem. 2012, 413, 1058–1065. [Google Scholar] [CrossRef]
- Antolín, S.; Calvo, L.; Blanco-Calvo, M.; Santiago, M.P.; Lorenzo-Patiño, M.J.; Haz-Conde, M.; Santamarina, I.; Figueroa, A.; Antón-Aparicio, L.M.; Valladares-Ayerbes, M. Circulating miR-200c and miR-141 and outcomes in patients with breast cancer. BMC Cancer 2015, 15, 297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, N.; Liu, L.; Dong, H.; Liu, X. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signalling pathway by down-regulating NEK2. J. Cell. Mol. Med. 2020, 24, 7353–7369. [Google Scholar] [CrossRef] [PubMed]
- Nalla, L.V.; Gondaliya, P.; Kalia, K.; Khairnar, A. Targeting specificity protein 1 with miR-128-3p overcomes TGF-β1 mediated epithelial-mesenchymal transition in breast cancer: An in vitro study. Mol. Biol. Rep. 2022, 49, 6987–6996. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, W.; Hu, H.; Zhang, T.; Wu, T.; Li, X.; Li, Y.; Kong, Q.; Lu, H.; Lu, Z. Long noncoding RNA PVT1 promotes breast cancer proliferation and metastasis by binding miR-128-3p and UPF1. Breast Cancer Res. BCR 2021, 23, 115. [Google Scholar] [CrossRef]
- Zhao, J.; Li, D.; Fang, L. MiR-128-3p suppresses breast cancer cellular progression via targeting LIMK1. Biomed. Pharm. 2019, 115, 108947. [Google Scholar] [CrossRef]
- Pan, Y.; Jiao, G.; Wang, C.; Yang, J.; Yang, W. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1. Biomed. Pharm. 2016, 83, 1398–1406. [Google Scholar] [CrossRef]
- Hu, T.B.; Chen, H.S.; Cao, M.Q.; Guo, F.D.; Cheng, X.Y.; Han, Z.B.; Li, M.Q. MicroRNA-421 inhibits caspase-10 expression and promotes breast cancer progression. Neoplasma 2018, 65, 49–54. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Shen, J. MicroRNA-421-targeted PDCD4 regulates breast cancer cell proliferation. Int. J. Mol. Med. 2019, 43, 267–275. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Sun, Y.; Yin, Q.; Chen, X.; Liang, S.; Meng, Q.; Long, H.; Li, F.; Luo, C.; et al. Mir-421 in plasma as a potential diagnostic biomarker for precancerous gastric lesions and early gastric cancer. PeerJ 2019, 7, e7002. [Google Scholar] [CrossRef]
- Miao, Y.; Zheng, W.; Li, N.; Su, Z.; Zhao, L.; Zhou, H.; Jia, L. MicroRNA-130b targets PTEN to mediate drug resistance and proliferation of breast cancer cells via the PI3K/Akt signaling pathway. Sci. Rep. 2017, 7, 41942. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Wang, J.; Shen, D.; Zhao, J.; Yu, Q. miR-130b-5p promotes proliferation, migration and invasion of gastric cancer cells via targeting RASAL1. Oncol. Lett. 2018, 15, 6361–6367. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, W.; Lin, Y.; Yin, K.; Zhou, L.; Du, Y.; Yan, T.; Lu, J. Downregulated circulating microRNAs after surgery: Potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer. Cell Death Discov. 2018, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Hu, Z.; Qiang, Y.; Zhu, X. Circulating miR-130b- and miR-21-based diagnostic markers and therapeutic targets for hepatocellular carcinoma. Mol. Genet. Genom. Med. 2019, 7, e1012. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Javanshir-Giv, S.; Soleimani, H.; Mollaei, H.; Sadri, F.; Rezaei, Z. The importance of hsa-miR-28 in human malignancies. Biomed. Pharm. 2023, 161, 114453. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wei, D.-D.; Chen, Z.; Wang, J.-S.; Kong, L.-Y. Reversal effects of traditional Chinese herbs on multidrug resistance in cancer cells. Nat. Prod. Res. 2011, 25, 1885–1889. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, Y.; Hu, F. miR-28-5p inhibits the migration of breast cancer by regulating WSB2. Int. J. Mol. Med. 2020, 46, 1562–1570. [Google Scholar] [CrossRef]
- Zan, X.; Li, W.; Wang, G.; Yuan, J.; Ai, Y.; Huang, J.; Li, Z. Circ-CSNK1G1 promotes cell proliferation, migration, invasion and glycolysis metabolism during triple-negative breast cancer progression by modulating the miR-28-5p/LDHA pathway. Reprod. Biol. Endocrinol. RBE 2022, 20, 138. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Lu, M.; Gu, H.; Zhou, X.; Chen, X.; Zen, K.; Zhang, C.-Y.; Zhang, T.; Ge, J.; et al. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci. Rep. 2015, 5, 7610. [Google Scholar] [CrossRef]
- Li, L.-L.; Qu, L.-L.; Fu, H.-J.; Zheng, X.-F.; Tang, C.-H.; Li, X.-Y.; Chen, J.; Wang, W.-X.; Yang, S.-X.; Wang, L.; et al. Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy. Oncotarget 2017, 8, 45399–45414. [Google Scholar] [CrossRef]
- McDonald, A.C.; Vira, M.; Walter, V.; Shen, J.; Raman, J.D.; Sanda, M.G.; Patil, D.; Taioli, E. Circulating microRNAs in plasma among men with low-grade and high-grade prostate cancer at prostate biopsy. Prostate 2019, 79, 961–968. [Google Scholar] [CrossRef]
- Toniolo, P.; Bruning, P.F.; Akhmedkhanov, A.; Bonfrer, J.M.; Koenig, K.L.; Lukanova, A.; Shore, R.E.; Zeleniuch-Jacquotte, A. Serum insulin-like growth factor-I and breast cancer. Int. J. Cancer 2000, 88, 828–832. [Google Scholar] [CrossRef]
- Endogenous Hormones and Breast Cancer Collaborative Group; Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.W. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010, 11, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Monson, K.R.; Goldberg, M.; Wu, H.-C.; Santella, R.M.; Chung, W.K.; Terry, M.B. Circulating growth factor concentrations and breast cancer risk: A nested case-control study of IGF-1, IGFBP-3, and breast cancer in a family-based cohort. Breast Cancer Res. BCR 2020, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.; Knuppel, A.; Papadimitriou, N.; Martin, R.M.; Tsilidis, K.K.; Smith-Byrne, K.; Fensom, G.; Perez-Cornago, A.; Travis, R.C.; Key, T.J.; et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: Observational and Mendelian randomization analyses with ∼430 000 women. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 641–649. [Google Scholar] [CrossRef]
- Lee, J.-S.; Tocheny, C.E.; Shaw, L.M. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. Life Basel Switz. 2022, 12, 1992. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.W.; Drummond, A.E.; Swain, C.T.; Milne, R.L.; English, D.R.; Brown, K.A.; van Roekel, E.H.; Skinner, T.L.; Moore, M.M.; Gaunt, T.R.; et al. Linking physical activity to breast cancer via inflammation, Part 2: The effect of inflammation on breast cancer risk. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2023, EPI-22-0929. [Google Scholar] [CrossRef]
- Kerr, A.; Baxter, R.C. Noncoding RNA actions through IGFs and IGF binding proteins in cancer. Oncogene 2022, 41, 3385–3393. [Google Scholar] [CrossRef]
- Admoun, C.; Mayrovitz, H.N. The Etiology of Breast Cancer. In Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications: Brisbane, AU, USA, 2022; ISBN 978-0-645-33203-2. [Google Scholar]
- Fakhri, N.; Chad, M.A.; Lahkim, M.; Houari, A.; Dehbi, H.; Belmouden, A.; El Kadmiri, N. Risk factors for breast cancer in women: An update review. Med. Oncol. Northwood Lond. Engl. 2022, 39, 197. [Google Scholar] [CrossRef]
- Aparicio-Puerta, E.; Lebrón, R.; Rueda, A.; Gómez-Martín, C.; Giannoukakos, S.; Jaspez, D.; Medina, J.M.; Zubkovic, A.; Jurak, I.; Fromm, B.; et al. sRNAbench and sRNAtoolbox 2019: Intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 2019, 47, W530–W535. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Searle, B.C.; Pino, L.K.; Egertson, J.D.; Ting, Y.S.; Lawrence, R.T.; MacLean, B.X.; Villén, J.; MacCoss, M.J. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat. Commun. 2018, 9, 5128. [Google Scholar] [CrossRef]
- Graw, S.; Tang, J.; Zafar, M.K.; Byrd, A.K.; Bolden, C.; Peterson, E.C.; Byrum, S.D. proteiNorm—A User-Friendly Tool for Normalization and Analysis of TMT and Label-Free Protein Quantification. ACS Omega 2020, 5, 25625–25633. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Siklenka, K.; Arora, S.K.; Ribeiro, P.; Kimmins, S.; Xia, J. miRNet—Dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016, 44, W135–W141. [Google Scholar] [CrossRef] [PubMed]
miRBase ID | MirGeneDB ID | CA vs. Be | HB vs. Be | MB vs. Be |
---|---|---|---|---|
hsa-mir-18a-5p | Hsa-Mir-17-P2a_5p | Down | Up | |
hsa-mir-20a-5p | Hsa-Mir-17-P4a_5p | Down | Up | |
hsa-mir-99a-5p | Hsa-Mir-10-P2c_5p | Up | Down | |
hsa-mir-141-3p | Hsa-Mir-8-P2b_3p | Down | Down | Down |
hsa-mir-200a-3p | Hsa-Mir-8-P2a_3p | Down | Down | Down |
hsa-mir-215-5p | Hsa-Mir-192-P1_5p | Down | Down | Down |
hsa-mir-361-3p | Hsa-Mir-361-v1_3p* | Up | Up | |
hsa-mir-362-5p | Hsa-Mir-362-P1_5p | Up | Up | |
hsa-mir-3613-5p | Hsa-Mir-3613_5p | Up | Up |
miRBase ID | MirGeneDB ID | CA vs. HB | ¹ Common in 76 |
---|---|---|---|
hsa-mir-15a-5p | Hsa-Mir-15-P1a_5p | Down | Yes |
hsa-mir-19b-3p (19b-1) | Hsa-Mir-19-P2a_3p | Down | Yes |
hsa-mir-19b-3p (19b-2) | Hsa-Mir-19-P2c_3p | Down | Yes |
hsa-mir-20a-5p | Hsa-Mir-17-P4a_5p | Down | Yes |
hsa-mir-28-5p | Hsa-Mir-28-P1_5p | Up | No |
hsa-mir-99a-5p | Hsa-Mir-10-P2c_5p | Up | Yes |
hsa-mir-122-5p | Hsa-Mir-122_5p | Up | Yes |
hsa-mir-128-3p | Hsa-Mir-128-P1_3p | Down | Yes |
hsa-mir-130a-3p | Hsa-Mir-130-P1c_3p | Down | Yes |
hsa-mir-130b-5p | Hsa-Mir-130-P4a_5p | Up | No |
hsa-mir-185-5p | Hsa-Mir-185_5p | Down | No |
hsa-mir-421 | Hsa-Mir-95-P2_3p | Down | Yes |
hsa-mir-424-5p | Hsa-Mir-15-P1c_5p | Down | No |
hsa-mir-877-3p | Hsa-Mir-877_3p* | Up | No |
hsa-mir-885-5p | Hsa-Mir-885_5p | Up | Yes |
miRBase ID | TP Rate | FP Rate | Precision | Recall | F-Measure | AUC | |
---|---|---|---|---|---|---|---|
CA vs. Be | hsa-mir-215-5p | 0.667 | 0.222 | 0.750 | 0.667 | 0.706 | 0.790 |
hsa-mir-200a-3p | 0.667 | 0.444 | 0.600 | 0.667 | 0.632 | 0.716 | |
hsa-mir-141-3p | 0.667 | 0.333 | 0.667 | 0.667 | 0.667 | 0.741 | |
hsa-mir-215-5p + hsa-mir-200a-3p | 0.667 | 0.333 | 0.667 | 0.667 | 0.667 | 0.778 | |
hsa-mir-215-5p + hsa-mir-141-3p | 0.556 | 0.222 | 0.714 | 0.556 | 0.625 | 0.753 | |
CA vs. HB | hsa-mir-128-3p | 0.444 | 0.214 | 0.571 | 0.444 | 0.500 | 0.722 |
hsa-mir-130b-5p | 0.667 | 0.143 | 0.750 | 0.667 | 0.706 | 0.746 | |
hsa-mir-28-5p | 0.667 | 0.143 | 0.750 | 0.667 | 0.706 | 0.841 | |
hsa-mir-421 | 0.556 | 0.286 | 0.556 | 0.556 | 0.556 | 0.714 | |
hsa-mir-28-5p + hsa-mir-421 | 0.444 | 0.286 | 0.500 | 0.444 | 0.471 | 0.746 | |
hsa-mir-130b-5p + hsa-mir-28-5p + hsa-mir-421 | 0.667 | 0.214 | 0.667 | 0.667 | 0.667 | 0.770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadka, V.S.; Nasu, M.; Deng, Y.; Jijiwa, M. Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors. Int. J. Mol. Sci. 2023, 24, 7553. https://doi.org/10.3390/ijms24087553
Khadka VS, Nasu M, Deng Y, Jijiwa M. Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors. International Journal of Molecular Sciences. 2023; 24(8):7553. https://doi.org/10.3390/ijms24087553
Chicago/Turabian StyleKhadka, Vedbar S., Masaki Nasu, Youping Deng, and Mayumi Jijiwa. 2023. "Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors" International Journal of Molecular Sciences 24, no. 8: 7553. https://doi.org/10.3390/ijms24087553