Exploring Structural–Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of COUPY Fluorophores 3–6
2.2. Photophysical Characterization of COUPY Derivatives
2.3. Confocal Microscopy Studies
3. Discussion
4. Materials and Methods
4.1. General Remarks
4.2. Synthetic Procedures
4.2.1. Synthesis of COUPY Fluorophore 3
Compound 9
Compound 10
Compound 11
Compound 12
Compound 3
4.2.2. Synthesis of COUPY Fluorophore 5
Compound 14b
Compound 15b
Compound 5
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Z.; Park, S.; Yoon, J.; Shin, I. Recent Progress in the Development of Near-Infrared Fluorescent Probes for Bioimaging Applications. Chem. Soc. Rev. 2014, 43, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Sekar, N. Far-Red to NIR Emitting Xanthene-Based Fluorophores. Dyes. Pigm. 2022, 208, 110735. [Google Scholar] [CrossRef]
- Sharma, S.J.; Sekar, N. Deep-Red/NIR Emitting Coumarin Derivatives—Synthesis, Photophysical Properties, and Biological Applications. Dye. Pigm. 2022, 202, 110306. [Google Scholar] [CrossRef]
- Hong, G.; Antaris, A.L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010. [Google Scholar] [CrossRef]
- Van Der Vorst, J.R.; Schaafsma, B.E.; Hutteman, M.; Verbeek, F.P.R.; Liefers, G.J.; Hartgrink, H.H.; Smit, V.T.H.B.M.; Löwik, C.W.G.M.; Van De Velde, C.J.H.; Frangioni, J.V.; et al. Near-Infrared Fluorescence-Guided Resection of Colorectal Liver Metastases. Cancer 2013, 119, 3411–3418. [Google Scholar] [CrossRef]
- Chinna Ayya Swamy, P.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near Infrared (NIR) Absorbing Dyes as Promising Photosensitizer for Photo Dynamic Therapy. Coord. Chem. Rev. 2020, 411, 213233. [Google Scholar] [CrossRef]
- Jung, H.S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic Molecule-Based Photothermal Agents: An Expanding Photothermal Therapy Universe. Chem. Soc. Rev. 2018, 47, 2280–2297. [Google Scholar] [CrossRef]
- Egyed, A.; Németh, K.; Molnár, T.; Kállay, M.; Kele, P.; Bojtár, M. Turning Red without Feeling Embarrassed-Xanthenium-Based Photocages for Red-Light-Activated Phototherapeutics. J. Am. Chem. Soc. 2022, 145, 4026–4034. [Google Scholar] [CrossRef]
- Weinstain, R.; Slanina, T.; Kand, D.; Klán, P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem. Rev. 2020, 120, 13135–13272. [Google Scholar] [CrossRef]
- Mantulin, W.W.; Song, P.S. Excited States of Skin-Sensitizing Coumarins and Psoralens. Spectroscopic Studies. J. Am. Chem. Soc. 1973, 95, 5122–5129. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, Y.; Hou, J.; Wang, P.; Peng, X.; Ge, G. Coumarin-Based near-Infrared Fluorogenic Probes: Recent Advances, Challenges and Future Perspectives. Coord. Chem. Rev. 2023, 480, 215020. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Z.; Cole, J.M. Molecular Design of UV-Vis Absorption and Emission Properties in Organic Fluorophores: Toward Larger Bathochromic Shifts, Enhanced Molar Extinction Coefficients, and Greater Stokes Shifts. J. Phys. Chem. C 2013, 117, 16584–16595. [Google Scholar] [CrossRef]
- López Arbeloa, T.; López Arbeloa, F.; Tapia, M.J.; López Arbeloa, I. Hydrogen-Bonding Effect on the Photophysical Properties of 7-Aminocoumarin Derivatives. J. Phys. Chem. 1993, 97, 4704–4707. [Google Scholar] [CrossRef]
- Tkach, I.I.; Reznichenko, A.V.; Luk’yanets, E.A. Reaction of 4-Diethylaminosalicylaldehyde with Malononitrile. Chem. Heterocycl. Compd. 1992, 28, 872–880. [Google Scholar] [CrossRef]
- Fournier, L.; Gauron, C.; Xu, L.; Aujard, I.; Le Saux, T.; Gagey-Eilstein, N.; Maurin, S.; Dubruille, S.; Baudin, J.B.; Bensimon, D.; et al. A Blue-Absorbing Photolabile Protecting Group for in Vivo Chromatically Orthogonal Photoactivation. ACS Chem. Biol. 2013, 8, 1528–1536. [Google Scholar] [CrossRef]
- Eustáquio, R.; Ramalho, J.P.P.; Caldeira, A.T.; Pereira, A. New Red-Shifted 4-Styrylcoumarin Derivatives as Potential Fluorescent Labels for Biomolecules. Molecules 2022, 27, 1461. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. B 2003, 107, 597–606. [Google Scholar] [CrossRef]
- Yadav, S.B.; Erande, Y.; Sreenath, M.C.; Chitrambalam, S.; Joe, I.H.; Sekar, N. Pyrene Based NLOphoric D-π-A-π-D Coumarin-Chalcone and Their Red Emitting OBO Difluoride Complex: Synthesis, Solvatochromism, Z-Scan, and Detailed TD-DFT Studies. ChemistrySelect 2019, 4, 10385–10400. [Google Scholar] [CrossRef]
- Matikonda, S.S.; Ivanic, J.; Gomez, M.; Hammersley, G.; Schnermann, M.J. Core Remodeling Leads to Long Wavelength Fluoro-Coumarins. Chem. Sci. 2020, 11, 7302–7307. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, N.; Li, Y.; Yang, Z.; Chen, L.; Sun, T.; Xie, Z. Comparative Study of Two Near-Infrared Coumarin-BODIPY Dyes for Bioimaging and Photothermal Therapy of Cancer. J. Mater. Chem. B 2019, 7, 4717–4724. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Ding, S.; Zhang, H.; Feng, G. A Near-Infrared Fluorescent Probe for Rapid, Colorimetric and Ratiometric Detection of Bisulfite in Food, Serum, and Living Cells. Sens. Actuators B 2015, 211, 377–384. [Google Scholar] [CrossRef]
- Duangkamol, C.; Muangsopa, P.; Rattanopas, S.; Wongsuwan, P.; Khrootkaew, T.; Chueakwon, P.; Niamnont, N.; Chansaenpak, K.; Kamkaew, A. Polarity and Viscosity-Sensitive Fluorescence Probes for Lipid Droplet Imaging in Cancer Cells. Dyes. Pigm. 2023, 216, 111365. [Google Scholar] [CrossRef]
- Sun, Q.; He, D.; Zhang, L.; Li, Z.; Qu, L.; Sun, Y. Coumarin-Hemicyanine-Based Far-Red to near-Infrared Fluorescent Probes: A New Generation of Fluorescent Probe Design Platform. TrAC-Trends Anal. Chem. 2023, 167, 117272. [Google Scholar] [CrossRef]
- Xu, W.; Teoh, C.L.; Peng, J.; Su, D.; Yuan, L.; Chang, Y.T. A Mitochondria-Targeted Ratiometric Fluorescent Probe to Monitor Endogenously Generated Sulfur Dioxide Derivatives in Living Cells. Biomaterials 2015, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Lin, W.; Song, J. Ratiometric Fluorescent Detection of Intracellular Hydroxyl Radicals Based on a Hybrid Coumarin-Cyanine Platform. Chem. Commun. 2010, 46, 7930–7932. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Yang, B.; Shen, Y.; Du, Q.; Lin, L.; Lin, J.; Zhu, H. A BODIPY-Coumarin-Based Selective Fluorescent Probe for Rapidly Detecting Hydrogen Sulfide in Blood Plasma and Living Cells. Sens. Actuators B 2013, 182, 498–503. [Google Scholar] [CrossRef]
- Zheng, K.; Chen, H.; Fang, S.; Wang, Y. A Ratiometric Fluorescent Probe Based on a Bodipy-Coumarin Conjugate for Sensing of Nitroxyl in Living Cells. Sens. Actuators B 2016, 233, 193–198. [Google Scholar] [CrossRef]
- Fournier, L.; Aujard, I.; Le Saux, T.; Maurin, S.; Beaupierre, S.; Baudin, J.B.; Jullien, L. Coumarinylmethyl Caging Groups with Redshifted Absorption. Chem.-A Eur. J. 2013, 19, 17494–17507. [Google Scholar] [CrossRef]
- Gandioso, A.; Bresolí-Obach, R.; Nin-Hill, A.; Bosch, M.; Palau, M.; Galindo, A.; Contreras, S.; Rovira, A.; Rovira, C.; Nonell, S.; et al. Redesigning the Coumarin Scaffold into Small Bright Fluorophores with Far-Red to Near-Infrared Emission and Large Stokes Shifts Useful for Cell Imaging. J. Org. Chem. 2018, 83, 1185–1195. [Google Scholar] [CrossRef]
- Gandioso, A.; Palau, M.; Bresolí-Obach, R.; Galindo, A.; Rovira, A.; Bosch, M.; Nonell, S.; Marchán, V. High Photostability in Nonconventional Coumarins with Far-Red/NIR Emission through Azetidinyl Substitution. J. Org. Chem. 2018, 83, 11519–11531. [Google Scholar] [CrossRef]
- Rovira, A.; Pujals, M.; Gandioso, A.; López-Corrales, M.; Bosch, M.; Marchán, V. Modulating Photostability and Mitochondria Selectivity in Far-Red/NIR Emitting Coumarin Fluorophores through Replacement of Pyridinium by Pyrimidinium. J. Org. Chem. 2020, 85, 6086–6097. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, E.; López-Corrales, M.; Abad-Montero, D.; Rovira, A.; Fabriàs, G.; Bosch, M.; Abad, J.L.; Marchán, V. Fluorescently Labeled Ceramides and 1-Deoxyceramides: Synthesis, Characterization, and Cellular Distribution Studies. J. Org. Chem. 2022, 87, 16351–16367. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Forte, E.; Rovira, A.; López-Corrales, M.; Hernández-García, A.; Ballester, F.J.; Izquierdo-García, E.; Jordà-Redondo, M.; Bosch, M.; Nonell, S.; Santana, M.D.; et al. A Near-Infrared Light-Activatable Ru(II)-Coumarin Photosensitizer Active under Hypoxic Conditions. Chem. Sci. 2023, 14, 7170–7184. [Google Scholar] [CrossRef] [PubMed]
- Rovira, A.; Ortega-Forte, E.; Hally, C.; Jordà-Redondo, M.; Abad-Montero, D.; Vigueras, G.; Martínez, J.I.; Bosch, M.; Nonell, S.; Ruiz, J.; et al. Exploring Structure–Activity Relationships in Photodynamic Therapy Anticancer Agents Based on Ir(III)-COUPY Conjugates. J. Med. Chem. 2023, 66, 7849–7867. [Google Scholar] [CrossRef] [PubMed]
- López-Corrales, M.; Rovira, A.; Gandioso, A.; Nonell, S.; Bosch, M.; Marchán, V. Mitochondria-Targeted COUPY Photocages: Synthesis and Visible-Light Photoactivation in Living Cells. J. Org. Chem. 2023, 88, 7128–7140. [Google Scholar] [CrossRef]
- Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899–4031. [Google Scholar] [CrossRef]
- Das, B.; Venkateswarlu, K.; Majhi, A.; Siddaiah, V.; Reddy, K.R. A Facile Nuclear Bromination of Phenols and Anilines Using NBS in the Presence of Ammonium Acetate as a Catalyst. J. Mol. Catal. A Chem. 2007, 267, 30–33. [Google Scholar] [CrossRef]
- Resch-Genger, U.; Rurack, K. Determination of the Photoluminescence Quantum Yield of Dilute Dye Solutions (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 2005–2013. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Nödling, A.R.; Mills, E.M.; Li, X.; Cardella, D.; Sayers, E.J.; Wu, S.-H.; Jones, A.T.; Luk, L.Y.P.; Tsai, Y.-H. Cyanine Dye Mediated Mitochondrial Targeting Enhances the Anti-Cancer Activity of Small-Molecule Cargoes. Chem. Commun. 2020, 56, 4672–4675. [Google Scholar] [CrossRef]
- Paul, A.; Mengji, R.; Bera, M.; Ojha, M.; Jana, A.; Singh, N.D.P. Mitochondria-Localized: In Situ Generation of Rhodamine Photocage with Fluorescence Turn-on Enabling Cancer Cell-Specific Drug Delivery Triggered by Green Light. Chem. Commun. 2020, 56, 8412–8415. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.; Dimitriadi, M.; Bassin, J.; Cook, M.T.; Abelha, T.F.; Calvo-Castro, J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chem.-A Eur. J. 2022, 28, e202202366. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.E.; Sanders, C.; Chen, H.; Loock, H.-P. Refractive indices of common solvents and solutions at 1550 nm. Appl. Opt. 2016, 55, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Arzt, M.; Deschamps, J.; Schmied, C.; Pietzsch, T.; Schmidt, D.; Tomancak, P.; Haase, R.; Jug, F. LABKIT: La-beling and Segmentation Toolkit for Big Image Data. Front. Comput. Sci. 2022, 4, 1–12. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef]
Compound | Solvent | λabs a | ε(mM−1cm−1) b | λem (λexc) c | Stokes’ Shift d | ΦF e |
---|---|---|---|---|---|---|
1 | MeOH | 549 | 51.2 | 602 (546) | 53 | 0.23 |
ACN | 548 | 41.3 | 603 (546) | 55 | 0.20 | |
DCM | 570 | 64.2 | 603 (546) | 33 | 0.70 | |
2 | MeOH | 570 | 25.2 | 651 (578) | 81 | 0.02 |
ACN | 568 | 23.9 | 654 (578) | 86 | 0.01 | |
DCM | 601 | 37.9 | 646 (578) | 45 | 0.05 | |
3 | MeOH | 553 | 1.6 | 595 (546) | 42 | <0.01 |
ACN | 554 | 2.6 | 592 (546) | 38 | <0.01 | |
DCM | 573 | 3.8 | 604 (546) | 31 | 0.01 | |
4 | MeOH | 572 | 43.4 | 633 (578) | 61 | 0.14 |
ACN | 572 | 50.4 | 638 (578) | 66 | 0.15 | |
DCM | 598 | 65.4 | 633 (578) | 35 | 0.59 | |
5 | MeOH | 572 | 47.8 | 627 (578) | 55 | 0.01 |
ACN | 572 | 39.3 | 628 (578) | 56 | <0.01 | |
DCM | 599 | 54.0 | 637 (578) | 38 | 0.04 | |
6 | MeOH | 613 | 23.1 | 685 (578) | 72 | 0.03 |
ACN | 614 | 22.9 | 690 (578) | 76 | 0.03 | |
DCM | 652 | 35.7 | 690 (578) | 38 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izquierdo-García, E.; Rovira, A.; Forcadell, J.; Bosch, M.; Marchán, V. Exploring Structural–Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins. Int. J. Mol. Sci. 2023, 24, 17427. https://doi.org/10.3390/ijms242417427
Izquierdo-García E, Rovira A, Forcadell J, Bosch M, Marchán V. Exploring Structural–Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins. International Journal of Molecular Sciences. 2023; 24(24):17427. https://doi.org/10.3390/ijms242417427
Chicago/Turabian StyleIzquierdo-García, Eduardo, Anna Rovira, Joan Forcadell, Manel Bosch, and Vicente Marchán. 2023. "Exploring Structural–Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins" International Journal of Molecular Sciences 24, no. 24: 17427. https://doi.org/10.3390/ijms242417427
APA StyleIzquierdo-García, E., Rovira, A., Forcadell, J., Bosch, M., & Marchán, V. (2023). Exploring Structural–Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins. International Journal of Molecular Sciences, 24(24), 17427. https://doi.org/10.3390/ijms242417427