Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS)
Abstract
:1. Introduction
- Lateral diffusion along bilayers (Kp,lateral), which is a dominant route for large lipophilic solutes;
- Diffusion through aqueous pores (Kp,pores), which are waterfilled spaces within lipid bilayers created by imperfections in the lipid layer, and they are important for small and hydrophilic solutes;
- Diffusion through shunts (Kp,shunts), such as sebaceous glands, hair follicles, and sweat glands that are the dominant pathways for large hydrophilic solutes;
- Diffusion through free volumes located in lipid bilayers (Kp,free volumes), which are important for low-molecular-weight hydrophobic and moderately hydrophilic solutes. According to Mitragotri’s model, the permeability of the SC to a solute—whether hydrophilic or hydrophobic—can be mathematically represented by Equation (1). This equation expresses the sum of the permeabilities via four pathways: lateral diffusion along bilayers, diffusion through aqueous pores, diffusion through shunts, and free volume diffusion through SC lipid bilayers [19]:Kp,SC = Kp,lateral + Kp,pores + Kp,shunts + Kp,free volumes
2. Results and Discussion
2.1. Evaluation of the Potential of the PALS Method for Examining Free Volumes in Human Skin Ex Vivo
2.2. Experimental Data
2.3. Molecular Mechanism of Creating Free Volumes in Stratum Corneum
3. Materials and Methods
3.1. Reagents
3.2. Human Ex Vivo Skin as a Biological Material to Study
3.3. Preparation of Human Ex Vivo Skin
3.4. Positron Annihilation Lifetime Spectroscopy Technique
3.4.1. Theoretical Aspect of the PALS
3.4.2. PALS Spectra Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cevc, G.; Vierl, U. Nanotechnology and the Transdermal Route. A State of the Art Review and Critical Appraisal. J. Control. Release 2010, 141, 277–299. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020, 12, 684. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y. Bin Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. [Google Scholar] [CrossRef]
- Kapoor, M.S.; Guhasarkar, S.; Banerjee, R. Stratum Corneum Modulation by Chemical Enhancers and Lipid Nanostructures: Implications for Transdermal Drug Delivery. Ther. Deliv. 2017, 8, 701–718. [Google Scholar] [CrossRef]
- Vater, C.; Apanovic, A.; Riethmüller, C.; Litschauer, B.; Wolzt, M.; Valenta, C.; Klang, V. Changes in Skin Barrier Function after Repeated Exposition to Phospholipid-Based Surfactants and Sodium Dodecyl Sulfate in Vivo and Corneocyte Surface Analysis by Atomic Force Microscopy. Pharmaceutics 2021, 13, 436. [Google Scholar] [CrossRef]
- Krenczkowska, D.; Mojsiewicz-Pieńkowska, K.; Wielgomas, B.; Cal, K.; Bartoszewski, R.; Bartoszewska, S.; Jankowski, Z. The Consequences of Overcoming the Human Skin Barrier by Siloxanes (Silicones) Part 1. Penetration and Permeation Depth Study of Cyclic Methyl Siloxanes. Chemosphere 2019, 231, 607–623. [Google Scholar] [CrossRef]
- Krenczkowska, D.; Mojsiewicz-Pieńkowska, K.; Wielgomas, B.; Bazar, D.; Jankowski, Z. Ex Vivo Human Skin Is Not a Barrier for Cyclic Siloxanes (Cyclic Silicones): Evidence of Diffusion, Bioaccumulation, and Risk of Dermal Absorption Using a New Validated Gc-Fid Procedure. Pharmaceutics 2020, 12, 586. [Google Scholar] [CrossRef]
- Mercuri, M.; Rivas, D.F. Challenges and Opportunities for Small Volumes Delivery into the Skin. Biomicrofluidics 2021, 15, 11301. [Google Scholar] [CrossRef]
- Castangia, I.; Manca, M.L.; Matricardi, P.; Sinico, C.; Lampis, S.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Effect of Diclofenac and Glycol Intercalation on Structural Assembly of Phospholipid Lamellar Vesicles. Int. J. Pharm. 2013, 456, 1–9. [Google Scholar] [CrossRef]
- Walters, K.A.; Roberts, M.S. The Structure and Function of Skin. In Dermatological and Transdermal Formulations; Walters, K.A., Ed.; CRC Press: New York, NY, USA, 2002; pp. 1–40. [Google Scholar]
- Schmitt, T.; Neubert, R.H.H. State of the Art in Stratum Corneum Research. Part II: Hypothetical Stratum Corneum Lipid Matrix Models. Ski. Pharmacol. Physiol. 2020, 33, 213–230. [Google Scholar] [CrossRef]
- Baroli, B. Penetration of Nanoparticles and Nanomaterials in the Skin: Fiction or Reality? J. Pharm. Sci. 2010, 99, 21–50. [Google Scholar] [CrossRef] [PubMed]
- Vávrová, K.; Kováčik, A.; Opálka, L. Ceramides in the Skin Barrier. Eur. Pharm. J. 2017, 64, 28–35. [Google Scholar] [CrossRef]
- Mojsiewicz-Pieńkowska, K.; Stachowska, E.; Krenczkowska, D.; Bazar, D.; Meijer, F. Evidence of Skin Barrier Damage by Cyclic Siloxanes (Silicones)—Using Digital Holographic Microscopy. Int. J. Mol. Sci. 2020, 21, 6375. [Google Scholar] [CrossRef] [PubMed]
- Drutis, D.M.; Hancewicz, T.M.; Pashkovski, E.; Feng, L.; Mihalov, D.; Holtom, G.; Ananthapadmanabhan, K.P.; Xie, X.S.; Misra, M. Three-Dimensional Chemical Imaging of Skin Using Stimulated Raman Scattering Microscopy. J. Biomed. Opt. 2014, 19, 111604. [Google Scholar] [CrossRef] [PubMed]
- Carrer, D.C.; Higa, L.H.; Tesoriero, M.V.D.; Morilla, M.J.; Roncaglia, D.I.; Romero, E.L. Structural Features of Ultradeformable Archaeosomes for Topical Delivery of Ovalbumin. Colloids Surf. B Biointerfaces 2014, 121, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Higa, L.H.; Arnal, L.; Vermeulen, M.; Perez, A.P.; Schilrreff, P.; Mundiña-Weilenmann, C.; Yantorno, O.; Vela, M.E.; Morilla, M.J.; Romero, E.L. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania Braziliensis Antigens. PLoS ONE 2016, 11, e0150185. [Google Scholar] [CrossRef] [PubMed]
- Barry, B.W. Novel Mechanisms and Devices to Enable Successful Transdermal Drug Delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S. Modeling Skin Permeability to Hydrophilic and Hydrophobic Solutes Based on Four Permeation Pathways. J. Control. Release 2003, 86, 69–92. [Google Scholar] [CrossRef]
- Mitragotri, S. A Theoretical Analysis of Permeation of Small Hydrophobic Solutes across the Stratum Corneum Based on Scaled Particle Theory. J. Pharm. Sci. 2002, 91, 744–752. [Google Scholar] [CrossRef]
- Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L.; Frasch, H.F.; Guy, R.H.; Hadgraft, J.; Kasting, G.B.; Lane, M.E.; Roberts, M.S. Mathematical Models of Skin Permeability: An Overview. Int. J. Pharm. 2011, 418, 115–129. [Google Scholar] [CrossRef]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Jankovskaja, S.; Engblom, J.; Rezeli, M.; Marko-Varga, G.; Ruzgas, T.; Björklund, S. Non-Invasive Skin Sampling of Tryptophan/Kynurenine Ratio in Vitro towards a Skin Cancer Biomarker. Sci. Rep. 2021, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.O.; Richard, H. Guy Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S.; Johnson, M.E.; Blankschtein, D.; Langer, R. An Analysis of the Size Selectivity of Solute Partitioning, Diffusion, and Permeation across Lipid Bilayers. Biophys. J. 1999, 77, 1268–1283. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Shimazu, A.; Sadzuka, Y.; Sonobe, T.; Itai, S. Novel Method for Stratum Corneum Pore Size Determination Using Positron Annihilation Lifetime Spectroscopy. Int. J. Pharm. 2008, 358, 91–95. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Chakka, L.; Gadzia, J.E.; Jean, Y.C. Applications of Positron Annihilation to Dermatology and Skin Cancer. Phys. Status Solidi (C) Curr. Top. Solid State Phys. 2007, 4, 3912–3915. [Google Scholar] [CrossRef]
- Fong, C.; Dong, A.W.; Hill, A.J.; Boyd, B.J.; Drummond, C.J. Positron Annihilation Lifetime Spectroscopy (PALS): A Probe for Molecular Organisation in Self-Assembled Biomimetic Systems. Phys. Chem. Chem. Phys. 2015, 17, 17527–17540. [Google Scholar] [CrossRef] [PubMed]
- Abd, E.; Yousef, S.A.; Pastore, M.N.; Telaprolu, K.; Mohammed, Y.H.; Namjoshi, S.; Grice, J.E.; Roberts, M.S. Skin Models for the Testing of Transdermal Drugs. Clin. Pharmacol. 2016, 8, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Jean, Y.C.; Li, Y.; Liu, G.; Chen, H.; Zhang, J.; Gadzia, J.E. Applications of Slow Positrons to Cancer Research: Search for Selectivity of Positron Annihilation to Skin Cancer. Appl. Surf. Sci. 2006, 252, 3166–3171. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Chakka, L.; Cheng, M.L.; Gadzia, J.E.; Suzuki, R.; Ohdaira, T.; Oshima, N.; Jean, Y.C. Further Search for Selectivity of Positron Annihilation in the Skin and Cancerous Systems. Appl. Surf. Sci. 2008, 255, 115–118. [Google Scholar] [CrossRef]
- Xiang, T.-X. A Computer Simulation of Free-Volume Distributions and Related Structural Properties in a Model Lipid Bilayer. Biophys. J. 1993, 65, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liu, Q.; Cui, L.; Yu, Y.; Zhang, M. Molecular Simulation and Experimental Study on Propylene Dehumidification through a PVA-PAA Blend Membrane. J. Mater. Chem. A Mater. 2014, 2, 16687–16696. [Google Scholar] [CrossRef]
- Consolati, G.; Mossini, E.; Nichetti, D.; Quasso, F.; Viola, G.M.; Yaynik, E. Shape and Temperature Expansion of Free Volume Holes in Some Cured Polybutadiene-Polyisoprene Rubber Blends. Int. J. Mol. Sci. 2021, 22, 1436. [Google Scholar] [CrossRef] [PubMed]
- Pach-Zawada, K.; Leśniak, M.; Filipecka-Szymczyk, K.; Golis, E.; Sitarz, M.; Dorosz, D.; Filipecki, J. Tellurite Glasses from the 70TeO2-5XO-10P2O5-10ZnO-5PbF2(X = Pb, Bi, Ti) System Doped Erbium Ions—The Influence of Erbium on the Structure and Physical Properties. Int. J. Mol. Sci. 2023, 24, 3556. [Google Scholar] [CrossRef] [PubMed]
- Egberts, E.; Marrink, S.-J.; Berendsen, H.J.C.; Berendsen, H.J.C. Molecular Dynamics Simulation of a Phospholipid Membrane. Eur. Biophys. J. 1994, 22, 423–436. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Nădăban, A.; Bras, W.; McCabe, C.; Bunge, A.; Gooris, G.S. The Skin Barrier: An Extraordinary Interface with an Exceptional Lipid Organization. Prog. Lipid Res. 2023, 92, 101252. [Google Scholar] [CrossRef]
- Beddoes, C.M.; Gooris, G.S.; Barlow, D.J.; Lawrence, M.J.; Dalgliesh, R.M.; Malfois, M.; Demé, B.; Bouwstra, J.A. The Importance of Ceramide Headgroup for Lipid Localisation in Skin Lipid Models. Biochim. Biophys. Acta Biomembr. 2022, 1864, 183886. [Google Scholar] [CrossRef] [PubMed]
- Fandrei, F.; Havrišák, T.; Opálka, L.; Engberg, O.; Smith, A.A.; Pullmannová, P.; Kučerka, N.; Ondrejčeková, V.; Demé, B.; Nováková, L.; et al. The Intriguing Molecular Dynamics of Cer[EOS] in Rigid Skin Barrier Lipid Layers Requires Improvement of the Model. J. Lipid Res. 2023, 64, 100356. [Google Scholar] [CrossRef]
- Engberg, O.; Kováčik, A.; Pullmannová, P.; Juhaščik, M.; Opálka, L.; Huster, D.; Vávrová, K. The Sphingosine and Acyl Chains of Ceramide[NS] Show Very Different Structure and Dynamics That Challenge Our Understanding of the Skin Barrier. Angew. Chem. Int. Ed. 2020, 59, 17383–17387. [Google Scholar] [CrossRef]
- Wang, E.; Klauda, J.B. Molecular Structure of the Long Periodicity Phase in the Stratum Corneum. J. Am. Chem. Soc. 2019, 141, 16930–16943. [Google Scholar] [CrossRef]
- Sparr, E.; Björklund, S.; Pham, Q.D.; Mojumdar, E.H.; Stenqvist, B.; Gunnarsson, M.; Topgaard, D. The Stratum Corneum Barrier—From Molecular Scale to Macroscopic Properties. Curr. Opin. Colloid. Interface Sci. 2023, 67, 101725. [Google Scholar] [CrossRef]
- Pham, Q.D.; Mojumdar, E.H.; Gooris, G.S.; Bouwstra, J.A.; Sparr, E.; Topgaard, D. Solid and Fluid Segments within the Same Molecule of Stratum Corneum Ceramide Lipid. Q. Rev. Biophys. 2018, 51, e7. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development. Test No. 428: Skin Absorption: In Vitro Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2004; ISBN 9789264071087. [Google Scholar]
- Organisation for Economic Co-operation and Development. Guidance Document for the Conduct of Skin Absorption Studies; OECD: Paris, France, 2004; ISBN 9789264078796. [Google Scholar]
- Kielhorn, J.; Melching-Kollmuss, S.; Mangelsdorf, I.; World Health Organization; International Labour Organisation; Inter-Organization Programme for the Sound Management of Chemicals; International Program on Chemical Safety. WHO Environmental Heath Criteria 235 Dermal Absorption; World Health Organization: Geneva, Switzerland, 2006; Volume 92, p. 157235-102. ISBN 9241572353. [Google Scholar]
- Mojsiewicz-Pieńkowska, K.; Krenczkowska, D.; Bazar, D.; Wielgomas, B.; Cal, K.; Kaliszan, M. Comparative Study of the Percutaneous Permeation and Bioaccumulation of a Cyclic Siloxane Using Frozen-Thawed and Nonfrozen Ex Vivo Human Skin. Toxicol. in Vitro 2022, 82, 105379. [Google Scholar] [CrossRef] [PubMed]
- Guth, K.; Schäfer-Korting, M.; Fabian, E.; Landsiedel, R.; van Ravenzwaay, B. Suitability of Skin Integrity Tests for Dermal Absorption Studies in Vitro. Toxicol. Vitro 2015, 29, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.J.; Ward, R.J.; Heylings, J.R. Multi-Species Assessment of Electrical Resistance as a Skin Integrity Marker for in Vitro Percutaneous Absorption Studies. Toxicol. Vitro 2004, 18, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.J.; Heylings, J.R.; McCarthy, T.J.; Correa, C.M. Development of an in Vitro Model for Studying the Penetration of Chemicals through Compromised Skin. Toxicol. Vitro 2015, 29, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Pethrick, R.A. Positron Annihilation-a Probe for Nanoscale Voids and Free Volume? Pergamon Prog. Polym. Sci. 1997, 22, 1–47. [Google Scholar] [CrossRef]
- Jean, Y.C. Advances with Positron Spectroscopy of Surfaces. In Proceedings of the NATO Advanced Research Workshop, Varenna, Italy, 16–17 July 1993; pp. 563–580. [Google Scholar]
- Shaojie, A.W.; Ying-Hua, X.I.; Zhong-Xun, T.; De-Chong, T. Positron Annihilation Study of Structural Relaxation and Crystallization of Amorphous Alloys. In Positron Annihilation; Jain, Y.C., Singru, R.M., Gopinathan, K.P., Eds.; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1985; pp. 924–927. [Google Scholar]
- Dryzek, J. Wstęp Do Spektroskopii Anihilacji Pozytonów w Ciele Stałym (Introduction to Positron Annihilation Spectroscopy in Solids); Jagiellonian University: Kraków, Poland, 1997. [Google Scholar]
- Brandt, W.; Berko, S.; Walker, W.W. Positronium Decay in Molecular Substances. Phys. Rev. 1960, 120, 1289–1295. [Google Scholar] [CrossRef]
- Tao, S.J. Positronium Annihilation in Molecular Substances. J. Chem. Phys. 1972, 56, 5499–5510. [Google Scholar] [CrossRef]
- Eldrup, M.; Lightbody, D.; Sherwood, J.N. The Temperature Dependence of Positron Lifetimes in Solid Pxvalic Acid. Chem. Phys. 1981, 63, 51–58. [Google Scholar] [CrossRef]
- Liao, K.S.; Chen, H.; Awad, S.; Yuan, J.P.; Hung, W.S.; Lee, K.R.; Lai, J.Y.; Hu, C.C.; Jean, Y.C. Determination of Free-Volume Properties in Polymers without Orthopositronium Components in Positron Annihilation Lifetime Spectroscopy. Macromolecules 2011, 44, 6818–6826. [Google Scholar] [CrossRef]
- Filipecki, J.; Sitarz, M.; Kocela, A.; Kotynia, K.; Jelen, P.; Filipecka, K.; Gaweda, M. Studying Functional Properties of Hydrogel and Silicone-Hydrogel Contact Lenses with PALS, MIR and Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 131, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Chamerski, K.; Korzekwa, W.; Filipecki, J.; Shpotyuk, O.; Stopa, M.; Jeleń, P.; Sitarz, M. Nanoscale Observation of Dehydration Process in PHEMA Hydrogel Structure. Nanoscale Res. Lett. 2017, 12, 303. [Google Scholar] [CrossRef] [PubMed]
- Filipecka, K.; Budaj, M.; Chamerski, K.; Miedziński, R.; Sitarz, M.; Miskowiak, B.; Makowska-Janusik, M.; Filipecki, J. PALS, MIR and UV–Vis–NIR Spectroscopy Studies of PHEMA Hydrogel, Silicon- and Fluoro-Containing Contact Lens Materials. J. Mol. Struct. 2017, 1148, 521–530. [Google Scholar] [CrossRef]
- Chamerski, K.; Stopa, M.; Jelen, P.; Lesniak, M.; Sitarz, M.; Filipecki, J. Spectroscopic Studies of the Silicone Oil Impact on the Ophthalmic Hydrogel Based Materials Conducted in Time Dependent Mode. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 192, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Filipecki, J.; Golis, E.; Reben, M.; Filipecka, K.; Kocela, A.; Wasylak, J. Positron Life Time Spectroscopy as a Method to Study of the Defect Degree Materials with Disordered Structure. Optoelectron. Adv. Mater. Rapid Commun. 2013, 7, 1029–1031. [Google Scholar]
- Kansy, J. Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra. Nucl. Instmments Methods Phys. Res. A 1996, 374, 235–244. [Google Scholar] [CrossRef]
Sample | Measured Parameters | Calculated Parameters | |||
---|---|---|---|---|---|
o-Ps Lifetime [ns] | Intensity [%] | Free Volume Radius [nm] | Free Volume Size [nm3] | Fractional Free Volume [a.u.] | |
τ3 | I3 | R | Vf | fv | |
I | 1.86 | 8.96 | 0.272 | 0.084 | 0.00135 |
II | 1.80 | 9.66 | 0.265 | 0.078 | 0.00136 |
III | 1.82 | 9.65 | 0.268 | 0.080 | 0.00139 |
IV | 1.84 | 10.18 | 0.269 | 0.082 | 0.00150 |
V | 1.77 | 7.86 | 0.263 | 0.076 | 0.00108 |
VI | 1.86 | 8.52 | 0.272 | 0.084 | 0.00129 |
VII | 1.80 | 7.79 | 0.265 | 0.078 | 0.00109 |
VIII | 1.87 | 9.68 | 0.273 | 0.085 | 0.00148 |
IX | 1.81 | 9.62 | 0.267 | 0.080 | 0.00139 |
X | 1.92 | 9.89 | 0.277 | 0.089 | 0.00158 |
XI | 1.80 | 7.29 | 0.266 | 0.079 | 0.00104 |
Mean value | 1.83 | 9.01 | 0.269 | 0.081 | 0.00132 |
CV [%] | 3.21 | 10.94 | 2.14 | 4.69 | 13.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojsiewicz-Pieńkowska, K.; Bazar, D.; Filipecki, J.; Chamerski, K. Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS). Int. J. Mol. Sci. 2024, 25, 6472. https://doi.org/10.3390/ijms25126472
Mojsiewicz-Pieńkowska K, Bazar D, Filipecki J, Chamerski K. Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS). International Journal of Molecular Sciences. 2024; 25(12):6472. https://doi.org/10.3390/ijms25126472
Chicago/Turabian StyleMojsiewicz-Pieńkowska, Krystyna, Dagmara Bazar, Jacek Filipecki, and Kordian Chamerski. 2024. "Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS)" International Journal of Molecular Sciences 25, no. 12: 6472. https://doi.org/10.3390/ijms25126472
APA StyleMojsiewicz-Pieńkowska, K., Bazar, D., Filipecki, J., & Chamerski, K. (2024). Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS). International Journal of Molecular Sciences, 25(12), 6472. https://doi.org/10.3390/ijms25126472