Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions
Abstract
:1. Introduction
2. Results
2.1. Case Reports
2.2. Plasma GD Biomarkers
2.3. Other Plasma Biomarkers
2.4. GCase Activity
2.5. GCase Protein Expression in Fibroblasts
2.6. Cholesterol Accumulation in Fibroblasts
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Cell Culture, MG132, lPIC, and Anisomycin Treatments
4.3. Filipin Staining
4.4. Protein Extraction, Western Blot, Endo H, and Endo F Digestion
4.5. DNA Extraction, Amplification, and Sequencing
4.6. RNA Extraction and PSAP cDNA Amplification
4.7. GCase Enzymatic Activity
4.8. Chitotriosidase Activity
4.9. Glucosylsphingosine (GlcSph), Globotriaosylsphingosine (Lyso-Gb3) and N-Palmitoyl-O-phosphocholineserine (PPCS) Accumulation
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horowitz, M.; Wilder, S.; Horowitz, Z.; Reiner, O.; Gelbart, T.; Beutler, E. The Human Glucocerebrosidase Gene and Pseudogene: Structure and Evolution. Genomics 1989, 4, 87–96. [Google Scholar] [CrossRef]
- Sorge, J.; West, C.; Westwood, B.; Beutler, E. Molecular Cloning and Nucleotide Sequence of Human Glucocerebrosidase CDNA. Proc. Natl. Acad. Sci. USA 1985, 82, 7289–7293. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Choudary, P.V.; Martin, B.M.; Winfield, S.; Barranger, J.A.; Ginns, E.I. Nucleotide Sequence of CDNA Containing the Complete Coding Sequence for Human Lysosomal Glucocerebrosidase. J. Biol. Chem. 1986, 261, 50–53. [Google Scholar] [CrossRef]
- Erickson, A.H.; Ginns, E.I.; Barranger, J.A. Biosynthesis of the Lysosomal Enzyme Glucocerebrosidase. J. Biol. Chem. 1985, 260, 14319–14324. [Google Scholar] [CrossRef] [PubMed]
- Berg-Fussman, A.; Grace, M.E.; Ioannou, Y.; Grabowski, G.A. Human Acid Beta-Glucosidase. N-Glycosylation Site Occupancy and the Effect of Glycosylation on Enzymatic Activity. J. Biol. Chem. 1993, 268, 14861–14866. [Google Scholar] [CrossRef]
- Leonova, T.; Grabowski, G.A. Fate and Sorting of Acid Beta-Glucosidase in Transgenic Mammalian Cells. Mol. Genet. Metab. 2000, 70, 281–294. [Google Scholar] [CrossRef]
- Braulke, T.; Bonifacino, J.S. Sorting of Lysosomal Proteins. Biochim. Biophys. Acta 2009, 1793, 605–614. [Google Scholar] [CrossRef]
- Reczek, D.; Schwake, M.; Schröder, J.; Hughes, H.; Blanz, J.; Jin, X.; Brondyk, W.; Van Patten, S.; Edmunds, T.; Saftig, P. LIMP-2 Is a Receptor for Lysosomal Mannose-6-Phosphate-Independent Targeting of Beta-Glucocerebrosidase. Cell 2007, 131, 770–783. [Google Scholar] [CrossRef]
- Tamargo, R.J.; Velayati, A.; Goldin, E.; Sidransky, E. The Role of Saposin C in Gaucher Disease. Mol. Genet. Metab. 2012, 106, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Wilkening, G.; Linke, T.; Sandhoff, K. Lysosomal Degradation on Vesicular Membrane Surfaces. Enhanced Glucosylceramide Degradation by Lysosomal Anionic Lipids and Activators. J. Biol. Chem. 1998, 273, 30271–30278. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.S.; Kishimoto, Y. Saposin Proteins: Structure, Function, and Role in Human Lysosomal Storage Disorders. FASEB J. 1991, 5, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Brady, R.O.; Kanfer, J.N.; Shapiro, D. Metabolism of Glucocerebrosides II. Evidence of an Enzymatic Deficiency in Gaucher’s Disease. BioChem. Biophys. Res. Commun. 1965, 18, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E.; Grabowski, G.A. Gaucher Disease. In The Metabolic and Molecular Basis of Inherited Disease; Scriver, C.R., Beaudet, A.L., Valle, D., Sly, W.S., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 3635–3668. [Google Scholar]
- Beutler, E. Gaucher Disease: New Molecular Approaches to Diagnosis and Treatment. Science 1992, 256, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Malini, E.; Zampieri, S.; Deganuto, M.; Romanello, M.; Sechi, A.; Bembi, B.; Dardis, A. Role of LIMP-2 in the Intracellular Trafficking of β-Glucosidase in Different Human Cellular Models. FASEB J. 2015, 29, 3839–3852. [Google Scholar] [CrossRef] [PubMed]
- Dardis, A.; Filocamo, M.; Grossi, S.; Ciana, G.; Franceschetti, S.; Dominissini, S.; Rubboli, G.; Di Rocco, M.; Bembi, B. Biochemical and Molecular Findings in a Patient with Myoclonic Epilepsy Due to a Mistarget of the Beta-Glucosidase Enzyme. Mol. Genet. Metab. 2009, 97, 309–311. [Google Scholar] [CrossRef]
- Balreira, A.; Gaspar, P.; Caiola, D.; Chaves, J.; Beirão, I.; Lima, J.L.; Azevedo, J.E.; Miranda, M.C.S. A Nonsense Mutation in the LIMP-2 Gene Associated with Progressive Myoclonic Epilepsy and Nephrotic Syndrome. Hum. Mol. Genet. 2008, 17, 2238–2243. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.G.; Coelho, J.C.; Michelin-Tirelli, K.; Michelin-Tirelli, K.; Freitas Maurıcio, T.; De Freitas Maia Chaves, E.; Rômulofilgueira Maurıcio, C.; le Almeida, P.C.; Cavalcanti, G.B. Successful Screening for Gaucher Disease in a High-Prevalence Population in Tabuleirodo Norte (Northeastern Brazil): A Cross-Sectional Study. J. Inherit. Metab. Dis. 2011, 1, 73–78. [Google Scholar] [CrossRef]
- Dibbens, L.M.; Michelucci, R.; Gambardella, A.; Andermann, F.; Rubboli, G.; Bayly, M.A.; Joensuu, T.; Vears, D.F.; Franceschetti, S.; Canafoglia, L.; et al. SCARB2 Mutations in Progressive Myoclonus Epilepsy (PME) without Renal Failure. Ann. Neurol 2009, 66, 532–536. [Google Scholar] [CrossRef]
- Rubboli, G.; Franceschetti, S.; Berkovic, S.F.; Canafoglia, L.; Gambardella, A.; Dibbens, L.M.; Riguzzi, P.; Campieri, C.; Magaudda, A.; Tassinari, C.A.; et al. Clinical and Neurophysiologic Features of Progressive Myoclonus Epilepsy without Renal Failure Caused by SCARB2 Mutations. Epilepsia 2011, 52, 2356–2363. [Google Scholar] [CrossRef]
- Zeigler, M.; Meiner, V.; Newman, J.P.; Steiner-Birmanns, B.; Bargal, R.; Sury, V.; Mengistu, G.; Kakhlon, O.; Leykin, I.; Argov, Z.; et al. A Novel SCARB2 Mutation in Progressive Myoclonus Epilepsy Indicated by Reduced β-Glucocerebrosidase Activity. J. Neurol Sci. 2014, 339, 210–213. [Google Scholar] [CrossRef]
- Quraishi, I.H.; Szekely, A.M.; Shirali, A.C.; Mistry, P.K.; Hirsch, L.J. Miglustat Therapy for SCARB2-Associated Action Myoclonus-Renal Failure Syndrome. Neurol Genet. 2021, 7, e614. [Google Scholar] [CrossRef] [PubMed]
- Dubot, P.; Rafiq, M.; Curot, J.; Simonetta-Moreau, M.; Sabourdy, F.; Pettazzoni, M.; Froissart, R.; Levade, T.; Ory-Magne, F. A Diagnosis of Progressive Myoclonic Ataxia Guided by Blood Biomarkers. Park. Relat. Disord. 2022, 94, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Badhwar, A.P.; Berkovic, S.F.; Dowling, J.P.; Gonzales, M.; Narayanan, S.; Brodtmann, A.; Berzen, L.; Caviness, J.; Trenkwalder, C.; Winkelmann, J.; et al. Action Myoclonus-Renal Failure Syndrome: Characterization of a Unique Cerebro-Renal Disorder. Brain 2004, 127, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Berkovic, S.F.; Dibbens, L.M.; Oshlack, A.; Silver, J.D.; Katerelos, M.; Vears, D.F.; Lüllmann-Rauch, R.; Blanz, J.; Zhang, K.W.; Stankovich, J.; et al. Array-Based Gene Discovery with Three Unrelated Subjects Shows SCARB2/LIMP-2 Deficiency Causes Myoclonus Epilepsy and Glomerulosclerosis. Am. J. Hum. Genet. 2008, 82, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Dibbens, L.; Schwake, M.; Saftig, P.; Rubboli, G. SCARB2/LIMP2 Deficiency in Action Myoclonus-Renal Failure Syndrome. Epileptic Disord. 2016, 18, S63–S72. [Google Scholar] [CrossRef] [PubMed]
- Hopfner, F.; Schormair, B.; Knauf, F.; Berthele, A.; Tölle, T.R.; Baron, R.; Maier, C.; Treede, R.D.; Binder, A.; Sommer, C.; et al. Novel SCARB2 Mutation in Action Myoclonus-Renal Failure Syndrome and Evaluation of SCARB2 Mutations in Isolated AMRF Features. BMC Neurol 2011, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Perandones, C.; Pellene, L.A.; Micheli, F. A New SCARB2 Mutation in a Patient with Progressive Myoclonus Ataxia without Renal Failure. Mov. Disord. 2014, 29, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Perandones, C.; Micheli, F.E.; Pellene, L.A.; Bayly, M.A.; Berkovic, S.F.; Dibbens, L.M. A Case of Severe Hearing Loss in Action Myoclonus Renal Failure Syndrome Resulting from Mutation in SCARB2. Mov. Disord. 2012, 27, 1200–1201. [Google Scholar] [CrossRef] [PubMed]
- Atasu, B.; Acarlı, A.N.O.; Bilgic, B.; Baykan, B.; Demir, E.; Ozluk, Y.; Turkmen, A.; Hauser, A.K.; Guven, G.; Hanagasi, H.; et al. Genotype-Phenotype Correlations of SCARB2 Associated Clinical Presentation: A Case Report and in-Depth Literature Review. BMC Neurol 2022, 22, 122. [Google Scholar] [CrossRef]
- Uçan Tokuç, F.E.; Genç, F.; Erdal, A.; Biçer Gömceli, Y. Report of Two Siblings with Action Myoclonus Renal Failure Syndrome. Seizure 2021, 88, 73–74. [Google Scholar] [CrossRef]
- Ekmekci, H.; Qutob, O.; Babayev, H.; Şahin, A. Action Myoclonus-Renal Failure Syndrome: A Case Report with Bioinformatic Annotations. Cureus 2023, 15, e41261. [Google Scholar] [CrossRef]
- Desbuissons, G.; Brocheriou, I.; Touchard, G.; Goujon, J.M.; Méneret, A.; Isnard-Bagnis, C. Renal Pathological Findings in Action Myoclonus-Renal Failure Syndrome. Nephron 2020, 144, 55–58. [Google Scholar] [CrossRef]
- Yari, A.; Ali-Nejad, R.M.; Saleh-Gohari, N. A Novel Homozygous Splice-Site Mutation in SCARB2 Is Associated with Progressive Myoclonic Epilepsy with Renal Failure. Neurol Sci. 2021, 42, 5077–5085. [Google Scholar] [CrossRef] [PubMed]
- Tanriverdi, U.; Ser, M.H.; Yesil, G.; Gunduz, A.; Ozkara, C.; Kiziltan, M.E. Action Myoclonus-Renal Failure Syndrome: Electrophysiological Analysis and Clinical Progression of Two Siblings. Park. Relat. Disord. 2022, 99, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Hotait, M.; Dirani, M.; El Halabi, T.; Beydoun, A. Case Report: Distinctive EEG Patterns in SCARB-2 Related Progressive Myoclonus Epilepsy. Front. Genet. 2020, 11, 581253. [Google Scholar] [CrossRef] [PubMed]
- Doherty, K.M.; Shields, J.; Forbes, R.; Gray, M.; Kearney, S.; Maxwell, A.P.; McKinley, J. A Rare Cause of Myoclonus: A Cupric Conundrum. JAMA Neurol 2016, 73, 1145–1148. [Google Scholar] [CrossRef]
- Guerrero-López, R.; García-Ruiz, P.J.; Giráldez, B.G.; Durán-Herrera, C.; Querol-Pascual, M.R.; Ramírez-Moreno, J.M.; Más, S.; Serratosa, J.M. A New SCARB2 Mutation in a Patient with Progressive Myoclonus Ataxia without Renal Failure. Mov. Disord. 2012, 27, 1827–1828. [Google Scholar] [CrossRef]
- Higashiyama, Y.; Doi, H.; Wakabayashi, M.; Tsurusaki, Y.; Miyake, N.; Saitsu, H.; Ohba, C.; Fukai, R.; Miyatake, S.; Joki, H.; et al. A Novel SCARB2 Mutation Causing Late-Onset Progressive Myoclonus Epilepsy. Mov. Disord. 2013, 28, 552–553. [Google Scholar] [CrossRef]
- Fu, Y.J.; Aida, I.; Tada, M.; Tada, M.; Toyoshima, Y.; Takeda, S.; Nakajima, T.; Naito, H.; Nishizawa, M.; Onodera, O.; et al. Progressive Myoclonus Epilepsy: Extraneuronal Brown Pigment Deposition and System Neurodegeneration in the Brains of Japanese Patients with Novel SCARB2 Mutations. Neuropathol. Appl. NeuroBiol. 2014, 40, 551–563. [Google Scholar] [CrossRef]
- He, M.; Tang, B.S.; Li, N.; Mao, X.; Li, J.; Zhang, J.G.; Xiao, J.J.; Wang, J.; Jiang, H.; Shen, L.; et al. Using a Combination of Whole-Exome Sequencing and Homozygosity Mapping to Identify a Novel Mutation of SCARB2. Clin. Genet. 2014, 86, 598–600. [Google Scholar] [CrossRef]
- He, J.; Lin, H.; Li, J.J.; Su, H.Z.; Wang, D.N.; Lin, Y.; Wang, N.; Chen, W.J. Identification of a Novel Homozygous Splice-Site Mutation in SCARB2 That Causes Progressive Myoclonus Epilepsy with or without Renal Failure. Chin. Med. J. 2018, 131, 1575–1583. [Google Scholar] [CrossRef]
- Tian, W.T.; Liu, X.L.; Xu, Y.Q.; Huang, X.J.; Zhou, H.Y.; Wang, Y.; Tang, H.D.; Chen, S.D.; Luan, X.H.; Cao, L. Progressive Myoclonus Epilepsy without Renal Failure in a Chinese Family with a Novel Mutation in SCARB2 Gene and Literature Review. Seizure 2018, 57, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Bradová, V.; Šmíd, F.; Ulrich-Bott, B.; Roggendorf, W.; Paton, B.C.; Harzer, K. Prosaposin Deficiency: Further Characterization of the Sphingolipid Activator Protein-Deficient Sibs. Multiple Glycolipid Elevations (Including Lactosylceramidosis), Partial Enzyme Deficiencies and Ultrastructure of the Skin in This Generalized Sphingolipid Storage Disease. Hum. Genet. 1993, 92, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, D.; Schröder, M.; Fürst, W.; Klein, A.; Hurwitz, R.; Zenk, T.; Weber, J.; Harzer, K.; Paton, B.C.; Poulos, A.; et al. Simultaneous Deficiency of Sphingolipid Activator Proteins 1 and 2 Is Caused by a Mutation in the Initiation Codon of Their Common Gene. J. Biol. Chem. 1992, 267, 3312–3315. [Google Scholar] [CrossRef] [PubMed]
- Harzer, K.; Paton, B.C.; Poulos, A.; Kustermann-Kuhn, B.; Roggendorf, W.; Grisar, T.; Popp, M. Sphingolipid Activator Protein Deficiency in a 16-Week-Old Atypical Gaucher Disease Patient and His Fetal Sibling: Biochemical Signs of Combined Sphingolipidoses. Eur. J. Pediatr. 1989, 149, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Hulková, H.; Cervenková, M.; Ledvinová, J.; Tochácková, M.; Hrebícek, M.; Poupetová, H.; Befekadu, A.; Berná, L.; Paton, B.C.; Harzer, K.; et al. A Novel Mutation in the Coding Region of the Prosaposin Gene Leads to a Complete Deficiency of Prosaposin and Saposins, and Is Associated with a Complex Sphingolipidosis Dominated by Lactosylceramide Accumulation. Hum. Mol. Genet. 2001, 10, 927–940. [Google Scholar] [CrossRef]
- Elleder, M.; Jirásek, A.; Šmíd, F.; Ledvinová, J.; Besley, G.T.N.; Stopeková, M. Niemann-Pick Disease Type C with Enhanced Glycolipid Storage. Report on Further Case of so-Called Lactosylceramidosis. Virchows Arch. A 1984, 402, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Elleder, M.; Jeřábková, M.; Befekadu, A.; Hřebíček, M.; Berná, L.; Ledvinová, J.; Hůlková, H.; Rosewich, H.; Schymik, N.; Paton, B.C.; et al. Prosaposin Deficiency—A Rarely Diagnosed, Rapidly Progressing, Neonatal Neurovisceral Lipid Storage Disease. Report of a Further Patient. Neuropediatrics 2005, 36, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Vanier, M.T.; Millat, G.; Verot, L.; Bailo, N.; Froissart, R.; Di Marco, J.N.; Mountard, M.L.; De Saint, M.A.; Tardieu, M.; Amsallem, D. Are Sphingolipid Activator Deficiencies Underdiagnosed? Six New Cases Affecting the PSAP Gene Identified in a 3-Years Period. J. Inherit. Metab. Dis. 2005, 18, 152. [Google Scholar]
- Kuchař, L.; Ledvinová, J.; Hřebíček, M.; Myšková, H.; Dvořáková, L.; Berná, L.; Chrastina, P.; Asfaw, B.; Elleder, M.; Petermöller, M.; et al. Prosaposin Deficiency and Saposin B Deficiency (Activator-Deficient Metachromatic Leukodystrophy): Report on Two Patients Detected by Analysis of Urinary Sphingolipids and Carrying Novel PSAP Gene Mutations. Am. J. Med. Genet. A 2009, 149A, 613–621. [Google Scholar] [CrossRef]
- Motta, M.; Tatti, M.; Furlan, F.; Celato, A.; Di Fruscio, G.; Polo, G.; Manara, R.; Nigro, V.; Tartaglia, M.; Burlina, A.; et al. Clinical, Biochemical and Molecular Characterization of Prosaposin Deficiency. Clin. Genet. 2016, 90, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, P.; Kallemeijn, W.W.; Strijland, A.; Scheij, S.; Van Eijk, M.; Aten, J.; Overkleeft, H.S.; Balreira, A.; Zunke, F.; Schwake, M.; et al. Action Myoclonus-Renal Failure Syndrome: Diagnostic Applications of Activity-Based Probes and Lipid Analysis. J. Lipid Res. 2014, 55, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Rothaug, M.; Zunke, F.; Mazzulli, J.R.; Schweizer, M.; Altmeppen, H.; Lüllmann-Rauche, R.; Kallemeijn, W.W.; Gaspar, P.; Aerts, J.M.; Glatzel, M.; et al. LIMP-2 Expression Is Critical for β-Glucocerebrosidase Activity and α-Synuclein Clearance. Proc. Natl. Acad. Sci. USA 2014, 111, 15573–15578. [Google Scholar] [CrossRef] [PubMed]
- Blanz, J.; Groth, J.; Zachos, C.; Wehling, C.; Saftig, P.; Schwake, M. Disease-Causing Mutations within the Lysosomal Integral Membrane Protein Type 2 (LIMP-2) Reveal the Nature of Binding to Its Ligand Beta-Glucocerebrosidase. Hum. Mol. Genet. 2010, 19, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Heybrock, S.; Kanerva, K.; Meng, Y.; Ing, C.; Liang, A.; Xiong, Z.J.; Weng, X.; Ah Kim, Y.; Collins, R.; Trimble, W.; et al. Lysosomal Integral Membrane Protein-2 (LIMP-2/SCARB2) Is Involved in Lysosomal Cholesterol Export. Nat. Commun. 2019, 10, 3521. [Google Scholar] [CrossRef] [PubMed]
- Christomanou, H.; Aignesberger, A.; Linke, R.P. Immunochemical Characterization of Two Activator Proteins Stimulating Enzymic Sphingomyelin Degradation in Vitro. Absence of One of Them in a Human Gaucher Disease Variant. Biol. Chem. Hoppe Seyler 1986, 367, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Christomanou, H.; Chabás, A.; Pámpols, T.; Guardiola, A. Activator Protein Deficient Gaucher’s Disease. A Second Patient with the Newly Identified Lipid Storage Disorder. Klin. Wochenschr. 1989, 67, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, D.; Schröder, M.; Sandhoff, K. Mutation in the Sphingolipid Activator Protein 2 in a Patient with a Variant of Gaucher Disease. FEBS Lett. 1991, 284, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.A.; de Gala, G.; Zhang, X.; Wenger, D.A. Mutational Analysis in a Patient with a Variant Form of Gaucher Disease Caused by SAP-2 Deficiency. Somat. Cell Mol. Genet. 1993, 19, 1–7. [Google Scholar] [CrossRef]
- Pàmpols, T.; Pineda, M.; Girós, M.L.; Ferrer, I.; Cusi, V.; Chabás, A.; Sanmarti, F.X.; Vanier, M.T.; Christomanou, H. Neuronopathic Juvenile Glucosylceramidosis Due to Sap-C Deficiency: Clinical Course, Neuropathology and Brain Lipid Composition in This Gaucher Disease Variant. Acta Neuropathol. 1999, 97, 91–97. [Google Scholar] [CrossRef]
- Diaz-Font, A.; Cormand, B.; Santamaria, R.; Vilageliu, L.; Grinberg, D.; Chabás, A. A Mutation within the Saposin D Domain in a Gaucher Disease Patient with Normal Glucocerebrosidase Activity. Hum. Genet. 2005, 117, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Tylki-Szymańska, A.; Czartoryska, B.; Vanier, M.T.; Poorthuis, B.J.M.H.; Groener, J.A.E.; Ługowska, A.; Millat, G.; Vaccaro, A.M.; Jurkiewicz, E. Non-Neuronopathic Gaucher Disease Due to Saposin C Deficiency. Clin. Genet. 2007, 72, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, A.M.; Motta, M.; Tatti, M.; Scarpa, S.; Masuelli, L.; Bhat, M.; Vanier, M.T.; Tylki-Szymanska, A.; Salvioli, R. Saposin C Mutations in Gaucher Disease Patients Resulting in Lysosomal Lipid Accumulation, Saposin C Deficiency, but Normal Prosaposin Processing and Sorting. Hum. Mol. Genet. 2010, 19, 2987–2997. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhan, X.; Gu, X.; Zhang, H. Successful Newborn Screening for Gaucher Disease Using Fluorometric Assay in China. J. Hum. Genet. 2017, 62, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, K.; Hussain, S.; Acharya, A.; Nasir, A.; Bharadwaj, T.; Ansar, M.; Basit, S.; Schrauwen, I.; Ahmad, W.; Leal, S.M. Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family. Genes 2022, 13, 662. [Google Scholar] [CrossRef] [PubMed]
- Amsallem, D.; Rodriguez, D.; Vanier, M.T.; Khayat, N.; Millat, G.; Campello, M.; Guillame, C.; Billette De Villemeur, T. Third Case of Gaucher Disease with Sap-C Deficiency and Evaluation of Twelve Months’ Therapy by Miglustat. J. Inherit. Metab. Dis. 2005, 28, 152. [Google Scholar]
- Vanier, M.T.; Millat, G. Are Sphingolipid Activator Deficiencies Underdiagnosed? Int. J. Clin. Pharmacol. Ther. 2009, 47, S147–S148. [Google Scholar]
- Sun, Y.; Qi, X.; Grabowski, G.A. Saposin C Is Required for Normal Resistance of Acid Beta-Glucosidase to Proteolytic Degradation. J. Biol. Chem. 2003, 278, 31918–31923. [Google Scholar] [CrossRef]
- Flayhan, A.; Mertens, H.D.T.; Ural-Blimke, Y.; Martinez Molledo, M.; Svergun, D.I.; Löw, C. Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research. Structure 2018, 26, 345. [Google Scholar] [CrossRef]
- Kostelic, M.M.; Ryan, A.M.; Reid, D.J.; Noun, J.M.; Marty, M.T. Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes. J. Am. Soc. Mass Spectrom. 2019, 30, 1416. [Google Scholar] [CrossRef]
- Popovic, K.; Holyoake, J.; Pomès, R.; Privé, G.G. Structure of Saposin A Lipoprotein Discs. Proc. Natl. Acad. Sci. USA 2012, 109, 2908–2912. [Google Scholar] [CrossRef] [PubMed]
- Remmel, N.; Locatelli-Hoops, S.; Breiden, B.; Schwarzmann, G.; Sandhoff, K. Saposin B Mobilizes Lipids from Cholesterol-Poor and Bis(Monoacylglycero)Phosphate-Rich Membranes at Acidic PH. Unglycosylated Patient Variant Saposin B Lacks Lipid-Extraction Capacity. FEBS J. 2007, 274, 3405–3420. [Google Scholar] [CrossRef] [PubMed]
- Montfort, M.; Chabás, A.; Vilageliu, L.; Grinberg, D. Analysis of Nonsense-Mediated MRNA Decay in Mutant Alleles Identified in Spanish Gaucher Disease Patients. Blood Cells Mol. Dis. 2006, 36, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Ron, I.; Horowitz, M. ER Retention and Degradation as the Molecular Basis Underlying Gaucher Disease Heterogeneity. Hum. Mol. Genet. 2005, 14, 2387–2398. [Google Scholar] [CrossRef] [PubMed]
- Bendikov-Bar, I.; Horowitz, M. Gaucher Disease Paradigm: From ERAD to Comorbidity. Hum. Mutat. 2012, 33, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, L.M.V.; Murray, G.J.; Sorrell, S.H.; Strijland, A.; Aerts, J.F.G.M.; Ginns, E.I.; Barranger, J.A.; Tager, J.M.; Schram, A.W. Biosynthesis and Maturation of Glucocerebrosidase in Gaucher Fibroblasts. Eur. J. BioChem. 1987, 164, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Blanchette-Mackie, E.J.; Dwyer, N.K.; Amende, L.M.; Kruth, H.S.; Butler, J.D.; Sokol, J.; Comly, M.E.; Vanier, M.T.; August, J.T.; Brady, R.O.; et al. Type-C Niemann-Pick Disease: Low Density Lipoprotein Uptake Is Associated with Premature Cholesterol Accumulation in the Golgi Complex and Excessive Cholesterol Storage in Lysosomes. Proc. Natl. Acad. Sci. USA 1988, 85, 8022–8026. [Google Scholar] [CrossRef]
- Polo, G.; Burlina, A.P.; Kolamunnage, T.B.; Zampieri, M.; Dionisi-Vici, C.; Strisciuglio, P.; Zaninotto, M.; Plebani, M.; Burlina, A.B. Diagnosis of Sphingolipidoses: A New Simultaneous Measurement of Lysosphingolipids by LC-MS/MS. Clin. Chem. Lab. Med. (CCLM) 2017, 55, 403–414. [Google Scholar] [CrossRef]
Chitotriosidase Activity (Range: nmol/mL/h) | GlcSph (Range: ng/mL) | |
---|---|---|
Healthy controls (n = 100) | 21.2–137.1 | 0.1–1.8 |
GBA1_PTs | 977.0–12,137.0 | 27.3–126.7 |
LIMP2_PT1 | 25.0 | NA |
LIMP2_PT2 | 186.8 | 23.3 |
PSAP_PT | 2951.0 | 19.0 |
Lyso-Gb3 (Range: ng/mL) | PPCS (Range: ng/mL) | |
---|---|---|
Healthy controls (n = 100) | ND–0.87 | 9.8–200.9 |
GBA1_PTs | 0.17–0.74 | 19.0–100.1 |
LIMP2_PT1 | NA | NA |
LIMP2_PT2 | 0.40 | 35.2 |
PSAP_PT | 1.98 | 745.9 |
Leukocytes | Fibroblasts | Plasma | |||
---|---|---|---|---|---|
(nmol/mg/h) Mean ± SD [Range] | % of Healthy Controls | (nmol/mg/h) Mean ± SD [Range] | % of Healthy Controls | (nmol/mL/h) | |
Healthy controls * | 17.6 ± 2.3 [15.4–20.8] | 100 | 127.4 ± 34.1 [97.9–179.9] | 100 | ND |
GBA1_PTs | 1.0 ± 0.3 [0.6–1.4] | 5.7 | 4.9 ± 3.1 [1.7–7.6] | 3.8 | ND |
LIMP2_PT1 | 3.9 | 22.2 | 1.7 | 1.3 | 10.5 |
LIMP2_PT2 | 2.2 | 12.5 | 5.2 | 4.1 | 27.4 |
PSAP_PT | NA | NA | 19.7 | 15.5 | ND |
Family | N° of Patients | Pathogenic Variant | Predicted Protein | Type of Variant | GCase Activity | Plasma GD Biomarkers | References |
---|---|---|---|---|---|---|---|
1 | 2 | c.533G>A/c.533G>A | p.(W178*)/p.(W178*) | Nonsense | Reduced (F), normal (LC), increased (P) | Increased (GlcSph); normal (chito) | [17,18] |
2 | 1 | c.1087C>A/c.424-2A>C | p.(H363N)/p.? | missense/splicing | Reduced (F), slightly reduced (LC), increased (P) | Increased (GlcSph); normal (chito) | [15,16,19,20], present study |
3 | 1 | c.1270C>T/c.1270C>T | p.(R424*)/p.(R424*) | Nonsense | Reduced (F), slightly reduced (LP), increased (P) | NA | [21] |
4 | 1 | c.434_435dup/c.862C>T | p.(W146Sfs*161)/p.(Q288*) | frameshift/nonsense | Reduced (LC) | NA | [22] |
5 | 1 | c.704+1G>A/c.704+1G>A | p.?/p.? | Splicing | Reduced (LC) | Slightly increased (GlcSph); normal (chito) | [23] |
6 | 3 | c.862C>T/c.862C>T | p.(Q288*)/p.(Q288*) | Nonsense | NA | NA | [24,25] |
7 | 1 | c.434_435dup/c.434_435dup § | p.(W146Sfs*161)/p.(W146Sfs*161) | Frameshift | NA | NA | [24,25] |
8 | 1 | c.1239+1G>T/c.1239+1G>T | p.?/p.? | Splicing | NA | NA | [25] |
9 | 1 | c.296del/c.704+5G>A | p.(N99Ifs*34)/p.? | frameshift/splicing | NA | NA | [25,26] |
10 | 1 | c.434_435dup/c.434_435dup | p.(W146Sfs*161)/p.(W146Sfs*161) | frameshift | NA | NA | [25] |
11 | 3 | c.111del/c.111del | p.(I37Mfs*7)/p.(I37Mfs*7) | frameshift | NA | NA | [24,27] |
12 | 4 | c.704+1G>A/c.704+1G>A | p.?/p.? | splicing | NA | NA | [28,29] |
13 | 1 | c.434_435dup/c.434_435dup | p.(W146Sfs*161)/p.(W146Sfs*161) | frameshift | NA | NA | [26] |
14 | 1 | c.434_435dup/c.434_435dup | p.(W146Sfs*161)/p.(W146Sfs*161) | frameshift | NA | NA | [26] |
15 | 5 | c.134del/c.134del | p.(N45Mfs*88)/p.(N45Mfs*88) | frameshift | NA | NA | [30] |
16 | 2 | c.134del/c.134del | p.(N45Mfs*88)/p.(N45Mfs*88) | frameshift | NA | NA | [31] |
17 | 1 | c.104del/c.104del | p.(Q35Rfs*9)/p.(Q35Rfs*9) | frameshift | NA | NA | [32] |
18 | 1 | c.956del/c.956del | p.(L319Rfs*6)/p.(L319Rfs*6) | frameshift | NA | NA | [33] |
19 | 2 | c.423+1G>A/c.423+1G>A | p.?/p.? | splicing | NA | NA | [34] |
20 | 2 | c.704+1G>A/c.704+1G>A | p.?/p.? | splicing | NA | NA | [35] |
21 | 1 | c.40dup/c.40dup | p.(L14Pfs*35)/p.(L14Pfs*35) | frameshift | NA | NA | [36] |
22 | 1 | c.434_435dup/c.704+5G>A | p.(W146Sfs*161)/p.? | frameshift/splicing | NA | NA | [37] |
23 | 1 | c.1114-2A>C/c.1114-2A>C | p.?/p.? | splicing | NA | NA | [19,20] |
24 | 2 | c.704+1G>A/c.704+1G>A | p.?/p.? | splicing | NA | NA | [19,20] |
25 | 1 | c.1258del/c.1258del | p.(E420Rfs*6)/p.(E420Rfs*6) | frameshift | NA | NA | [19,20] |
26 | 1 | c.666_670del/c.666_670del | p.(Y222*)/p.(Y222*) | nonsense | NA | NA | [19,20] |
27 | 1 | c.862C>T/c.1187+3insT | p.(Q288*)/p.? | nonsense/splicing | NA | NA | [19,26] |
28 | 1 | c.1016dup/c.1016dup | p.(H341Tfs*7)/p.(H341Tfs*7) | frameshift | NA | NA | [38] |
29 | 1 | c.1385_1390delinsATGCATGCACC/c.1385_1390delinsATGCATGCACC | p.(G462Dfs*34)/p.(G462Dfs*34) | frameshift | NA | NA | [39] |
30 | 1 | c.1385_1390delinsATGCATGCACC/c.1385_1390delinsATGCATGCACC | p.(G462Dfs*34)/p.(G462Dfs*34) | frameshift | NA | NA | [40] |
31 | 1 | c.361C>T/c.361C>T | p.(R121*)/p.(R121*) | nonsense | NA | NA | [40] |
32 | 2 | c.1270C>T/c.1270C>T | p.(R424*)/p.(R424*) | nonsense | NA | NA | [41] |
33 | 2 | c.995-1G>A/c.995-1G>A | p.?/p.? | splicing | NA | NA | [42] |
34 | 1 | c.1187+5G>T/c.1187+5G>T | p.?/p.? | splicing | NA | NA | [43] |
35 | 1 | c.1087C>A/c.1087C>A | p.(H363N)/p.(H363N) | missense/missense | Reduced (F), slightly reduced (LC), increased (P) | Increased (GlcSph); slightly increased (chito) | Present study |
Family | N° of Patients | Pathogenic Variant | Predicted Protein | Type of Variant | GCase Activity | Plasma Biomarkers | References |
---|---|---|---|---|---|---|---|
1 | 2 | c.1A>T/c.1A>T | p.?/p.? | start-loss | Reduced (F) | NA | [44,45,46] |
2 | 1 | c.794del/c.794del | p.(C265Lfs*10)/p.(C265Lfs*10) | frameshift | NA | NA | [47] |
3 | 1 | c.794del/c.? § | p.(C265Lfs*10)/p.? | frameshift | NA | NA | [47,48] |
4 | 1 | c.1A>T/c.1A>T | p.?/p.? | start-loss | Reduced (F) | NA | [49] |
5 | 1 | c.148C>T/c.148C>T | p. (Q50*)/p.(Q50*) | nonsense | NA | NA | [50] |
6 | 1 | c.1006-2A>G/c.1006-2A>G | p.?/p.? | splicing | Reduced (F) | NA | [51] |
7 | 1 | c.889G>T/c.889G>T | p.(E297*)/p.(E297*) | nonsense | Reduced (F) | Increased (GlcSph and Lyso-Gb3) | [52] |
8 | 1 | c.828_829del/c.828_829del | p.(E276Dfs*27)/p.(E276Dfs*27) | frameshift | Reduced (F) | Increased (GlcSph and Lyso-Gb3) | [51,52] |
9 | 1 | c.889G>T/c.889G>T | p.(E297*)/p.(E297*) | nonsense | Reduced (F) | Increased (GlcSph, Lyso-Gb3, and PPCS) | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavan, E.; Peruzzo, P.; Cattarossi, S.; Bergamin, N.; Bordugo, A.; Sechi, A.; Scarpa, M.; Biasizzo, J.; Colucci, F.; Dardis, A. Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions. Int. J. Mol. Sci. 2024, 25, 6615. https://doi.org/10.3390/ijms25126615
Pavan E, Peruzzo P, Cattarossi S, Bergamin N, Bordugo A, Sechi A, Scarpa M, Biasizzo J, Colucci F, Dardis A. Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions. International Journal of Molecular Sciences. 2024; 25(12):6615. https://doi.org/10.3390/ijms25126615
Chicago/Turabian StylePavan, Eleonora, Paolo Peruzzo, Silvia Cattarossi, Natascha Bergamin, Andrea Bordugo, Annalisa Sechi, Maurizio Scarpa, Jessica Biasizzo, Fabiana Colucci, and Andrea Dardis. 2024. "Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions" International Journal of Molecular Sciences 25, no. 12: 6615. https://doi.org/10.3390/ijms25126615
APA StylePavan, E., Peruzzo, P., Cattarossi, S., Bergamin, N., Bordugo, A., Sechi, A., Scarpa, M., Biasizzo, J., Colucci, F., & Dardis, A. (2024). Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions. International Journal of Molecular Sciences, 25(12), 6615. https://doi.org/10.3390/ijms25126615