The Potential Use of Arsenic Trioxide in the Treatment of Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Pharmacokinetics of Arsenic Trioxide
3. Mechanisms of Action of Arsenic Trioxide in Leukemia
4. Anti-Inflammatory Effects of Arsenic Trioxide
4.1. Systemic Lupus Erythematosus
4.2. Systemic Sclerosis
4.3. Inflammatory Arthritis
5. Prospect of Arsenic Trioxide Treatment for SLE
5.1. Unmet Needs in the Treatment of SLE
5.2. Disease Modifying Effects of SLE Therapies
5.3. Novel Small Molecules for SLE
5.4. Preliminary Clinical Data of ATO in SLE
5.5. Clinical Experience of ATO in Other Rheumatic Diseases
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PML | Promyelocytic leukemia |
RARα | Retinoic acid receptor alpha |
NB | Nuclear bodies |
ATO | Arsenic trioxide |
SUMO | Small ubiquitin-like protein modifier |
ATRA | All-trans retinoic acid |
References
- Miller, W.H., Jr.; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002, 62, 3893–3903. [Google Scholar] [PubMed]
- Kumana, C.R.; Mak, R.; Kwong, Y.-L.; Gill, H. Resurrection of Oral Arsenic Trioxide for Treating Acute Promyelocytic Leukaemia: A Historical Account from Bedside to Bench to Bedside. Front. Oncol. 2020, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hong, Y.; Zheng, P.; You, X.; Feng, J.; Huang, Z.; Wang, Y. The economic research of arsenic trioxide for the treatment of newly diagnosed acute promyelocytic leukemia in China. Cancer 2020, 126, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.X.; Shi, Z.Z.; Fang, J.; Gu, B.W.; Li, J.M.; Zhu, Y.M.; Shi, J.Y.; Zheng, P.Z.; Yan, H.; Liu, Y.F.; et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2004, 101, 5328–5335. [Google Scholar] [CrossRef]
- Drugs@FDA: FDA-Approved Drugs [Internet]. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021248 (accessed on 9 July 2024).
- Zhu, H.-H.; Wu, D.-P.; Jin, J.; Li, J.-Y.; Ma, J.; Wang, J.-X.; Jiang, H.; Chen, S.-J.; Huang, X.-J. Oral Tetra-Arsenic Tetra-Sulfide Formula Versus Intravenous Arsenic Trioxide as First-Line Treatment of Acute Promyelocytic Leukemia: A Multicenter Randomized Controlled Trial. J. Clin. Oncol. 2013, 31, 4215–4221. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Löwenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.-J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Jain, N.; Garcia-Manero, G.; Welch, M.A.; Ravandi, F.; Wierda, W.G.; Jabbour, E.J. The cure of leukemia through the optimist’s prism. Cancer 2021, 128, 240–259. [Google Scholar] [CrossRef]
- Vineetha, V.P.; Raghu, K.G. An Overview on Arsenic Trioxide-Induced Cardiotoxicity. Cardiovasc. Toxicol. 2019, 19, 105–119. [Google Scholar] [CrossRef]
- Ravandi, F.; Koumenis, I.; Johri, A.; Tallman, M.; Roboz, G.J.; Strickland, S.; Garcia-Manero, G.; Borthakur, G.; Naqvi, K.; Meyer, M.; et al. Oral arsenic trioxide ORH-2014 pharmacokinetic and safety profile in patients with advanced hematologic disorders. Haematologica 2020, 105, 1567–1574. [Google Scholar] [CrossRef]
- Kumana, C.; Au, W.; Lee, N.; Kou, M.; Mak, R.; Lam, C.; Kwong, Y. Systemic availability of arsenic from oral arsenic-trioxide used to treat patients with hematological malignancies. Eur. J. Clin. Pharmacol. 2002, 58, 521–526. [Google Scholar]
- Au, W.-Y.; Kwong, Y.-L. Arsenic trioxide: Safety issues and their management. Acta Pharmacol. Sin. 2008, 29, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.; Yim, R.; Lee, H.K.K.; Mak, V.; Lin, S.; Kho, B.; Yip, S.; Lau, J.S.M.; Li, W.; Ip, H.; et al. Long-term outcome of relapsed acute promyelocytic leukemia treated with oral arsenic trioxide-based reinduction and maintenance regimens: A 15-year prospective study. Cancer 2018, 124, 2316–2326. [Google Scholar] [CrossRef]
- Siu, C.-W.; Au, W.-Y.; Yung, C.; Kumana, C.R.; Lau, C.-P.; Kwong, Y.-L.; Tse, H.-F. Effects of oral arsenic trioxide therapy on QT intervals in patients with acute promyelocytic leukemia: Implications for long-term cardiac safety. Blood 2006, 108, 103–106. [Google Scholar] [CrossRef]
- Jansen, R.J.; Argos, M.; Tong, L.; Li, J.; Rakibuz-Zaman, M.; Islam, T.; Slavkovich, V.; Ahmed, A.; Navas-Acien, A.; Parvez, F.; et al. Determinants and Consequences of Arsenic Metabolism Efficiency among 4,794 Individuals: Demographics, Lifestyle, Genetics, and Toxicity. Cancer Epidemiol. Biomark. Prev. 2016, 25, 381–390. [Google Scholar] [CrossRef]
- Fujisawa, S.; Ohno, R.; Shigeno, K.; Sahara, N.; Nakamura, S.; Naito, K.; Kobayashi, M.; Shinjo, K.; Takeshita, A.; Suzuki, Y.; et al. Pharmacokinetics of arsenic species in Japanese patients with relapsed or refractory acute promyelocytic leukemia treated with arsenic trioxide. Cancer Chemother. Pharmacol. 2007, 59, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Packianathan, C.; Rossman, T.G.; Rosen, B.P. Nonsynonymous Polymorphisms in the Human AS3MT Arsenic Methylation Gene: Implications for Arsenic Toxicity. Chem. Res. Toxicol. 2017, 30, 1481–1491. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hu, S.; Wang, W.; Li, J.; Dong, Z.; Zhou, J.; Hai, X. AS3MT Polymorphisms, Arsenic Metabolism, and the Hematological and Biochemical Values in APL Patients Treated with Arsenic Trioxide. Toxicol. Sci. 2018, 166, 219–227. [Google Scholar] [CrossRef]
- Ghiuzeli, C.M.; Stýblo, M.; Saunders, J.; Calabro, A.; Budman, D.; Allen, S.; Devoe, C.; Dhingra, R. The pharmacokinetics of therapeutic arsenic trioxide in acute promyelocytic leukemia patients. Leuk. Lymphoma 2022, 63, 653–663. [Google Scholar] [CrossRef]
- Lou, Y.; Ma, Y.; Jin, J.; Zhu, H. Oral Realgar-Indigo Naturalis Formula Plus Retinoic Acid for Acute Promyelocytic Leukemia. Front. Oncol. 2021, 10, 597601. [Google Scholar] [CrossRef]
- Zhu, H.-H.; Hu, J.; Lo-Coco, F.; Jin, J. The simpler, the better: Oral arsenic for acute promyelocytic leukemia. Blood 2019, 134, 597–605. [Google Scholar] [CrossRef]
- Zhu, H.-H.; Wu, D.-P.; Du, X.; Zhang, X.; Liu, L.; Ma, J.; Shao, Z.-H.; Ren, H.-Y.; Hu, J.-D.; Xu, K.-L.; et al. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia: A non-inferiority, randomised phase 3 trial. Lancet Oncol. 2018, 19, 871–879. [Google Scholar] [CrossRef] [PubMed]
- de Thé, H.; Pandolfi, P.P.; Chen, Z. Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell. 2017, 32, 552–560. [Google Scholar] [CrossRef]
- Chin, L.; Kumana, C.R.; Kwong, Y.-L.; Gill, H. The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022, 14, 1945. [Google Scholar] [CrossRef] [PubMed]
- Diaz, Z.; Colombo, M.; Mann, K.K.; Su, H.; Smith, K.N.; Bohle, D.S.; Schipper, H.M.; Miller, W.H. Trolox selectively enhances arsenic-mediated oxidative stress and apoptosis in APL and other malignant cell lines. Blood 2005, 105, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-W.; Yan, X.-J.; Zhou, Z.-R.; Yang, F.-F.; Wu, Z.-Y.; Sun, H.-B.; Liang, W.-X.; Song, A.-X.; Lallemand-Breitenbach, V.; Jeanne, M.; et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010, 328, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, H.; Wei, R.; Li, W. Arsenic trioxide: Applications, mechanisms of action, toxicity and rescue strategies to date. Arch. Pharm. Res. 2024, 47, 249–271. [Google Scholar] [CrossRef]
- Liu, F.; Deng, Y.; Wang, A.; Yang, T.; Ke, H.; Tang, Y.; Wu, H.; Chen, H. Harness arsenic in medicine: Current status of arsenicals and recent advances in drug delivery. Expert Opin. Drug Deliv. 2024, 21, 867–880. [Google Scholar] [CrossRef]
- Chen, G.Q.; Shi, X.G.; Tang, W.; Xiong, S.M.; Zhu, J.; Cai, X.; Han, Z.G.; Ni, J.H.; Shi, G.Y.; Jia, P.M.; et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997, 89, 3345–3353. [Google Scholar]
- Ji, H.; Li, Y.; Jiang, F.; Wang, X.; Zhang, J.; Shen, J.; Yang, X. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci. 2014, 105, 1541–1549. [Google Scholar] [CrossRef]
- Gao, J.-K.; Wang, L.-X.; Long, B.; Ye, X.-T.; Su, J.-N.; Yin, X.-Y.; Zhou, X.-X.; Wang, Z.-W. Arsenic Trioxide Inhibits Cell Growth and Invasion via Down-Regulation of Skp2 in Pancreatic Cancer Cells. Asian Pac. J. Cancer Prev. APJCP 2015, 16, 3805–3810. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, X.; Liu, Q.; Shen, J.; Li, Z.; Li, Y.; Zhang, J. Inhibition of TGF-β/SMAD3/NF-κB signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells. Toxicol. Lett. 2014, 231, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Wang, W.; Zhang, Z. Potential molecular mechanisms underlying the effect of arsenic on angiogenesis. Arch. Pharmacal Res. 2019, 42, 962–976. [Google Scholar] [CrossRef] [PubMed]
- Bobé, P.; Bonardelle, D.; Benihoud, K.; Opolon, P.; Chelbi-Alix, M.K. Arsenic trioxide: A promising novel therapeutic agent for lymphoproliferative and autoimmune syndromes in MRL/lpr mice. Blood 2006, 108, 3967–3975. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, G.; Qiao, Z.; Xu, H.; Sun, Q.; Huang, H.; Shan, S.; Mu, Z.; Zhang, J. Effects of tetra-arsenic tetra-sulfide on BXSB lupus-prone mice: A pilot study. Lupus 2013, 22, 469–476. [Google Scholar] [CrossRef]
- Hu, H.; Chen, E.; Li, Y.; Zhu, X.; Zhang, T.; Zhu, X. Effects of Arsenic Trioxide on INF-gamma Gene Expression in MRL/lpr Mice and Human Lupus. Biol. Trace Elem. Res. 2018, 184, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Kavian, N.; Marut, W.; Servettaz, A.; Nicco, C.; Chéreau, C.; Lemaréchal, H.; Borderie, D.; Dupin, N.; Weill, B.; Batteux, F. Reactive oxygen species–mediated killing of activated fibroblasts by arsenic trioxide ameliorates fibrosis in a murine model of systemic sclerosis. Arthritis Rheum. 2012, 64, 3430–3440. [Google Scholar] [CrossRef]
- Kavian, N.; Marut, W.; Servettaz, A.; Laude, H.; Nicco, C.; Chéreau, C.; Weill, B.; Batteux, F. Arsenic Trioxide Prevents Murine Sclerodermatous Graft-versus-Host Disease. J. Immunol. 2012, 188, 5142–5149. [Google Scholar] [CrossRef]
- Ye, Y.; Ricard, L.; Siblany, L.; Stocker, N.; De Vassoigne, F.; Brissot, E.; Lamarthée, B.; Mekinian, A.; Mohty, M.; Gaugler, B.; et al. Arsenic trioxide induces regulatory functions of plasmacytoid dendritic cells through interferon-α inhibition. Acta Pharm. Sin. B 2020, 10, 1061–1072. [Google Scholar] [CrossRef]
- Cauvet, A.; Decellas, A.; Guignabert, C.; Rongvaux-Gaïda, D.; Thuillet, R.; Ottaviani, M.; Tu, L.; Rieger, F.; Avouac, J.; Allanore, Y. Arsenic trioxide demonstrates efficacy in a mouse model of preclinical systemic sclerosis. Arthritis Res. Ther. 2023, 25, 167. [Google Scholar] [CrossRef]
- Chêne, C.; Rongvaux-Gaïda, D.; Thomas, M.; Rieger, F.; Nicco, C.; Batteux, F. Optimal combination of arsenic trioxide and copper ions to prevent autoimmunity in a murine HOCl-induced model of systemic sclerosis. Front. Immunol. 2023, 14, 1149869. [Google Scholar] [CrossRef]
- Mei, Y.; Zheng, Y.; Wang, H.; Gao, J.; Liu, D.; Zhao, Y.; Zhang, Z. Arsenic Trioxide Induces Apoptosis of Fibroblast-like Synoviocytes and Represents Antiarthritis Effect in Experimental Model of Rheumatoid Arthritis. J. Rheumatol. 2011, 38, 36–43. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Wang, W.; Wang, H.; Zhang, Y.; Zhang, Z. Data on arsenic trioxide modulates Treg/Th17/Th1/Th2 cells in treatment-naïve rheumatoid arthritis patients and collagen-induced arthritis model mice. Data Brief 2019, 27, 104615. [Google Scholar] [CrossRef]
- Li, C.; Chu, T.; Zhang, Z.; Zhang, Y. Single Cell RNA-Seq Analysis Identifies Differentially Expressed Genes of Treg Cell in Early Treatment-Naive Rheumatoid Arthritis by Arsenic Trioxide. Front. Pharmacol. 2021, 12, 656124. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Zhu, X.; Zhang, J.; Ma, Y.; Lang, X.; Luo, L.; Li, W.; Zhao, Y.; Zhang, Z. Arsenic trioxide modulates the composition and metabolic function of the gut microbiota in a mouse model of rheumatoid arthritis. Int. Immunopharmacol. 2022, 111, 109159. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, J.; Wang, W.; Wang, H.; Zhang, Y.; Zhang, Z. Arsenic trioxide improves Treg and Th17 balance by modulating STAT3 in treatment-naïve rheumatoid arthritis patients. Int. Immunopharmacol. 2019, 73, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C.; Ho, L.Y.; Chan, K.L.; Tse, S.M.; To, C.H. Trend of Survival of a Cohort of Chinese Patients with Systemic Lupus Erythematosus over 25 Years. Front. Med. 2020, 7, 552. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G.; Lewandowski, L.B.; Hu, J.; Dasgupta, A.; Ward, M.M. Survival in adults and children with systemic lupus erythematosus: A systematic review and Bayesian meta-analysis of studies from 1950 to 2016. Ann. Rheum. Dis. 2017, 76, 2009–2016. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Dasgupta, A.; Ward, M.M. Risk of End-Stage Renal Disease in Patients with Lupus Nephritis, 1971–2015: A Systematic Review and Bayesian Meta-Analysis. Arthritis Rheumatol. 2016, 68, 1432–1441. [Google Scholar] [CrossRef]
- Mok, C.C.; Ho, L.Y.; Tse, S.M.; Chan, K.L. Prevalence of remission and its effect on damage and quality of life in Chinese patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2017, 76, 1420–1425. [Google Scholar] [CrossRef]
- Furie, R.; Rovin, B.H.; Houssiau, F.; Malvar, A.; Teng, Y.O.; Contreras, G.; Amoura, Z.; Yu, X.; Mok, C.-C.; Santiago, M.B.; et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. N. Engl. J. Med. 2020, 383, 1117–1128. [Google Scholar] [CrossRef]
- Navarra, S.V.; Guzmán, R.M.; Gallacher, A.E.; Hall, S.; Levy, R.A.; Jimenez, R.E.; Li, E.K.; Thomas, M.; Kim, H.Y.; León, M.G.; et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: A randomised, placebo-controlled, phase 3 trial. Lancet 2011, 377, 721–731. [Google Scholar] [CrossRef]
- Furie, R.A.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Kalunian, K.C.; Vital, E.M.; Ford, T.L.; Gupta, R.; Hiepe, F.; Santiago, M.; et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): A randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019, 1, e208–e219. [Google Scholar] [CrossRef] [PubMed]
- Morand, E.F.; Furie, R.; Tanaka, Y.; Bruce, I.N.; Askanase, A.D.; Richez, C.; Bae, S.-C.; Brohawn, P.Z.; Pineda, L.; Berglind, A.; et al. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N. Engl. J. Med. 2020, 382, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C. Therapeutic monitoring of the immuno-modulating drugs in systemic lupus erythematosus. Expert Rev. Clin. Immunol. 2017, 13, 35–41. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Navarra, S.V.; Levy, R.A.; Thomas, M.; Heath, A.; Lustine, T.; Adamkovic, A.; Fettiplace, J.; Wang, M.-L.; Ji, B.; et al. Long-term safety and limited organ damage in patients with systemic lupus erythematosus treated with belimumab: A Phase III study extension. Rheumatology 2020, 59, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Urowitz, M.B.; Aranow, C.; Asukai, Y.; Bass, D.L.; Bruce, I.N.; Chauhan, D.; Dall’Era, M.; Furie, R.; Fox, N.L.; Gilbride, J.A.; et al. Impact of Belimumab on Organ Damage in Systemic Lupus Erythematosus. Arthritis Care Res. 2022, 74, 1822–1828. [Google Scholar] [CrossRef]
- Kalunian, K.C.; Furie, R.; Morand, E.F.; Bruce, I.N.; Manzi, S.; Tanaka, Y.; Winthrop, K.; Hupka, I.; Zhang, L.; Werther, S.; et al. A Randomized, Placebo-Controlled Phase III Extension Trial of the Long-Term Safety and Tolerability of Anifrolumab in Active Systemic Lupus Erythematosus. Arthritis Rheumatol. 2023, 75, 253–265. [Google Scholar] [CrossRef]
- Jayne, D.; Rovin, B.; Mysler, E.F.; Furie, R.A.; Houssiau, F.A.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Chia, Y.L.; Tummala, R.; et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 2022, 81, 496–506. [Google Scholar] [CrossRef]
- Jayne, D.; Rovin, B.; Mysler, E.; Furie, R.; Houssiau, F.; Trasieva, T.; Knagenhjelm, J.; Schwetje, E.; Tang, W.; Tummala, R.; et al. Anifrolumab in lupus nephritis: Results from second-year extension of a randomised phase II trial. Lupus Sci. Med. 2023, 10, e000910. [Google Scholar] [CrossRef]
- Mok, C.C. Combination strategies for lupus nephritis: Facts and controversies. Expert Rev. Clin. Immunol. 2023, 19, 527–536. [Google Scholar] [CrossRef]
- van Vollenhoven, R.; Askanase, A.D.; Bomback, A.S.; Bruce, I.N.; Carroll, A.; Dall’Era, M.; Daniels, M.; Levy, R.A.; Schwarting, A.; Quasny, H.A.; et al. Conceptual framework for defining disease modification in systemic lupus erythematosus: A call for formal criteria. Lupus Sci. Med. 2022, 9, e000634. [Google Scholar] [CrossRef] [PubMed]
- Askanase, A.D.; Furie, R.A.; Dall’Era, M.; Bomback, A.S.; Schwarting, A.; Zhao, M.-H.; Bruce, I.N.; Khamashta, M.; Rubin, B.; Carroll, A.; et al. Disease-modifying therapies in systemic lupus erythematosus for extrarenal manifestations. Lupus Sci. Med. 2024, 11, e001124. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023, 83, 479–496. [Google Scholar] [CrossRef]
- Mok, C.C. The Jakinibs in systemic lupus erythematosus: Progress and prospects. Expert Opin. Investig. Drugs 2019, 28, 85–92. [Google Scholar] [CrossRef]
- Morand, E.F.; Vital, E.M.; Petri, M.; van Vollenhoven, R.; Wallace, D.J.; Mosca, M.; Furie, R.A.; Silk, M.E.; Dickson, C.L.; Meszaros, G.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-I). Lancet 2023, 401, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Bruce, I.N.; Dörner, T.; Tanaka, Y.; Morand, E.F.; Kalunian, K.C.; Cardiel, M.H.; Silk, M.E.; Dickson, C.L.; Meszaros, G.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). Lancet 2023, 401, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.C. Outlook of the jakinibs in systemic lupus erythematous after baricitinib failed. Int. J. Rheum. Dis. 2024, 27, e15082. [Google Scholar] [CrossRef]
- Hamidou, M.; Néel, A.; Poupon, J.; Amoura, Z.; Ebbo, M.; Sibilia, J.; Viallard, J.-F.; Gaborit, B.; Volteau, C.; Hardouin, J.B.; et al. Safety and efficacy of low-dose intravenous arsenic trioxide in systemic lupus erythematosus: An open-label phase IIa trial (Lupsenic). Arthritis Res. Ther. 2021, 23, 70. [Google Scholar] [CrossRef]
- Ge, F.; Zhang, Y.; Cao, F.; Li, J.; Hou, J.; Wang, P.; Li, H.; Xu, M.; Liu, S.; Li, L.; et al. Arsenic trioxide-based therapy is suitable for patients with psoriasis-associated acute promyelocytic leukemia—A retrospective clinical study. Hematology 2016, 21, 287–294. [Google Scholar] [CrossRef]
- Morand, E.; Pike, M.; Merrill, J.T.; van Vollenhoven, R.; Werth, V.P.; Hobar, C.; Delev, N.; Shah, V.; Sharkey, B.; Wegman, T.; et al. Deucravacitinib, a Tyrosine Kinase 2 Inhibitor, in Systemic Lupus Erythematosus: A Phase II, Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheumatol. 2023, 75, 242–252. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef] [PubMed]
Authors, Years | Model | Clinical Effects | Immunological Effects |
---|---|---|---|
Bobé et al., 2006 [34] | Lupus mice | ↓ lymphoproliferation, skin, lung and kidney inflammation; significantly prolonged survival | Induced apoptosis and depletion of auto-reactive T cells, ↓ production of autoantibodies and cytokines |
Zhao et al., 2013 [35] | Lupus mice | ↓ splenomegaly, amelioration of skin, liver and renal lesions | ↓ immune complex deposition, mesangial proliferation, and inflammatory cell infiltration in kidney and liver tissues, ↓monocytosis in spleen and serum interleukin-6 level |
Hu et al., 2018 [36] | Lupus mice and blood cells from SLE patients | In vitro experiments | ↓ mRNA and protein expression of IFN-γ in mice splenocytes and human SLE PBMCs |
Kavian et al., 2012 [37] | Hypochlorite induced SSc mice | ↓ dermal thickness and collagen deposition in skin and lung tissues | ↓ vascular cell adhesion molecule 1 level, autoantibody, IL-4 and IL-13 production by activated T cells; selectively killed activated fibroblasts through ROS generation |
Kavian et al., 2012 [38] | Induced chronic GVHD in mice | ↓ GVHD symptoms, fibrosis of skin and internal organs | ↓ activated CD4+ T cells and plasmacytoid dendritic cells (pDCs) through depletion of glutathione |
Ye et al., 2020 [39] | Blood cells from SSc patients | In vitro experiments | Induced apoptosis of pDCs, preferentially inhibited IFN-α secretion and phosphorylation of the interferon regulatory factor 7, ↓ capacity of pDCs to induce CD4+ T-cell proliferation, Th1/Th22 polarization and B-cell differentiation to plasmablasts |
Cauvet et al., 2023 [40] | Pre-clinical SSc mice | Improvement in lung histology, trend of reduction in fibrosis markers and strong reduction in vascular remodeling | ↓ memory T cells, ↑ % of naive T cells in the lungs; downregulated biological pathways associated with activity of the immune pathways, such as T-cell activation, regulation of leucocyte activation, leucocyte cell–cell adhesion, and regulation of lymphocyte activation. |
Chêne et al., 2023 [41] | Hypochlorite induced SSc mice | ↓ skin thickening and fibrosis | ↓ number of B cells and activation of CD4+ T cells, ↑ ROS production and apoptosis of murine fibroblasts |
Mei et al., 2011 [42] | Collagen-induced arthritis in mice | ↓ synovial hyperplasia and inflammation in the joints | Enhanced apoptosis of fibroblast-like synoviocytes |
Li et al., 2019 [43] | Blood and synovial cells from RA patients | In vitro experiments | ↓ Th17 differentiation through a reduction of STAT3 mRNA expression, ↑ Treg cell generation through an augmentation of Foxp3 expression, downregulated the Th1/Th2 ratio |
Li et al., 2021 [44] | Treg cells from early RA patients | In vitro experiments | Modulated expression of several genes associated with inflammation, Treg-cell activation, and differentiation |
Niu et al., 2022 [45] | Collagen-induced arthritis in mice | ↓ arthritis | Modulated gut microbiota and improved fecal metabolite abnormalities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mok, T.C.; Mok, C.C. The Potential Use of Arsenic Trioxide in the Treatment of Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2024, 25, 9577. https://doi.org/10.3390/ijms25179577
Mok TC, Mok CC. The Potential Use of Arsenic Trioxide in the Treatment of Systemic Lupus Erythematosus. International Journal of Molecular Sciences. 2024; 25(17):9577. https://doi.org/10.3390/ijms25179577
Chicago/Turabian StyleMok, Tsz Ching, and Chi Chiu Mok. 2024. "The Potential Use of Arsenic Trioxide in the Treatment of Systemic Lupus Erythematosus" International Journal of Molecular Sciences 25, no. 17: 9577. https://doi.org/10.3390/ijms25179577