Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics
Abstract
:1. Introduction
2. Results
2.1. Transcriptome Analysis
2.1.1. Transcriptome Data Processing and Quality Control
2.1.2. Analysis of DEGs
2.2. Validation of the qRT-PCR Data
2.3. Metabolome Analysis
2.3.1. Multivariate Statistical Analysis
2.3.2. Analysis of DEMs
2.4. Findings from Metabolome and Transcriptome Association Analysis
2.4.1. Transcriptional and Metabolomic Co-Enriched Pathways
2.4.2. Correlation Analysis of Metabolites and Corresponding Transcripts
2.4.3. Differential Expression Results of Metabolites and Related Transcripts
2.4.4. Common Pathway Mapping of DEMs and DEGs
3. Materials and Methods
3.1. Experimental Fish
3.2. Experimental Design
3.3. RNA Extraction, Transcriptome Sequencing, and DEGs Analysis
3.4. qRT-PCR for Data Validation
3.5. Metabolomic Analysis
3.6. Metabolome and Transcriptome Association Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dou, X.; Wang, Y.-Q.; Wu, Y.-Y.; Hu, X.; Yang, S.-L.; Li, C.-S.; Cen, J.-W. Analysis and evaluation of nutritional components in liver of large yellow croaker (Pseudosciaena crocea). Cyta. J. Food. 2020, 18, 551–560. [Google Scholar] [CrossRef]
- Ding, H.-Y.; Sun, X.-J.; Sheng, X.-F.; Zhao, Y.-F.; Shang, D.-R.; Zhai, Y.-X. Comparison and analysis of the nutritional composition in muscle of some cultured fresh-water and marine-cultured fishes. Food Sci. Technol. 2016, 41, 150–155. [Google Scholar]
- Zhang, H.; Wang, J.; Jing, Y. Larimichthys crocea (large yellow croaker): A bibliometric study. Heliyon 2024, 10, e37393. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-K. Germplasm Resources and Population Genetics Analysis of Larimichthys crocea in the Offshore of China. Master’s Thesis, Xiamen University, Xiamen, China, 2021. [Google Scholar]
- Yuan, J.; Zhuang, X.; Wu, L.; Lin, H.; Li, Y.; Wu, L.; Yao, J.; Liu, J.; Ding, S. Assessing the population genetic structure of yellow croaker in China: Insights into the ecological and genetic consequences of artificial breeding on natural populations. Aquaculture 2024, 590, 741026. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Li, J. The Feeding Experimemt of Larvae Pseudosciaena Crocea with Formula Feeds. J. Fujian Agr. For. Univ. (Nat. Sci. Ed.) 2002, 31, 92–93. [Google Scholar]
- Hong, W.-S.; Zhang, Q.-Y. Artificial propagation and breeding of marine fish in China. Chin. J. Oceanol. Limn. 2002, 20, 41–51. [Google Scholar]
- Imamura, S.; Suzuki, M.; Okazaki, E.; Murata, Y.; Kimura, M.; Kimiya, T.; Hiraoka, Y. Prevention of Thaw-Rigor During Frozen Storage of Bigeye Tuna Thunnus Obesus and Meat Quality Evaluation. Fish. Sci. 2012, 78, 177–185. [Google Scholar] [CrossRef]
- Feng, L.; Peng, Y.; Wu, P.; Hu, K.; Jiang, W.; Liu, Y.; Jiang, J.; Li, S.; Zhou, X. Threonine Affects Intestinal Function, Protein Synthesis and Gene Expression of TOR in Jian Carp (Cyprinus carpio var. Jian). PLoS ONE 2013, 8, e69974. [Google Scholar] [CrossRef]
- Liao, Y.; Ren, M.; Liu, B.; Sun, S.; Cui, H.; Xie, J.; Zhou, Q.; Pan, L.; Chen, R.; Ge, X. Dietary Methionine Requirement of Juvenile Blunt Snout Bream (Megalobrama amblycephala) at a Constant Dietary Cystine Level. Aquacult. Nutr. 2014, 20, 741–752. [Google Scholar] [CrossRef]
- Zhao, Z.; Song, F.; Wang, L.; Luo, L.; Wang, C.; Li, J.; Du, X.; Xu, Q. Effects of Gln and Its Precursors on Muscular Approximate Composition, Amino Acid Composition and AKP Activities in Songpu Mirror Carp Cyprinus Carpio Songpu. J. Dalian Ocean Univ. 2018, 33, 341–346. [Google Scholar]
- Tie, H.; Wu, P.; Jiang, W.; Liu, Y.; Kuang, S.; Zeng, Y.; Jiang, J.; Tang, L.; Zhou, S.; Feng, L. Dietary Nucleotides Supplementation Affect the Physicochemical Properties, Amino Acid and Fatty Acid Constituents, Apoptosis and Antioxidant Mechanisms in Grass Carp (Ctenopharyngodon idellus) muscle. Aquaculture 2019, 502, 312–325. [Google Scholar] [CrossRef]
- Fuentes, A.; Fernández-Segovia, I.; Serra, J.A.; Barat, J.M. Comparison of Wild and Cultured Sea Bass (Dicentrarchus labrax) Quality. Food Chem. 2010, 119, 1514–1518. [Google Scholar] [CrossRef]
- Lenas, D.; Chatziantoniou, S.; Nathanailides, C.; Triantafillou, D. Comparison of Wild and Farmed Sea Bass (Dicentrarchus labrax L) Lipid Quality. Procedia Food Sci. 2011, 1, 1139–1145. [Google Scholar] [CrossRef]
- Guan, W.; Zhu, Y.; Chen, Z. Muscle Quality in Fish Related to Characteristics of Muscular Fibers. Fish. Sci. 2008, 27, 101–104. [Google Scholar]
- Hurling, R.; Rodell, J.B.; Hunt, H.D. Fiber diameter and fish texture. J. Texture Stud. 1996, 27, 679–685. [Google Scholar] [CrossRef]
- Liang, X.; Hu, L.; Dong, Y.; Wu, X.; Qin, Y.; Zheng, Y.; Shi, D.; Xue, M. Substitution of Fish Meal by Fermented Soybean Meal Affects the Growth Performance and Flesh Quality of Japanese Seabass (Lateolabrax japonicus). Anim. Feed Sci. Tech. 2017, 229, 1–12. [Google Scholar] [CrossRef]
- Bai, Z.; Liu, M.; Li, S.; Lin, H.; Lin, L.; Li, R.; Chen, Z.; Chen, X. Effect of Dietary Threonine Supplement on the Fillet Quality and Cathepsin B/L Level of Jian carp (Cyprinus carpio var Jian). Food. Fer. Ind. 2019, 45, 90–96. [Google Scholar]
- Yu, E.; Xie, J.; Wang, G.; Yu, D.; Gong, W.; Li, Z.; Wang, H.; Xia, Y.; Wei, N. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus) and Crisp Grass Carp. Int. J. Genom. 2014, 2014, 639687. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, J.; Xu, C.; Qin, C.; Zhang, Y.; Yang, L.; Zhi, S.; Feng, J.; Nie, G. Comparison of Muscle Nutritional Composition, Texture Quality, Carotenoid Metabolites and Transcriptome to underling Muscle Quality Difference between Wild-Caught and Pond-Cultured Yellow River Carp (Cyprinus carpio haematopterus). Aquaculture 2024, 581, 740392. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, H.; Zhang, Y.; Zhang, Q.; Zhang, W.; Mai, K. Integrative Analysis of Transcriptomics and Metabolomics Profiling on Flesh Quality of Large Yellow Croaker Larimichthys crocea Fed a Diet with Hydroxyproline Supplementation. Brit. J. Nutr. 2018, 119, 359–367. [Google Scholar] [CrossRef]
- Cai, L.; Tong, F.; Tang, T.; Ao, Z.; Wei, Z.; Yang, F.; Shu, Y.; Liu, S.; Mai, K. Comparative Evaluation of Nutritional Value and Flavor Quality of Muscle in Triploid and Diploid Common Carp: Application of Genetic Improvement in Fish Quality. Aquaculture 2021, 541, 736780. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Liu, C.; Ma, F.; Huang, J.; Jin, Z.; Zhang, L.; Feng, D.; Zhang, M.; Yu, M.; et al. Multi-Omics Reveals the Molecular Mechanism of Muscle Quality Changes in Common Carp (Cyprinus carpio) under Two Aquaculture Systems. Comp. Biochem. Phys. D 2024, 52, 101290. [Google Scholar] [CrossRef]
- Valente, L.M.; Moutou, K.A.; Conceicao, L.E.; Engrola, S.; Fernandes, J.M.; Johnston, I.A. What Determines Growth Potential and Juvenile Quality of Farmed Fish Species? Rev. Aquacult. 2013, 5, S168–S193. [Google Scholar] [CrossRef]
- Johnston, I.A.; Li, X.; Vieira, V.L.; Nickell, D.; Dingwall, A.; Alderson, R.; Campbell, P.; Bickerdike, R. Muscle and Flesh Quality Traits in Wild and Farmed Atlantic Salmon. Aquaculture 2006, 256, 323–336. [Google Scholar] [CrossRef]
- Gao, X.; Zhai, H.; Peng, Z.; Yu, J.; Yan, L.; Wang, W.; Han, Y. Comparison of Nutritional Quality, Flesh Quality, Muscle Cellularity, and Expression of Muscle Growth-Related Genes Between Wild and Recirculating Aquaculture System (RAS)-Farmed Black Rockfish (Sebastes Schlegelii). Aquacult. Int. 2023, 31, 2263–2280. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, J.; Pan, X.; Mu, H.; Li, J.; Shentu, J.; Zhang, W.; Mai, K. Dietary Hydroxyproline Improves the Growth and Muscle Quality of Large Yellow Croaker Larimichthys crocea. Aquaculture 2016, 464, 497–504. [Google Scholar] [CrossRef]
- Lu, G.; Yao, Z.; Lai, Q.; Gao, P.; Zhou, K.; Zhu, H.; Liu, Y.; Sun, Z. Growth Performance, Blood Parameters, and Texture Characteristics of Juvenile Largemouth Bass (Micropterus salmoides) Exposed to Highly Saline-Alkaline Water. Prog. Fish. Sci. 2022, 43, 1–11. [Google Scholar]
- Zhang, B.; Dong, Z.; Kang, J.; Wang, B.; Cai, W.; Shi, B.; Zhang, X. Optimizing Full Plant Protein Feed through Nutritional and Un-nutritional Methods on the Compositions and Texture Properties of Largemouth Bass Micropterus Salmoides Muscle. Acta Hydrobiol. Sin. 2024, 48, 1–9. [Google Scholar]
- Genchi, G. An Overview on D-Amino Acids. Amino Acids. 2017, 49, 1521–1533. [Google Scholar] [CrossRef]
- Seckler, J.M.; Lewis, S.J. Advances in D-Amino Acids in Neurological Research. Int. J. Mol. Sci. 2020, 21, 7325. [Google Scholar] [CrossRef]
- Ryuichi, K.; Yosihiro, Y. D-Amino-Acid Oxidase and Its Physiological Function. Int. J. Biochem. 1992, 24, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, H.; Blackshaw, S.; Snyder, S.H. Serine Racemase: A Glial Enzyme Synthesizing D-Serine to Regulate Glutamate-N-Methyl-D-Aspartate Neurotransmission. Proc. Natl. Acad. Sci. USA 1999, 96, 13409–13414. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Ahmed, I.; Fatma, S.; Peres, H. Role of Branched-Chain Amino Acids on Growth, Physiology and Metabolism of Different Fish Species: A Review. Aquacult. Nutr. 2021, 27, 1270–1289. [Google Scholar] [CrossRef]
- Li, H.; An, X.; Bao, L.; Li, Y.; Pan, Y.; He, J.; Liu, L.; Zhu, X.; Zhang, J.; Cheng, J.; et al. MiR-125a-3p-KLF15-BCAA Regulates the Skeletal Muscle Branched-Chain Amino Acid Metabolism in Nile tilapia (Oreochromis niloticus) during Starvation. Front. Genet. 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, Z.; Shi, Y.; Zhang, G.; Zhang, H.; Lu, G.; Xie, Y.; Luo, Z. Analysis and Evaluation of Nutritional Components in Muscle of Cultured Synechogobius Ommaturus. Chin. J. Anim. Nutr. 2014, 26, 2866–2873. [Google Scholar]
- Luo, J.; Feng, L.; Jiang, W.; Liu, Y.; Wu, P.; Jiang, J.; Kuang, S.; Tang, L.; Tang, W.; Zhang, Y.; et al. Physical and Flavor Characteristics, Fatty Acid Profile, Antioxidant Status and Nrf2-Dependent Antioxidant Enzyme Gene Expression Changes in Young Grass Carp (Ctenopharyngodon idella) fillets fed dietary valine. PLoS ONE 2017, 12, e0169270. [Google Scholar] [CrossRef]
- Li, P.; Hou, D.; Zhao, H.; Peng, K.; Chen, B.; Guo, H.; Cao, J. Effects of Dietary Arginine Levels on Intestinal Morphology, Digestive Enzyme Activity, Antioxidant Capacity and Intestinal Flora of Hybrid Snakehead (Channa maculata♀× Channa argus♂). Aquacult. Rep. 2022, 25, 101244. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.A.; Liu, S.; Zhang, S.; Lu, S.; Liu, H.; Han, S.; Jiang, H.; Zhang, Y. Effects of Dietary Arginine on Growth Performance, Digestion, Absorption Ability, Antioxidant Capability, Gene Expression of Intestinal Protein Synthesis, and Inflammation-Related Genes of Triploid Juvenile Oncorhynchus mykiss Fed a Low-Fishmeal Diet. Aquacult. Nutr. 2022, 2022, 3793727. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, Y.; Xiao, K.; Wang, X.; Wang, M.; Huang, Y.; Liu, W. Effects of Different Dietary Ratio Lysine and Arginine on Growth, Muscle Fiber Development and Meat Quality of Megalobrama amblycephala. Aquacult. Rep. 2022, 26, 101322. [Google Scholar] [CrossRef]
- Mao, X.; Wang, Y.; Zhang, T.; Ma, J.; Zhao, J.; Xu, D. Dietary Arginine Regulates the Growth Performance, Antioxidant Capacity, and Immune Response in Culter Alburnus. Fish Physiol. Biochem. 2024, 50, 1251–1264. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, X.; Sun, R.; Jiang, Y.; He, Z.; Chen, J.; Mei, J. Administration of Arginine Vasotocin and Modified Isotocin Improve Artificial Propagation and Post-Spawning Survival of Female Yellow Catfish. Aquaculture 2024, 587, 740849. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, X.; Wu, P.; Jiang, W.; Liu, Y.; Ren, H.; Zhang, R.; Li, S.; Tang, L.; Feng, L. New Sight in Arginine-Improved Flesh Quality: Role of MRFs, Cyclins, and WNT Signaling in Grass Carp (Ctenopharyngodon idellus). Aquaculture 2024, 585, 740706. [Google Scholar] [CrossRef]
- Neu, D.; Boscolo, W.; Zaminhan, M.; Almeida, F.; Sary, C.; Furuya, W. Growth Performance, Biochemical Responses, and Skeletal Muscle Development of Juvenile Nile Tilapia, Oreochromis Niloticus, Fed with Increasing Levels of Arginine. J. World Aquacult. Soc. 2016, 47, 248–259. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Z.; Yan, Z.; Zhao, Z.; Zhang, C.; Gong, Q.; Huang, X. Improvement of Skeletal Muscle Growth by GH/IGF Growth-Axis Contributes to Growth Performance in Commercial Fleshy Sturgeon. Aquaculture 2021, 543, 736929. [Google Scholar] [CrossRef]
- Hamre, K.; Bjørnevik, M.; Espe, M.; Conceição, L.E.; Johansen, J.; Silva, J.; Hillestad, M.; Prabhu, A.J.; Taylor, J.F.; Tocher, D.R.; et al. Dietary Micronutrient Composition Affects Fillet Texture and Muscle Cell Size in Atlantic Salmon (Salmo salar). Aquacult. Nutr. 2020, 26, 936–945. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, P.; Sha, H.; Luo, X.; Zou, G.; Liang, H. Transcriptome Analysis Reveals the Potential Key Genes in Nutritional Deposition in the Common Carp (Cyprinus carpio). Animals 2024, 14, 1939. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Liu, X. Integration of Transcriptomics and Non-Targeted Metabolomics Reveals the Underlying Mechanism of Skeletal Muscle Development in Duck during Embryonic Stage. Int. J. Mol. Sci. 2023, 24, 5214. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zeng, M.; Dong, S. Progress in The Study of Collagen and Active Peptide of Fisheries. Fish. Sci. 2004, 23, 44–46. [Google Scholar]
- Li, X.; Zhao, W.; Sha, L. Effects of the Characteristics of Muscle Collagen on Tenderness. Meat Res. 2008, 23, 23–25. [Google Scholar]
- Mccormick, R.-J. Extracellular modifications to muscle collagen: Implications for meat quality. Poultry Sci. 1999, 78, 785–791. [Google Scholar] [CrossRef]
- Wu, F.; Lin, W.; Li, L.; Yang, X.; Hao, S.; Yang, S.; Wei, Y. Changes in Muscle Collagen Content, Mineral Contents and Fatty Acid Composition of Grass Carp during Crisping Process. Food Sci. 2015, 36, 86–89. [Google Scholar]
- Zeng, D. Whole-Genome Resequencing and Transcriptome Analysis to Identify Gene and SNP Related to Growth in Pelodiscus Sinensis. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2023. [Google Scholar]
- Persson, L.; Khomutov, A.R.; Khomutov, R.M. Feedback Regulation of S-Adenosylmethionine Decarboxylase Synthesis. Biochem. J. 1989, 257, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Cepero, M.; Cubria, J.C.; Reguera, R.; Balana-Fouce, R.; Ordonez, C.; Ordonez, D. Plasma and Muscle Polyamine Levels in Aerobically Exercised Rrats Treated with Salbutamol. J. Pharm. Pharmcol. 1998, 50, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Turchanowa; Rogozkin; Milovic; Feldkoren; Caspary. Influence of Physical Exercise on Polyamine Synthesis in the Rat Skeletal Muscle. Eur. J. Clin. Investig. 2000, 30, 72–78. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Lv, X. Recent Progress on Spermidine Alleviating Cell Senescence and Agingrelated Diseases. Curr. Biotechnol. 2024, 14, 388–398. [Google Scholar]
- Zhang, M.; Lin, Y.; Wang, Z.; Li, S.; Li, R.; Chen, M.; Li, Y.; Yin, P.; Zhang, L.; Tang, P. Analysis on The Mechanism of Skeletal Muscle Atrophy in Opg Gene Knockout Mice Based on Metabolomics. Med. J. Chin. People’s Lib. Army 2023, 48, 560–569. [Google Scholar]
- He, E.; Tang, L.; Guo, Y. Influence of Spermidine on Free Radical Metabolism in Skeletal Muscle and Its Anti-fatigue Effect in Mice. Food Sci. 2014, 35, 229–233. [Google Scholar]
- Zuo, J.; Ma, S. Bioinformatics Analysis and Validation of Differentially Expressed Genes and Small Molecule Drug Prediction in Proliferative Scar. Chin. J. Tissue Eng. Res. 2024, 28, 2166. [Google Scholar]
- Asif, S.; Kim, R.Y.; Fatica, T.; Sim, J.; Zhao, X.; Oh, Y.; Denoncourt, A.; Cheung, A.C.; Downey, M.; Mulvihill, E.E.; et al. Hmgcs2-Mediated Ketogenesis Modulates High-Fat Diet-Induced Hepatosteatosis. Mol. Metab. 2022, 61, 101494. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Fu, P. Ketone Body Metabolism and Renal Diseases. J. Sichuan Univ. (Med. Sci.) 2023, 54, 1091–1096. [Google Scholar]
- Yeagle, P.L. Cholesterol and the Cell Membrane. BBA-Rev. Biomembr. 1985, 822, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Cahill, G.F., Jr. Fuel Metabolism in Starvation. Annu. Rev. Nutr. 2006, 26, 1–22. [Google Scholar] [CrossRef]
- Tsuda, M.; Fukushima, A.; Matsumoto, J.; Takada, S.; Kakutani, N.; Nambu, H.; Yamanashi, K.; Furihata, T.; Yokota, T.; Okita, K.; et al. Protein Acetylation in Skeletal Muscle Mitochondria is Involved in Impaired Fatty Acid Oxidation and Exercise Intolerance in Heart Failure. J. Cachexia Sarcopeni 2018, 9, 844–859. [Google Scholar] [CrossRef] [PubMed]
- Mooli, R.G.R.; Ramakrishnan, S.K. Emerging Role of Hepatic Ketogenesis in Fatty Liver Disease. Front. Physiol. 2022, 13, 946474. [Google Scholar] [CrossRef] [PubMed]
- Östergren, J.; Palm, S.; Gilbey, J.; Spong, G.; Dannewitz, J.; Königsson, H.; Person, J.; Vasemägi, A. A century of genetic homogenization in Baltic salmon—Evidence from archival DNA. Proc. R. Soc. B 2021, 288, 20203147. [Google Scholar] [CrossRef]
- Paul, K.; D’Ambrosio, J.; Phocas, F. Temporal and region-specific variations in genome-wide inbreeding effects on female size and reproduction traits of rainbow trout. Evol. Appl. 2022, 15, 645–662. [Google Scholar] [CrossRef]
Sample | Raw_Reads | Clean_Reads | Q20 (%) | Q30 (%) |
---|---|---|---|---|
MEHF_1 | 6,264,928,694 | 6,106,530,964 | 96.78 | 94.26 |
MEHF_2 | 6,026,724,080 | 5,882,453,846 | 96.86 | 94.41 |
MEHF_3 | 6,727,502,396 | 6,568,158,095 | 96.82 | 94.33 |
MEHM_1 | 6,380,928,706 | 6,213,714,638 | 96.65 | 94.03 |
MEHM_2 | 6,895,087,330 | 6,737,222,132 | 96.9 | 94.48 |
MEHM_3 | 5,837,551,582 | 5,708,983,823 | 97 | 94.64 |
MELF_1 | 6,124,735,462 | 5,968,151,868 | 96.82 | 94.34 |
MELF_2 | 6,391,422,300 | 6,236,534,936 | 96.79 | 94.28 |
MELF_3 | 6,701,982,188 | 6,562,916,923 | 96.98 | 94.6 |
MELM_1 | 8,782,453,544 | 8,561,838,358 | 96.87 | 94.41 |
MELM_2 | 7,848,064,638 | 7,665,420,808 | 96.88 | 94.45 |
MELM_3 | 6,979,125,474 | 6,816,427,089 | 96.82 | 94.32 |
Sample Name | Total Mapped | Multiple Mapped | Unique Mapped |
---|---|---|---|
MEHF_1 | 39,146,176 (96.35%) | 3,201,856 (8.18%) | 35,944,320 (91.82%) |
MEHF_2 | 37,588,215 (96.11%) | 2,970,506 (7.90%) | 34,617,709 (92.10%) |
MEHF_3 | 42,105,944 (96.52%) | 3,467,629 (8.24%) | 38,638,315 (91.76%) |
MEHM_1 | 39,531,273 (95.67%) | 3,110,858 (7.87%) | 36,420,415 (92.13%) |
MEHM_2 | 43,062,855 (96.21%) | 3,700,673 (8.59%) | 39,362,182 (91.41%) |
MEHM_3 | 36,470,763 (96.01%) | 2,912,774 (7.99%) | 33,557,989 (92.01%) |
MELF_1 | 38,083,393 (95.90%) | 3,415,752 (8.97%) | 34,667,641 (91.03%) |
MELF_2 | 39,950,939 (96.32%) | 3,171,414 (7.94%) | 36,779,525 (92.06%) |
MELF_3 | 41,907,924 (96.04%) | 3,339,504 (7.97%) | 38,568,420 (92.03%) |
MELM_1 | 54,967,112 (96.51%) | 5,563,230 (10.12%) | 49,403,882 (89.88%) |
MELM_2 | 49,157,327 (96.48%) | 4,488,611 (9.13%) | 44,668,716 (90.87%) |
MELM_3 | 43,719,356 (96.53%) | 3,565,020 (8.15%) | 40,154,336 (91.85%) |
Indicators | MELF_vs._MELM | MELF_vs_MEHF | MELM_vs. MEHM | MEHF_vs. MEHM | |
---|---|---|---|---|---|
All metabolites | Pos | 479 | |||
Neg | 490 | ||||
Differential metabolites | Pos | 16 | 27 | 28 | 7 |
Neg | 9 | 20 | 29 | 8 | |
Upregulated | Pos | 9 | 9 | 9 | 2 |
Neg | 3 | 8 | 14 | 4 | |
Downregulated | Pos | 7 | 18 | 17 | 5 |
Neg | 6 | 12 | 15 | 4 |
Group | Pathway | DEMs | DEGs |
---|---|---|---|
MELF_vs._MEHF | Valine, leucine and isoleucine biosynthesis | 2-Oxoisovalerate, L-Valine | L-threonine ammonia-lyase |
MELM_vs._MEHM | Arginine biosynthesis | 4-Guanidinobutanoate | glul, gls |
Arginine and proline metabolism | L-Aspartate, N-Acetylornithine | srm | |
Valine, leucine and isoleucine degradation | L-Leucine | hmgcs, aacs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Qiao, G.; Wang, Y.; Liu, S.; Wang, X.; Yue, Y.; Peng, S. Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics. Int. J. Mol. Sci. 2024, 25, 10924. https://doi.org/10.3390/ijms252010924
Liu M, Qiao G, Wang Y, Liu S, Wang X, Yue Y, Peng S. Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics. International Journal of Molecular Sciences. 2024; 25(20):10924. https://doi.org/10.3390/ijms252010924
Chicago/Turabian StyleLiu, Mengyang, Guangde Qiao, Yabing Wang, Shengyu Liu, Xiaoshan Wang, Yanfeng Yue, and Shiming Peng. 2024. "Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics" International Journal of Molecular Sciences 25, no. 20: 10924. https://doi.org/10.3390/ijms252010924
APA StyleLiu, M., Qiao, G., Wang, Y., Liu, S., Wang, X., Yue, Y., & Peng, S. (2024). Unveiling the Molecular Mechanisms Regulating Muscle Elasticity in the Large Yellow Croaker: Insights from Transcriptomics and Metabolomics. International Journal of Molecular Sciences, 25(20), 10924. https://doi.org/10.3390/ijms252010924