Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of HMSNs, ULpTW-HMSNs and Derivatives
2.2. Caf Loading Efficiency and Releasing Profiles of Caf@HMSNs, ULp-Caf@HMSNs, and Derivatives
2.3. In Vitro Permeation Studies of Caf@HMSNs, ULp-Caf@HMSNs and Derivatives
2.4. Study of Cell Viability, Cell Morphology, Aggregation Behavior, and DCF-DA Reactive Oxygen Species (ROS) Assay
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of SiO2 Nanoparticle
3.3. Preparation of SiO2@CTAB-SiO2 Core/Shell Nanoparticles
3.4. Synthesis of HMSNs via Selective Etching
3.5. Caf Loading into HMSNs (Caf@HMSNs)
3.6. Liposomal Dispersion Preparation (Lp-Caf@HMSNs and Derivatives)
3.6.1. Preparing Stock Solutions
3.6.2. Synthesis of Ultradeformable Liposomes (ULp-Caf@HMSNs and Derivatives)
- -
- LpTW20-Caf@HMSNs: Caf-loaded HMSNs coated with a liposome containing polysorbate 20.
- -
- LpTW80-Caf@HMSNs: Caf-loaded HMSNs coated with a liposome containing polysorbate 80.
- -
- LpTW2080-Caf@HMSNs: Caf-loaded HMSNs coated with a liposome containing a 1:1 mixture of polysorbate 20 and polysorbate 80.
- -
- Lp-Caf@HMSNs: Caf-loaded HMSNs coated with a liposome without polysorbate or oleic acid.
- -
- Caf@HMSNs: Caf-loaded HMSNs without a liposome coating.
- -
- Caf@LpTW20: Caf-loaded liposomes containing polysorbate 20.
3.7. Characterization of Caf@HMSNs, ULp-Caf@HMSNs and Derivatives
3.8. High-Performance Liquid Chromatography (HPLC) Analysis
3.9. Entrapment Efficiency (%EE) and Loading Capacity (%LC)
3.10. Drug Release Behaviour
3.11. Skin Penetration Study
3.12. Confocal Laser Scanning Microscopy (CLSM) Study
3.13. MTT Assay for Cell Viability Analysis
3.14. Study of Cell Morphology and Aggregation Behavior
3.15. DCF-DA Reactive Oxygen Species (ROS) Assay
3.16. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGA | Androgenetic alopecia |
DHT | Dihydrotestosterone |
HFDPCs | Hair follicle dermal papilla cells |
HMSNs | Hollow mesoporous silica nanoparticles |
MSNs | Mesoporous silica nanoparticles |
Caf | Caffeine |
Caf@HMSNs | Caffeine-loaded hollow mesoporous silica nanoparticles |
Lp-Caf@HMSNs | Caffeine-loaded hollow mesoporous silica nanoparticles coated with liposomes |
ULs | Ultradeformable liposomes |
ULp-Caf@HMSNs | Caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes |
LpTW20-Caf@HMSNs | Caffeine-loaded HMSNs coated with a liposome containing polysorbate 20. (coated with ULs) |
LpTW80-Caf@HMSNs | Caffeine-loaded HMSNs coated with a liposome containing polysorbate 80. (coated with ULs) |
LpTW2080-Caf@HMSNs | Caffeine-loaded HMSNs coated with a liposome containing a 1:1 mixture of polysorbate 20 and polysorbate 80. (coated with ULs) |
Caf@HMSNs | Caffeine-loaded HMSNs without a liposome coating. |
Caf@LpTW20 | Caffeine-loaded liposomes containing polysorbate 20. (coated with ULs) |
ULpTW-HMSNs | HMSNs coated with a liposome containing polysorbate. (coated with ULs) |
LpTW20-HMSNs | HMSNs coated with a liposome containing polysorbate 20. (coated with ULs) |
LpTW80-HMSNs | HMSNs coated with a liposome containing polysorbate 80. (coated with ULs) |
LpTW2080-HMSNs | HMSNs coated with a liposome containing a 1:1 mixture of polysorbate 20 and polysorbate 80. (coated with ULs) |
Lp-HMSNs | HMSNs coated with a liposome without polysorbate or oleic acid. |
FITC | Fluorescein isothiocyanate |
FITC@HMSNs | FITC-loaded hollow mesoporous silica nanoparticles |
LpTW20-FITC@HMSNs | FITC-loaded HMSNs coated with a liposome containing polysorbate 20. (coated with ULs) |
CTAB | Cetyltrimethylammonium bromide |
DCF-DA | 2,7-dichlorofluorescein diacetate |
DLS | Dynamic light scattering |
DMEM | Dulbecco’s modified Eagle’s Medium |
DMSO | Dimethyl sulfoxide |
FBS | Fetal bovine serum |
Jss | Steady-state flux |
MNX | Minoxidil |
Papp | Apparent permeability coefficient |
PBS | Phosphate-buffered saline |
ROS | Reactive Oxygen Species |
TEOS | Tetraethoxysilane |
TMOS | Tetramethoxysilane |
EtOH | Ethanol |
MeOH | Methanol |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
CLSM | Confocal laser scanning microscopy |
HPLC | High-performance liquid chromatography |
FT-IR | Fourier transform infrared spectroscopy |
XRD | X-ray diffraction |
%EE | % Entrapment efficiency |
%LC | % Loading capacity |
MTT | (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) |
PDI | Polydispersity index |
IUPAC | The International Union of Pure and Applied Chemistry |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
TGA | Thermogravimetric analysis |
Td10 | 10% weight-loss temperatures |
SD | Standard deviation |
HLB | Hydrophilic–lipophilic balance |
SC | Stratum corneum |
References
- Kaur, K.; Kaur, J.; Sharma, S. Evaluation of trichoscopic findings in androgenetic alopecia and their association with disease severity. Iran. J. Dermatol. 2022, 25, 117–122. [Google Scholar]
- Khantham, C.; Ruksiriwanich, W.; Sringarm, K.; Prom-U-Thai, C.; Jamjod, S.; Arjin, C.; Muangsanguan, A.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y. Effects of bioactive composition in Oryza sativa L. cv. KDML105 bran extract on gene expression related to hair cycle in human hair follicle dermal papilla cells. Agronomy 2023, 13, 295. [Google Scholar] [CrossRef]
- Ring, C.M.; Finney, R.; Avram, M. Lasers, lights, and compounds for hair loss in aesthetics. Clin. Dermatol. 2022, 40, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Miao, Y.; Wang, J.; Wang, X.; Chen, C.-Y.; Hu, Z.-Q. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β1 expression. Drug Des. Dev. Ther. 2015, 9, 5373–5383. [Google Scholar] [CrossRef]
- Kwack, M.H.; Sung, Y.K.; Chung, E.J.; Im, S.U.; Ahn, J.S.; Kim, M.K.; Kim, J.C. Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Investig. Dermatol. 2008, 128, 262–269. [Google Scholar] [CrossRef]
- Muangsanguan, A.; Linsaenkart, P.; Chaitep, T.; Sangta, J.; Sommano, S.R.; Sringarm, K.; Arjin, C.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y. Hair Growth Promotion and Anti-Hair Loss Effects of By-Products Arabica Coffee Pulp Extracts Using Supercritical Fluid Extraction. Foods 2023, 12, 4116. [Google Scholar] [CrossRef]
- Morinaga, H.; Mohri, Y.; Grachtchouk, M.; Asakawa, K.; Matsumura, H.; Oshima, M.; Takayama, N.; Kato, T.; Nishimori, Y.; Sorimachi, Y. Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Nature 2021, 595, 266–271. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, S.; Zhang, W.; Xue, X.; Li, Y.; Lv, Y.; Chen, J.; Miao, X. Dissolving microneedles for alopecia treatment. Colloids Surf. B Biointerfaces 2023, 229, 113475. [Google Scholar] [CrossRef]
- Diviccaro, S.; Melcangi, R.C.; Giatti, S. Post-finasteride syndrome: An emerging clinical problem. Neurobiol. Stress 2020, 12, 100209. [Google Scholar] [CrossRef]
- Jaller, J.A.; MacQuhae, F.; Nichols, A. Chapter 26-Clinical Trials and Hair Loss. In Alopecia; Miteva, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 267–284. [Google Scholar]
- Kumar, M.K.; Inamadar, A.C.; Palit, A. A randomized controlled, single-observer blinded study to determine the efficacy of topical minoxidil plus microneedling versus topical minoxidil alone in the treatment of androgenetic alopecia. J. Cutan. Aesthetic Surg. 2018, 11, 211–216. [Google Scholar]
- Price, V.H. Treatment of hair loss. N. Engl. J. Med. 1999, 341, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-Q.; Zhang, H.; Guo, M.-E.; Li, X.-K.; Chen, H.-D.; Li, Y.-H.; Xu, X.-G. Combination therapy with topical minoxidil and nano-microneedle-assisted fibroblast growth factor for male androgenetic alopecia: A randomized controlled trial in Chinese patients. Chin. Med. J. 2021, 134, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Ezekwe, N.; King, M.; Hollinger, J.C. The use of natural ingredients in the treatment of alopecias with an emphasis on central centrifugal cicatricial alopecia: A systematic review. J. Clin. Aesthetic Dermatol. 2020, 13, 23. [Google Scholar]
- Ruksiriwanich, W.; Linsaenkart, P.; Khantham, C.; Muangsanguan, A.; Sringarm, K.; Jantrawut, P.; Prom-U-Thai, C.; Jamjod, S.; Yamuangmorn, S.; Arjin, C. Regulatory effects of thai rice by-product extracts from Oryza sativa L. cv. Bue Bang 3 CMU and Bue Bang 4 CMU on melanin production, nitric oxide secretion, and steroid 5α-reductase inhibition. Plants 2023, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Tansathien, K.; Chareanputtakhun, P.; Ngawhirunpat, T.; Opanasopit, P.; Rangsimawong, W. Hair growth promoting effect of bioactive extract from deer antler velvet-loaded niosomes and microspicules serum. Int. J. Pharm. 2021, 597, 120352. [Google Scholar] [CrossRef]
- Daniels, G.; Akram, S.; Westgate, G.E.; Tamburic, S. Can plant-derived phytochemicals provide symptom relief for hair loss? A critical review. Int. J. Cosmet. Sci. 2019, 41, 332–345. [Google Scholar] [CrossRef]
- Kren, R.; Ogushi, S.; Miyano, T. Effect of caffeine on meiotic maturation of porcine oocytes. Zygote 2004, 12, 31–38. [Google Scholar] [CrossRef]
- Kassem, A.A.; Asfour, M.H.; Abd El-Alim, S.H.; Khattab, M.A.; Salama, A. Topical caffeine-loaded nanostructured lipid carriers for enhanced treatment of cellulite: A 32 full factorial design optimization and in vivo evaluation in rats. Int. J. Pharm. 2023, 643, 123271. [Google Scholar] [CrossRef]
- Abd, E.; Gomes, J.; Sales, C.C.; Yousef, S.; Forouz, F.; Telaprolu, K.C.; Roberts, M.S.; Grice, J.E.; Lopes, P.S.; Leite-Silva, V.R. Deformable liposomes as enhancer of caffeine penetration through human skin in a Franz diffusion cell test. Int. J. Cosmet. Sci. 2021, 43, 1–10. [Google Scholar] [CrossRef]
- Hamishehkar, H.; Shokri, J.; Fallahi, S.; Jahangiri, A.; Ghanbarzadeh, S.; Kouhsoltani, M. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite. Drug Dev. Ind. Pharm. 2015, 41, 1640–1646. [Google Scholar] [CrossRef]
- Makky, A.M.; El-Leithy, E.S.; Hussein, D.G.; Khattab, A. Skin Targeting of an Optimized Caffeine Nanostructured Lipid Carrier with Improved Efficiency Against Chemotherapy Induced Alopecia. Int. J. App Pharm 2022, 14, 235–250. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ray, S.; Thakur, R. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009, 71, 349. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.A.; Baeumner, A.J. Liposomes in analyses. Talanta 2006, 68, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, Q.; Zeng, Y.; Tang, D. Liposome-coated mesoporous silica nanoparticles loaded with L-cysteine for photoelectrochemical immunoassay of aflatoxin B 1. Microchim. Acta 2018, 185, 311. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Tawale, R.M.; Aranjani, J.M.; Tippavajhala, V.K. Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug. AAPS PharmSciTech 2020, 21, 140. [Google Scholar] [CrossRef]
- Essa, E.A.; Bonner, M.C.; Barry, B.W. Electrical enhancement of transdermal delivery of ultradeformable liposomes. In Percutaneous Absorption; CRC Press: Boca Raton, FL, USA, 2005; pp. 495–508. [Google Scholar]
- Subongkot, T.; Ngawhirunpat, T.; Opanasopit, P. Development of ultradeformable liposomes with fatty acids for enhanced dermal rosmarinic acid delivery. Pharmaceutics 2021, 13, 404. [Google Scholar] [CrossRef]
- Dwivedi, N.; Arunagirinathan, M.; Sharma, S.; Bellare, J. Silica-Coated Liposomes for Insulin Delivery. J. Nanomater. 2010, 2010, 652048. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N.; Safaei, M. Application of various types of liposomes in drug delivery systems. Adv. Pharm. Bull. 2017, 7, 3. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997, 154, 123–140. [Google Scholar] [CrossRef]
- Zaharudin, N.S.; Mohamed Isa, E.D.; Ahmad, H.; Abdul Rahman, M.B.; Jumbri, K. Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. J. Saudi Chem. Soc. 2020, 24, 289–302. [Google Scholar] [CrossRef]
- Guo, L.; Ping, J.; Qin, J.; Yang, M.; Wu, X.; You, M.; You, F.; Peng, H. A comprehensive study of drug loading in hollow mesoporous silica nanoparticles: Impacting factors and loading efficiency. Nanomaterials 2021, 11, 1293. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Garnes, M.; Gutiérrez-Salmerón, M.; Morales, V.; Chocarro-Calvo, A.; Sanz, R.; García-Jiménez, C.; García-Muñoz, R.A. Engineering hollow mesoporous silica nanoparticles to increase cytotoxicity. Mater. Sci. Eng. C 2020, 112, 110935. [Google Scholar] [CrossRef] [PubMed]
- Cheow, W.S.; Li, S.; Hadinoto, K. Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chem. Eng. Res. Des. 2010, 88, 673–685. [Google Scholar] [CrossRef]
- Chen, F.; Hong, H.; Shi, S.; Goel, S.; Valdovinos, H.F.; Hernandez, R.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci. Rep. 2014, 4, 5080. [Google Scholar] [CrossRef]
- Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc. 2011, 133, 8778–8781. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, Y.; Cai, K.; Ding, X.; Zhang, Q.; Li, M.; Ma, X.; Zhang, B.; Zeng, Y.; Li, P. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 2014, 35, 7951–7962. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Z.; Zhang, J.; Luo, T.; Zhou, J.; Zhao, X.; Cai, K. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 2016, 83, 51–65. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, S.; Zhang, J.; Liu, G.; Shi, J.; Zhang, L.; Cui, X.; Ruan, M.; He, Q.; Bu, W. A Hollow-Core, Magnetic, and Mesoporous Double-Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging, and Drug-Delivery Properties. Adv. Funct. Mater. 2011, 21, 1850–1862. [Google Scholar] [CrossRef]
- She, X.; Chen, L.; Li, C.; He, C.; He, L.; Kong, L. Functionalization of Hollow Mesoporous Silica Nanoparticles for Improved 5-FU Loading. J. Nanomater. 2015, 2015, 872035. [Google Scholar] [CrossRef]
- Li, Y.; Deng, G.; Hu, X.; Li, C.; Wang, X.; Zhu, Q.; Zheng, K.; Xiong, W.; Wu, H. Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine 2022, 17, 1253–1279. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, K.; Xie, L.; Li, K.; Zhang, W.; Xi, Z.; Wang, X.; Xia, M.; Xu, L. Construction of calcium carbonate-liposome dual-film coated mesoporous silica as a delayed drug release system for antitumor therapy. Colloids Surf. B Biointerfaces 2022, 212, 112357. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, K.; Patel, U.; Hunt, E.C.; Singh, N. Fabrication of a Dual-Targeted Liposome-Coated Mesoporous Silica Core–Shell Nanoassembly for Targeted Cancer Therapy. ACS Omega 2023, 8, 34481–34498. [Google Scholar] [CrossRef] [PubMed]
- Al Mahrooqi, J.H. Thiolated and PEGylated Organosilica Nanoparticles: A Model Carrier for Drug Delivery to the Hair Follicles and Vitreous Humour. Ph.D. Thesis, University of Reading, Reading, UK, 2021. [Google Scholar]
- Xiao, Z.; Bao, H.; Jia, S.; Bao, Y.; Niu, Y.; Kou, X. Organic Hollow Mesoporous Silica as a Promising Sandalwood Essential Oil Carrier. Molecules 2021, 26, 2744. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Tafoya, M.C.; Tecante, A. Physicochemical characterization of sodium stearoyl lactylate (SSL), polyoxyethylene sorbitan monolaurate (Tween 20) and κ-carrageenan. Data Brief 2018, 19, 642–650. [Google Scholar] [CrossRef]
- Ibarra, J.; Melendres, J.; Almada, M.; Burboa, M.G.; Taboada, P.; Juárez, J.; Valdez, M.A. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Mater. Res. Express 2015, 2, 095010. [Google Scholar] [CrossRef]
- Saoji, S.D.; Raut, N.A.; Dhore, P.W.; Borkar, C.D.; Popielarczyk, M.; Dave, V.S. Preparation and Evaluation of Phospholipid-Based Complex of Standardized Centella Extract (SCE) for the Enhanced Delivery of Phytoconstituents. AAPS J. 2016, 18, 102–114. [Google Scholar] [CrossRef]
- Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Surfactant Effects on Lipid-Based Vesicles Properties. J. Pharm. Sci. 2018, 107, 1237–1246. [Google Scholar] [CrossRef]
- Singh, S.; Vardhan, H.; Kotla, N.G.; Maddiboyina, B.; Sharma, D.; Webster, T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomed. 2016, 11, 1475–1482. [Google Scholar] [CrossRef]
- Weerapol, Y.; Limmatvapirat, S.; Nunthanid, J.; Sriamornsak, P. Self-nanoemulsifying drug delivery system of nifedipine: Impact of hydrophilic-lipophilic balance and molecular structure of mixed surfactants. AAPS PharmSciTech 2014, 15, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, L.; He, F.; Chen, J.; Zhao, M.; Li, S.; Wu, H.; Liu, Y.; Zhang, Y.; Ping, Q.; et al. Surfactant Assisted Rapid-Release Liposomal Strategies Enhance the Antitumor Efficiency of Bufalin Derivative and Reduce Cardiotoxicity. Int. J. Nanomed. 2021, 16, 3581–3598. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, J.; Weiner, N.; Müller, D.G. The influence of in vivo treatment of skin with liposomes on the topical absorption of a hydrophilic and a hydrophobic drug in vitro. Int. J. Pharm. 1994, 103, R1–R5. [Google Scholar] [CrossRef]
- Esposito, E.; Zanella, C.; Cortesi, R.; Menegatti, E.; Nastruzzi, C. Influence of liposomal formulation parameters on the in vitro absorption of methyl nicotinate. Int. J. Pharm. 1998, 172, 255–260. [Google Scholar] [CrossRef]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef]
- Karmakar, S. Particle size distribution and zeta potential based on dynamic light scattering: Techniques to characterize stability and surface charge distribution of charged colloids. Recent Trends Mater. Phys. Chem 2019, 28, 117–159. [Google Scholar]
- Méndez, E.; Mæland, M.; Skålhegg, B.S.; Planas, J.V. Activation of the cAMP-dependent protein kinase signaling pathway by luteinizing hormone in trout theca layers. Mol. Cell. Endocrinol. 2003, 205, 11–20. [Google Scholar] [CrossRef]
- Chain, E.; Kemp, I. The isoelectric points of lecithin and sphingomyelin. Biochem. J. 1934, 28, 2052. [Google Scholar]
- Tokudome, Y.; Nakamura, K.; Itaya, Y.; Hashimoto, F. Enhancement of Skin Penetration of Hydrophilic and Lipophilic Compounds by pH-sensitive Liposomes. J. Pharm. Pharm. Sci. 2015, 18, 249–257. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Fang, X.; Chen, C.; Liu, Z.; Liu, P.; Zheng, N. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 2011, 3, 1632–1639. [Google Scholar] [CrossRef]
- Na, H.K.; Kim, M.H.; Park, K.; Ryoo, S.R.; Lee, K.E.; Jeon, H.; Ryoo, R.; Hyeon, C.; Min, D.H. Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores. Small 2012, 8, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, F.; Castaldo, R.; Latronico, T.; Lasala, P.; Gentile, G.; Lavorgna, M.; Striccoli, M.; Agostiano, A.; Comparelli, R.; Depalo, N.; et al. High Surface Area Mesoporous Silica Nanoparticles with Tunable Size in the Sub-Micrometer Regime: Insights on the Size and Porosity Control Mechanisms. Molecules 2021, 26, 4247. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.; PonnanEttiyappan, J. Synthesis and characterization of microporous hollow core-shell silica nanoparticles (HCSNs) of tunable thickness for controlled release of doxorubicin. J. Nanoparticle Res. 2018, 20, 187. [Google Scholar] [CrossRef]
- She, X.; Chen, L.; Velleman, L.; Li, C.; Zhu, H.; He, C.; Wang, T.; Shigdar, S.; Duan, W.; Kong, L. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery. J. Colloid Interface Sci. 2015, 445, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Deerattrakul, V.; Yigit, N.; Rupprechter, G.; Kongkachuichay, P. The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol. Appl. Catal. A Gen. 2019, 580, 46–52. [Google Scholar] [CrossRef]
- Thepphankulngarm, N.; Wonganan, P.; Sapcharoenkun, C.; Tuntulani, T.; Leeladee, P. Combining vitamin B12 and cisplatin-loaded porous silica nanoparticles via coordination: A facile approach to prepare a targeted drug delivery system. New J. Chem. 2017, 41, 13823–13829. [Google Scholar] [CrossRef]
- Elgharbawy, H.; Morsy, R.; EL–NIMR, T.M. Preparation and Physicochemical Evaluation of Magnetoliposomes as Drug Carriers for 5-Fluorouracile. J. Biomed. Sci. 2016, 9, 901–906. [Google Scholar]
- Malmberg, C.G.; Maryott, A.A. Dielectric constant of water from 0 to 100 C. J. Res. Natl. Bur. Stand. 1956, 56, 1. [Google Scholar] [CrossRef]
- Hodali, H.; Rawajfeh, R.; Allababdeh, N. Caffeine Loading into Micro- and Nanoparticles of Mesoporous Silicate Materials: In Vitro Release Kinetics. J. Dispers. Sci. Technol. 2017, 38, 1342–1347. [Google Scholar] [CrossRef]
- Mariz, M.; Murta, J.; Gil, M.H.; Ferreira, P. An ocular insert with zero-order extended delivery: Release kinetics and mathematical models. Eur. J. Pharm. Biopharm. 2022, 181, 79–87. [Google Scholar] [CrossRef]
- Mady, O.Y.; Donia, A.A. A new mathematic method for calculation of peppas-sahli n model constants and interpret the results in relation to zero order, higuchi, korsmeyer-peppas models and microcapsule structure image, world. J. Pharm. Res. 2015, 4, 2199–2246. [Google Scholar]
- Higuchi, T. Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Kraisit, P.; Sarisuta, N. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design. Molecules 2018, 23, 982. [Google Scholar] [CrossRef] [PubMed]
- Uprit, S.; Sahu, R.K.; Roy, A.; Pare, A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm. J. 2013, 21, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Kaurav, M.; Pandey, R.S. Phospholipid–polymer hybrid nanoparticle-mediated transfollicular delivery of quercetin: Prospective implement for the treatment of androgenic alopecia. Drug Dev. Ind. Pharm. 2019, 45, 1654–1663. [Google Scholar] [CrossRef]
- Dimde, M.; Sahle, F.F.; Wycisk, V.; Steinhilber, D.; Camacho, L.C.; Licha, K.; Lademann, J.; Haag, R. Synthesis and Validation of Functional Nanogels as pH-Sensors in the Hair Follicle. Macromol. Biosci. 2017, 17, 1600505. [Google Scholar] [CrossRef]
- Singh, K.; Panwar, P.; Kohli, P.; Sanjesh. Liposome-Mesoporous Silica Nanoparticles Fused Cores: A Safer Mode of Drug Carrier. J. Biomed. Nanotechnol. 2011, 7, 60–62. [Google Scholar] [CrossRef]
- Souto, E.B.; Macedo, A.S.; Dias-Ferreira, J.; Cano, A.; Zielińska, A.; Matos, C.M. Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). Int. J. Mol. Sci. 2021, 22, 9743. [Google Scholar] [CrossRef]
- Regev, R.; Yeheskely-Hayon, D.; Katzir, H.; Eytan, G.D. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 2005, 70, 161–169. [Google Scholar] [CrossRef]
- Lian, H.; Peng, Y.; Shi, J.; Wang, Q. Effect of emulsifier hydrophilic-lipophilic balance (HLB) on the release of thyme essential oil from chitosan films. Food Hydrocoll. 2019, 97, 105213. [Google Scholar] [CrossRef]
- Nicolazzo, J.A.; Reed, B.L.; Finnin, B.C. Modification of buccal drug delivery following pretreatment with skin penetration enhancers. J. Pharm. Sci. 2004, 93, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Kraisit, P.; Yonemochi, E.; Furuishi, T.; Mahadlek, J.; Limmatvapirat, S. Chitosan film containing antifungal agent-loaded SLNs for the treatment of candidiasis using a Box-Behnken design. Carbohydr. Polym. 2022, 283, 119178. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Rehman, M.U.; Khan, H.M.S.; Rasool, F.; Saeed, T.; Murtaz, G. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of lascorbic acid. Trop. J. Pharm. Res. 2011, 10. [Google Scholar] [CrossRef]
- Mohammad Soleymani, S.; Salimi, A.; Kalantari, H.; Sheykhi, A. Effect of Pretreatment Time with Enhancers on Caffeine Skin Permeability in Rats. Jundishapur J Nat Pharm Prod 2023, 18, e137761. [Google Scholar] [CrossRef]
- Trauer, S.; Patzelt, A.; Otberg, N.; Knorr, F.; Rozycki, C.; Balizs, G.; Büttemeyer, R.; Linscheid, M.; Liebsch, M.; Lademann, J. Permeation of topically applied caffeine through human skin--a comparison of in vivo and in vitro data. Br. J. Clin. Pharmacol. 2009, 68, 181–186. [Google Scholar] [CrossRef]
- Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm. 1998, 165, 129–168. [Google Scholar] [CrossRef]
- Pierre, M.B.R.; dos Santos Miranda Costa, I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res. 2011, 303, 607–621. [Google Scholar] [CrossRef]
- Martel, J.L.; Miao, J.H.; Badri, T.; Fakoya, A.O. Anatomy, Hair Follicle; BTI—StatPearls: Treasure Island, FL, USA, 2022.
- Lademann, J.; Knorr, F.; Richter, H.; Blume-Peytavi, U.; Vogt, A.; Antoniou, C.; Sterry, W.; Patzelt, A. Hair follicles--an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charité -Universitätsmedizin Berlin, Germany. Ski. Pharmacol. Physiol. 2008, 21, 150–155. [Google Scholar] [CrossRef]
- Rangsimawong, W.; Duangjit, S.; Samseethong, T.; Tansathien, K.; Ngawhirunpat, T.; Opanasopit, P. Novel approach for hair growth stimulation by deer antler velvet extract-loaded nano-chitosomes and micro-spicule formulation. J. Drug Deliv. Sci. Technol. 2024, 91, 105194. [Google Scholar] [CrossRef]
- Lim, H.W.; Kim, H.J.; Jeon, C.Y.; Lee, Y.; Kim, M.; Kim, J.; Kim, S.R.; Lee, S.; Lim, D.C.; Park, H.D.; et al. Hair Growth Promoting Effects of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor in Human Follicle Dermal Papilla Cells. Int. J. Mol. Sci. 2024, 25, 7485. [Google Scholar] [CrossRef]
- Jung, O.; Smeets, R.; Hartjen, P.; Schnettler, R.; Feyerabend, F.; Klein, M.; Wegner, N.; Walther, F.; Stangier, D.; Henningsen, A. Improved in vitro test procedure for full assessment of the cytocompatibility of degradable magnesium based on ISO 10993-5/-12. Int. J. Mol. Sci. 2019, 20, 255. [Google Scholar] [CrossRef] [PubMed]
- Bode, A.M.; Dong, Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 2007, 247, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Tsuruta, D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, K.; Lee, M.J.; Lee, J.; Choi, S.; Kim, K.S.; Ko, J.M.; Han, H.; Kim, S.Y.; Youn, H.J.; et al. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells. Ann. Dermatol. 2016, 28, 327–334. [Google Scholar] [CrossRef]
- Cruz, D.; Almeida, Â.; Calisto, V.; Esteves, V.I.; Schneider, R.J.; Wrona, F.J.; Soares, A.M.; Figueira, E.; Freitas, R. Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere 2016, 160, 95–103. [Google Scholar] [CrossRef]
- Inkielewicz-Stepniak, I.; Czarnowski, W. Oxidative stress parameters in rats exposed to fluoride and caffeine. Food Chem. Toxicol. 2010, 48, 1607–1611. [Google Scholar] [CrossRef]
- Saewan, N. Effect of Coffee Berry Extract on Anti-Aging for Skin and Hair—In Vitro Approach. Cosmetics 2022, 9, 66. [Google Scholar] [CrossRef]
- Nilforoushzadeh, M.A.; Zare, M.; Zarrintaj, P.; Alizadeh, E.; Taghiabadi, E.; Heidari-Kharaji, M.; Amirkhani, M.A.; Saeb, M.R.; Mozafari, M. Engineering the niche for hair regeneration—A critical review. Nanomed. Nanotechnol. Biol. Med. 2019, 15, 70–85. [Google Scholar] [CrossRef]
- Noorain, L.; Nguyen, V.; Kim, H.-W.; Nguyen, L.T.B. A machine learning approach for PLGA nanoparticles in antiviral drug delivery. Pharmaceutics 2023, 15, 495. [Google Scholar] [CrossRef]
- Heikkilä, T.; Salonen, J.; Tuura, J.; Kumar, N.; Salmi, T.; Murzin, D.Y.; Hamdy, M.S.; Mul, G.; Laitinen, L.; Kaukonen, A.M.; et al. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv. 2007, 14, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Nonsuwan, P.; Phiboonchaiyanan, P.P.; Hirun, N.; Kraisit, P. Curcumin-loaded methacrylate pullulan with grafted carboxymethyl-β-cyclodextrin to form hydrogels for wound healing: In vitro evaluation. Carbohydr. Polym. 2023, 321, 121294. [Google Scholar] [CrossRef] [PubMed]
- Kraisit, P.; Hirun, N.; Mahadlek, J.; Limmatvapirat, S. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design. J. Drug Deliv. Sci. Technol. 2021, 63, 102437. [Google Scholar] [CrossRef]
- Subongkot, T.; Sirirak, T. Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. Colloids Surf. B Biointerfaces 2020, 193, 111103. [Google Scholar] [CrossRef]
- Tan, G.; Xu, P.; Lawson, L.B.; He, J.; Freytag, L.C.; Clements, J.D.; John, V.T. Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules. J. Pharm. Sci. 2010, 99, 730–740. [Google Scholar] [CrossRef]
- Kiratipaiboon, C.; Tengamnuay, P.; Chanvorachote, P. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells. Phytomedicine 2015, 22, 1269–1278. [Google Scholar] [CrossRef]
- Liédana, N.; Marín, E.; Téllez, C.; Coronas, J. One-step encapsulation of caffeine in SBA-15 type and non-ordered silicas. Chem. Eng. J. 2013, 223, 714–721. [Google Scholar] [CrossRef]
- Massella, D.; Ancona, A.; Garino, N.; Cauda, V.; Guan, J.; Salaun, F.; Barresi, A.A.; Ferri, A. Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 460, 012044. [Google Scholar] [CrossRef]
Name | Size (nm) | PDI | Zeta (mV) |
---|---|---|---|
LpTW20-HMSNs | 182.1 ± 15.96 | 0.519 ± 0.08 | −33.1 ± 4.51 |
LpTW80-HMSNs | 170.4 ± 24.98 | 0.370 ± 0.07 | −33.7 ± 0.61 |
LpTW2080-HMSNs | 170.9 ± 6.29 | 0.425 ± 0.19 | −32.6 ± 8.62 |
Lp-HMSNs | 175.8 ± 17.61 | 0.421 ± 0.09 | −30.1 ± 2.48 |
HMSNs | 152.4 ± 6.91 | 0.514 ± 0.18 | −26.2 ± 2.43 |
LpTW20 | 78.96 ± 17.34 | 0.455 ± 0.07 | −33.4 ± 0.53 |
Name | Solvent | %EE | %LC | Amount of Caf in 0.1 g Particle (mg) |
---|---|---|---|---|
Caf@HMSNs | Water | 36.01± 0.13 | 26.47 ± 0.06 | 36.01 ± 0.13 |
Caf@HMSNs | EtOH | 32.10 ± 0.24 | 24.32 ± 0.11 | 32.10 ± 0.24 |
Caf@LpTW20 | Water | 30.87 ± 0.17 | − | 30.87 ± 0.17 |
Formulation | % Release at Eight Hours | Ct (mg) | Zero-Order Model | First-Order Model | Higuchi Model | Korsmeyer-Peppas Model | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | R2 | k | R2 | k | R2 | k | R2 | n | |||
LpTW20-Caf@HMSNs | 65 ± 4.32 | 23.4 ± 1.55 | 0.11 | 0.8713 | 0.48 | 0.9853 | 2.91 | 0.9921 | 0.11 | 0.9336 | 0.3453 |
LpTW80-Caf@HMSNs | 71 ± 3.51 | 25.5 ± 1.26 | 0.12 | 0.8749 | 0.52 | 0.9819 | 3.42 | 0.9916 | 0.11 | 0.9128 | 0.3596 |
LpTW2080-Caf@HMSNs | 56 ± 2.79 | 19.8 ± 1.01 | 0.08 | 0.8358 | 0.34 | 0.9870 | 2.11 | 0.9886 | 0.22 | 0.9397 | 0.2491 |
Lp-Caf@HMSNs | 42 ± 6.47 | 14.4 ± 2.33 | 0.07 | 0.8469 | 0.26 | 0.8547 | 1.84 | 0.9813 | 0.11 | 0.9514 | 0.3555 |
Caf@HMSNs | 94 ± 1.76 | 33.9 ± 0.63 | 0.14 | 0.7661 | 0.37 | 0.9593 | 3.74 | 0.9744 | 0.19 | 0.9347 | 0.2363 |
Caf@LpTW20 | 83 ± 1.12 | 25.5 ± 0.34 | 0.09 | 0.5692 | 0.47 | 0.9878 | 2.73 | 0.9881 | 0.26 | 0.9366 | 0.2773 |
Formulation | Cumulative Amount per Area at Six Hours (μg cm−2) | Cumulative Amount in Porcine Skin (μg) | Steady-State Flux (Jss) (μg cm−2 h−1) | Permeability Coefficient (Papp) (×10−5 cm s−1) |
---|---|---|---|---|
LpTW20-Caf@HMSNs | 368.06 ± 13.35 | 60.25 ± 6.03 | 61.88 ± 4.23 | 11.45 ± 7.83 |
LpTW80-Caf@HMSNs | 340.65 ± 20.55 | 61.40 ± 5.15 | 54.89 ± 3.73 | 10.16 ± 6.92 |
LpTW2080-Caf@HMSNs | 359.33 ± 28.41 | 60.91 ± 7.23 | 59.12 ± 3.49 | 10.95 ± 6.46 |
Lp-Caf@HMSNs | 221.02 ± 32.90 | 66.78 ± 6.61 | 32.87 ± 4.37 | 6.09 ± 7.91 |
Caf@HMSNs | 168.79 ± 20.10 | 59.07 ± 5.66 | 24.18 ± 3.93 | 4.48 ± 1.47 |
Caf@LpTW20 | 39.56 ± 3.14 | 25.79 ± 4.96 | 6.11 ± 0.58 | 1.13 ± 0.11 |
Name | Volume of Phospholipon® 90 G (μL) | Volume of Cholesterol (μL) | Volume of Polysorbate 20 (μL) | Volume of Polysorbate 80 (μL) | Volume of Oleic Acid (μL) |
---|---|---|---|---|---|
LpTW20-Caf@HMSNs | 250 | 500 | 100 | - | 50 |
LpTW80-Caf@HMSNs | 250 | 500 | - | 100 | 50 |
LpTW2080-Caf@HMSNs | 250 | 500 | 50 | 50 | 50 |
Lp-Caf@HMSNs | 250 | 500 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thepphankulngarm, N.; Manmuan, S.; Hirun, N.; Kraisit, P. Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia. Int. J. Mol. Sci. 2024, 25, 12170. https://doi.org/10.3390/ijms252212170
Thepphankulngarm N, Manmuan S, Hirun N, Kraisit P. Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia. International Journal of Molecular Sciences. 2024; 25(22):12170. https://doi.org/10.3390/ijms252212170
Chicago/Turabian StyleThepphankulngarm, Nattanida, Suwisit Manmuan, Namon Hirun, and Pakorn Kraisit. 2024. "Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia" International Journal of Molecular Sciences 25, no. 22: 12170. https://doi.org/10.3390/ijms252212170