The Identification and Characterization of the PeGRF Gene Family in Populus euphratica Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of PeGRF9
Abstract
:1. Introduction
2. Results
2.1. Identification and Prediction of the Physicochemical Properties of PeGRF Family Members
2.2. Analysis of Gene and Protein Structure of PeGRFs
2.3. Prediction of Cis-Acting Elements in the Promoter Regions of PeGRFs
2.4. Collinearity Analysis of GRFs in Multispecies
2.5. Phylogenetic Tree of PeGRFs
2.6. Analysis of GRF Member Expression in Four Kinds of Heteromorphic Leaves of P. euphratica
2.7. Subcellular Localization Analysis of PeGRF9
2.8. Functional Analysis of PeGRF9 in A. thaliana
3. Discussion
3.1. Identification of GRF Family Members in Salicaceae
3.2. Structural and Functional Diversity of PeGRFs
3.3. Functional Characterization of PeGRF9
4. Materials and Methods
4.1. Identification of GRFs
4.2. Analysis of Gene Structure and Conserved Motifs of GRFs
4.3. Multispecies Collinearity and Phylogenetic Tree Analysis of GRFs
4.4. Promoter Cis-Element Analysis of PeGRFs
4.5. RNA-Seq for Heteromorphic Leaves
4.6. Transcriptome Sequencing and Data Analysis of PeGRFs
4.7. Validation of PeGRF9 via qRT-PCR
4.8. Experimental Material Information
4.9. Cloning of PeGRF9 and Construction of Transgenic Plants
4.10. Subcellular Localization of Protein Encoded by PeGRF9
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, L.; Zhao, C.; Chen, J.; Wang, J.; Li, Q. Photosynthetic Characteristics and Twig-Leaf Traits of Different Densities of Tamarix Gansuensis in Qinwangchuan Wetland. Acta Ecol. Sin. 2018, 38, 1722–1730. [Google Scholar] [CrossRef]
- Luo, Y.; Song, T.; Wen, D.; Tang, M.; Cai, W. Effect of Internode Length and Blade Angle of Newly-Formed Tea Shoots on Machine-Plucking Performance of High Quality Tea. J. Zhejiang Univ. Sci. 2009, 35, 420–424. [Google Scholar]
- Xu, F.; Guo, W.; Xu, W.; Wei, Y.; Wang, R. Leaf Morphology Correlates with Water and Light Availability: What Consequences for Simple and Compound Leaves? Prog. Nat. Sci. 2009, 19, 1789–1798. [Google Scholar] [CrossRef]
- Bai, S. Plant Developmental Biology; Peking University Press: Beijing, China, 2003; pp. 72–73. [Google Scholar]
- Goliber, T.E.; Feldman, L.J. Developmental Analysis of Leaf Plasticity in the Heterophyllous Aquatic Plant Hippuris vulgaris. Am. J. Bot. 1990, 77, 399–412. [Google Scholar] [CrossRef]
- Sicard, A.; Thamm, A.; Marona, C.; Lee, Y.W.; Wahl, V.; Stinchcombe, J.R.; Wright, S.I.; Kappel, C.; Lenhard, M. Repeated Evolutionary Changes of Leaf Morphology Caused by Mutations to a Homeobox Gene. Curr. Biol. 2014, 24, 1880–1886. [Google Scholar] [CrossRef]
- Dierk, W. The Aba-Mediated Switch between Submersed and Emersed Life-Styles in Aquatic Macrophytes. J. Plant Res. 2011, 124, 467–475. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, C. Structural Characteristics and Eco-Adaptability of Heteromorphic Leaves of Populus euphratica. For. Stud. China 2005, 7, 11–15. [Google Scholar] [CrossRef]
- Bruni, N.C.; Dengler, N.G.; Young, J.P. Leaf Developmental Plasticity of Ranunculus flabellaris in Response to Terrestrial and Submerged Environments. Can. J. Bot. 1996, 74, 823–837. [Google Scholar] [CrossRef]
- Deschamp, P.A.; Cooke, T.J. Leaf Dimorphism in Aquatic Angiosperms: Significance of Turgor Pressure and Cell Expansion. Science 1983, 219, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.W.J. Abscisic Acid Induces Formation of Floating Leaves in the Heterophyllous Aquatic Angiosperm Potamogeton nodosus. Science 1978, 201, 1135–1138. [Google Scholar] [CrossRef]
- Liu, S.; Chen, G.; Yang, Y.; Wang, N.; Shi, G.; Wu, G. A Comparative Study on Photosynthetic Activity of Heteromorphous Leaf from Trapa bispinosa R. J. Nanjing Norm. Univ. 2002, 25, 78–82. [Google Scholar]
- Cheng, Z.; Zhang, X.; Zhao, K.; Yao, W.; Li, R.; Zhou, B.; Jiang, T. Over-Expression of ERF38 Gene Enhances Salt and Osmotic Tolerance in Transgenic Poplar. Front. Plant Sci. 2019, 10, 1375. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qin, S.; Bao, L. Identification and Functional Prediction of Circrnas in Populus euphratica Oliv. Heteromorphic Leaves. Genomics 2020, 112, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Xiao, L.; Chen, N.; Chen, Y.; Xu, X.; Feng, J. The Difference of Cuticle Wax Crystallization and Stoma Morphology of Lanceolate and Broad-Ovate Leaves of Populus euphratica Olive between Ejina Area in Inner Mongolia and Beijing Area. J. MUC 2016, 25, 85–91. [Google Scholar]
- Huang, W.; Li, Z.; Yang, Z.; Bai, G. The Structural Traits of Populus euphratica Heteromorphic Leaves and Their Correlations. Sheng Tai Xue Bao 2010, 30, 4636–4642. [Google Scholar]
- Feng, M.; Huang, W.; Li, Z. Relationship of Leaf Shape Change and Leaf Nutrient Contents in Populus euphratica. Sheng Tai Xue Bao 2014, 33, 1467–1473. [Google Scholar]
- Li, Z.; Yang, Z.; Liang, J.; Bai, G. Heteromorphic Leaf Structural Characteristics and Their Correlations with Diameter at Breast Height of Populus euphratica. Sheng Tai Xue Bao 2010, 29, 2347–2352. [Google Scholar]
- Li, J.; Liu, S.; Li, Z. Morphometric Changes in Branches, Leaves and Flower Buds of Populus euphratica at Different Development Stages. Sheng Tai Xue Bao 2015, 34, 941–946. [Google Scholar]
- Fun, H. The Secret of Heteromorphic Leaf and Its Utilization. Life World 1989, 2, 32–33. [Google Scholar]
- Van der Knaap, E.; Kim, J.H.; Kende, H.J. A Novel Gibberellin-Induced Gene from Rice and Its Potential Regulatory Role in Stem Growth. Plant Physiol. 2000, 122, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Hu, Q.; Cai, Q.; Feng, K.; Ye, N.; Tuskan, G.A.; Milne, R.; Chen, Y.; Wan, Z.; Wang, Z.; et al. The Willow Genome and Divergent Evolution from Poplar after the Common Genome Duplication. Cell Res. 2014, 24, 1274–1277. [Google Scholar] [CrossRef] [PubMed]
- Dongsu, C.; Hoe, K.J.; Hans, K. Whole Genome Analysis of the OsGRF Gene Family Encoding Plant-Specific Putative Transcription Activators in Rice (Oryza Sativa L.). Plant Cell Physiol. 2004, 45, 897–904. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Y.; Luo, X.; Zhou, W.; Dai, Y.; Zheng, C.; Liu, W.; Yang, W.; Shu, K. Genome-Wide Identification of GRF Transcription Factors in Soybean and Expression Analysis of GmGRF Family under Shade Stress. BMC Plant Biol. 2019, 19, 269. [Google Scholar] [CrossRef] [PubMed]
- Hoe, K.J.; Dongsu, C.; Hans, K. The AtGRF Family of Putative Transcription Factors Is Involved in Leaf and Cotyledon Growth in Arabidopsis. Plant J. 2003, 36, 94–104. [Google Scholar] [CrossRef]
- Omidbakhshfard, M.A.; Proost, S.; Fujikura, U.; Mueller-Roeber, B. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. Mol. Plant. 2015, 8, 998–1010. [Google Scholar] [CrossRef]
- Huang, W.; He, Y.; Yang, L.; Lu, C.; Zhu, Y.; Sun, C.; Ma, D.; Yin, J. Genome-Wide Analysis of Growth-Regulating Factors (GRFs) in Triticum Aestivum. PeerJ 2021, 9, e10701. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Ma, J.; Song, C.; Zhang, L.; Gao, C.; Zhang, D.; An, N.; Mao, J.; Han, M. Genome-Wide Identification and Expression Analysis of GRF Genes Regulating Apple Tree Architecture. Tree Genet. Genomes 2018, 14, 54. [Google Scholar] [CrossRef]
- Gao, J.; Wang, F.; Qiu, N.; Ding, Q.; Li, J.; Zhang, Y.; Li, H. Genome-Wide Identification and Analysis of the Growth-Regulating Factor Family in Chinese Cabbage(Brassica rapa L. ssp. pekinensis). BMC Genom. 2014, 15, 807. [Google Scholar] [CrossRef]
- Zhang, B.; Tong, Y.; Luo, K.; Zhai, Z.; Liu, X.; Shi, Z.; Zhang, D.; Li, D. Identification of Growth-Regulating Factor Transcription Factors in Lettuce (Lactuca Sativa) Genome and Functional Analysis of LsaGRF5 in Leaf Size Regulation. BMC Plant Biol. 2021, 21, 485. [Google Scholar] [CrossRef]
- Gorou, H.; Gyung-Tae, K.; Hirokazu, T. The Transcription Factor AtGRF5 and the Transcription Coactivator AN3 Regulate Cell Proliferation in Leaf Primordia of Arabidopsis thaliana. Plant J. 2005, 43, 68–78. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.H. Growth-Regulating Factor4 of Arabidopsis thaliana Is Required for Development of Leaves, Cotyledons, and Shoot Apical Meristem. J. Plant Biol. 2006, 49, 463–468. [Google Scholar] [CrossRef]
- Kim, J.S.; Mizoi, J.; Kidokoro, S.; Maruyama, K.; Nakajima, J.; Nakashima, K.; Mitsuda, N.; Takiguchi, Y.; Ohme-Takagi, M.; Kondou, Y.; et al. Arabidopsis Growth-Regulating Factor7 Functions as a Transcriptional Repressor of Abscisic Acid and Osmotic Stress-Responsive Genes, Including DREB2A(W). Plant Cell Rep. 2021, 24, 3393–3405. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, X.; Li, Z.; Han, X.; Zhang, S. Differences in the Functional Traits of Populus pruinosa Leaves in Different Developmental Stages. Plants 2023, 12, 2262. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, J.; Zhang, J.; Han, X.; Ge, X.; Si, J.; Li, J.; Li, Z. Leaf Trait Variations and Ecological Adaptation Mechanisms of Populus euphratica at Different Developmental Stages and Canopy Heights. Forests 2024, 15, 1283. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, Z.; Li, Z.; Jiao, P.; Zhai, J.; Liu, S.; Han, X.; Zhang, S.; Sun, J.; Gai, Z.; et al. Multi-Omics Analysis Reveals Spatiotemporal Regulation and Function of Heteromorphic Leaves in Populus. Plant Physiol. 2023, 192, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zeng, Y.; Liu, J. Frequent Ploidy Changes in Salicaceae Indicates Widespread Sharing of the Salicoid Whole Genome Duplication by the Relatives of Populus L. and Salix L. BMC Plant Biol. 2021, 21, 535. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, J.; Qiu, C.; Jiao, P.; Wang, H.; Wu, Z.; Li, Z. Comparative Genomic Analysis of the Growth-Regulating Factors-Interacting Factors (GIFs) in Six Salicaceae Species and Functional Analysis of PeGIF3 Reveals Their Regulatory Role in Populus Heteromorphic Leaves. BMC Genom. 2024, 25, 317. [Google Scholar] [CrossRef]
- Gang, L.; He, H.; Li, Y.; Wang, F.; Yu, D. Molecular Mechanism of Microrna396 Mediating Pistil Development in Arabidopsis. Plant Physiol. 2014, 164, 249–258. [Google Scholar] [CrossRef]
- Zhang, D.; Li, B.; Jia, G.; Zhang, T.; Dai, J.; Li, J.; Wang, S. Isolation and Characterization of Genes Encoding GRF Transcription Factors and GIF Transcriptional Coactivators in Maize (Zea mays L.). Plant Sci. 2008, 175, 809–817. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, C.; Zhao, T. Bioinformatics Analysis of Solanum lycopersicum GRF Transcription Factor Family. Mol. Plant Breed. 2017, 15, 2949–2956. [Google Scholar] [CrossRef]
- Wang, X.; Chang, Q.; Wang, S. Bioinformatics Analysis of Vitis vinifera GRF Gene Family. Mol. Plant Breed. 2021, 19, 5975–5983. [Google Scholar] [CrossRef]
- Tian, N.; Liu, F.; Wu, J.; Liu, J.; Li, D. Genome-Wide Identification and Expression Analysis of Musa nana GRF Gene Family. Acta Polym. Sin. 2020, 37, 1821–1835. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, S.; Chen, X. Genome-Wide Identification and Expression Pattern of Dimocarpus longan GRF Family. Ying Yong Yu Huan Jing Sheng Wu Xue Bao 2020, 26, 236–245. [Google Scholar] [CrossRef]
- Ke, X.; Wang, J. Sequence and Tissue-Specific Expression Analysis of Prunus persica GRF Gene Family. J Plant Genet. Resour. 2018, 19, 578–586. [Google Scholar] [CrossRef]
- Jin, L.; Haas, A.; Gao, F. Genome-Wide Identification and Analysis of Cucumis melo GRF Transcription Factors. Genom. Appl. Biol. 2020, 39, 3554–3560. [Google Scholar] [CrossRef]
- Yang, X.; He, S.; Chen, S. Research Progress of GRF Transcription Factors in Plants. Eucalypt Sci. Technol. 2022, 39, 57–66. [Google Scholar] [CrossRef]
- Yong, Z.; Ge, L.; Li, G.; Jiang, L.; Yang, Y. Characterization and Expression Analysis of Growth Regulating Factor (GRF) Family Genes in Cucumber. Arch Biol. Sci. 2018, 70, 629–637. [Google Scholar] [CrossRef]
- Hideki, I.; Fyodor, K. The Evolution of Gene Duplications: Classifying and Distinguishing between Models. Nat. Rev. Genet. 2010, 11, 97–108. [Google Scholar] [CrossRef]
- Zeb, U.; Aziz, T.; Azizullah, A.; Zan, X.Y.; Khan, A.A.; Bacha, S.A.S.; Cui, F.J. Complete mitochondrial genomes of edible mushrooms: Features, evolution, and phylogeny. Physiol. Plant. 2024, 176, e14363. [Google Scholar] [CrossRef] [PubMed]
- Zeb, U.; Wang, K.; AzizUllah, A.; Fiaz, S.; Khan, H.; Ullah, S.; Ali, H.; Shahzad, K. Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species. Saudi J. Biol. Sci. 2022, 29, 1618–1627. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Zhang, J.; Ma, X.; Li, Y.; Li, M.; Wang, D.; Kang, M.; Wu, H.; Yang, Y.; et al. Improved Genome Assembly Provides New Insights into Genome Evolution in a Desert Poplar (Populus euphratica). Mol. Ecol. Resour. 2020, 20, 781–794. [Google Scholar] [CrossRef]
- Sun, J.; Xu, J.; Qiu, C.; Zhai, J.; Zhang, S.; Zhang, X.; Wu, Z.; Li, Z. The Chromosome-Scale Genome and Population Genomics Reveal the Adaptative Evolution of Populus pruinosa to Desertification Environment. Hortic. Res. 2024, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wu, H.; Chen, Y.; Li, X.; Hou, J.; Lu, J.W.; Wei, S.; Dai, X.; Olson, M.S.; Liu, J.; et al. Evidences for a Role of Two Y-Specific Genes in Sex Determination in Populus deltoides. Nat. Commun. 2020, 11, 5893. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Macaya-Sanz, D.; Carlson, C.H.; Schmutz, J.; Jenkins, J.W.; Kudrna, D.; Sharma, A.; Sandor, L.; Shu, S.; Barry, K.W.; et al. A Willow Sex Chromosome Reveals Convergent Evolution of Complex Palindromic Repeats. Genome Biol. 2019, 21, 38. [Google Scholar] [CrossRef]
- Ivica, L.; Peer, B. Interactive Tree of Life (Itol) V5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Mihaela, P.; Daehwan, K.; Geo, M.; Jeffrey, T.; Steven, S. Transcript-Level Expression Analysis of RNA-Seq Experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Cheng, Y.; Hong, X.; Zhang, L.; Yang, W.; Zeng, Y.; Hou, Z.; Yang, Z.; Yang, D. Transcriptomic Analysis Provides Insight into the Regulation Mechanism of Silver Ions (Ag+) and Jasmonic Acid Methyl Ester (Meja) on Secondary Metabolism in the Hairy Roots of Salvia miltiorrhiza Bunge (Lamiaceae). Med. Plant Biol. 2023, 2, 3. [Google Scholar] [CrossRef]
- Liu, C.; Hao, J.; Qiu, M. Genome-Wide Identification and Expression Analysis of the MYB Transcription Factor in Japanese Plum (Prunus salicina). Genomics 2020, 112, 4875–4886. [Google Scholar] [CrossRef]
- Folkers, U.; Kirik, V.; Schöbinger, U.; Falk, S.; Krishnakumar, S.; Pollock, M.A.; Oppenheimer, D.G.; Day, I.; Reddy, A.R.; Jürgens, G.; et al. The Cell Morphogenesis Gene ANGUSTIFOLIA Encodes a CtBP/BARS-Like Protein and Is Involved in the Control of the Microtubule Cytoskeleton. EMBO J. 2002, 21, 1280–1288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Henriques, R.; Lin, S.; Niu, Q.; Chua, N. Agrobacterium-Mediated Transformation of Arabidopsis thaliana Using the Floral Dip Method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wan, H.; Huang, W.; Yousaf, Z.; Huang, H.; Ying, W. Characterization of B- and C-Class MADS-Box Genes in Medicinal Plant Epimedium sagittatum. Med. Plant Biol. 2023, 2, 1. [Google Scholar] [CrossRef]
Name | Gene ID | Chromosome Location | Number of Amino Acids | Molecular Weight | Theoretical pI | Grand Average of Hydropathicity | Subcellular Localization |
---|---|---|---|---|---|---|---|
PeGRF1 | PeuTF01G00792.1 | Chr1: 6270156–6272451 | 520 | 56,663.69 | 7.21 | −0.651 | Nucleus |
PeGRF2 | PeuTF01G01120.1 | Chr1: 8990995–8992055 | 202 | 22,524.83 | 9.82 | −0.599 | Nucleus |
PeGRF3 | PeuTF01G01318.1 | Chr1: 10645697–10649477 | 342 | 38,247.66 | 8.7 | −0.763 | Nucleus |
PeGRF4 | PeuTF01G01743.1 | Chr1: 15078588–15080075 | 340 | 38,212.35 | 8.21 | −0.819 | Nucleus |
PeGRF5 | PeuTF02G00947.1 | Chr2: 7494925–7498451 | 533 | 58,199.61 | 8.61 | −0.55 | Nucleus |
PeGRF6 | PeuTF03G00542.1 | Chr3: 13074257–13075767 | 353 | 39,523.94 | 8.38 | −0.718 | Nucleus |
PeGRF7 | PeuTF03G00943.1 | Chr3: 16767556–16771807 | 287 | 31,572.14 | 9.23 | −0.74 | Nucleus |
PeGRF8 | PeuTF03G01150.1 | Chr3: 18395482–18396684 | 201 | 22,327.63 | 9.84 | −0.494 | Nucleus |
PeGRF9 | PeuTF06G01147.1 | Chr6: 9403104–9405098 | 399 | 43,924.25 | 7.27 | −0.603 | Nucleus |
PeGRF10 | PeuTF06G01423.1 | Chr6: 12965169–12966649 | 222 | 24,928.2 | 9.65 | −0.708 | Nucleus |
PeGRF11 | PeuTF07G00075.1 | Chr7: 488487–491130 | 417 | 45,472.79 | 9.3 | −0.614 | Nucleus |
PeGRF12 | PeuTF12G00087.1 | Chr12: 879669–881959 | 535 | 58,299.71 | 8.84 | −0.683 | Nucleus |
PeGRF13 | PeuTF13G00777.1 | Chr13: 8941639–8946959 | 340 | 37,400.2 | 8.22 | −0.759 | Nucleus |
PeGRF14 | PeuTF14G01274.1 | Chr14: 18763783–18766327 | 250 | 27,699.01 | 8.52 | −0.683 | Nucleus |
PeGRF15 | PeuTF14G01745.1 | Chr14: 22245773–22249589 | 609 | 66,162.14 | 8.42 | −0.596 | Nucleus |
PeGRF16 | PeuTF14G01776.1 | Chr14: 22488278–22491494 | 532 | 58,424.86 | 6.54 | −0.654 | Nucleus |
PeGRF17 | PeuTF15G00068.1 | Chr15: 389099–391253 | 504 | 55,041.88 | 6.92 | −0.644 | Nucleus |
PeGRF18 | PeuTF18G00553.1 | Chr18: 12772180–12774632 | 551 | 62,428.96 | 7.41 | −0.661 | Nucleus |
PeGRF19 | PeuTF19G00381.1 | Chr19: 6384607–6388846 | 394 | 43,475.96 | 8.87 | −0.449 | Nucleus |
Gene 1 | Gene 2 | Ka | Ks | Ka/Ks |
---|---|---|---|---|
PeGRF2 | PeGRF8 | 0.11899 | 0.260122 | 0.457441 |
PeGRF3 | PeGRF7 | 0.075284 | 0.225588 | 0.333725 |
PeGRF4 | PeGRF6 | 0.099605 | 0.266788 | 0.373349 |
PeGRF4 | PeGRF10 | 0.27853 | 1.85247 | 0.150356 |
PeGRF1 | PeGRF12 | 0.591237 | 1.995614 | 0.296268 |
PeGRF2 | PeGRF14 | 0.411281 | 1.87593 | 0.219241 |
PeGRF1 | PeGRF17 | 0.596429 | 2.382612 | 0.250326 |
PeGRF5 | PeGRF11 | 0.278972 | NaN | NaN |
PeGRF5 | PeGRF15 | 0.084073 | 0.342507 | 0.245464 |
PeGRF6 | PeGRF10 | 0.326551 | 1.203352 | 0.271367 |
PeGRF8 | PeGRF14 | 0.502743 | 3.516391 | 0.142971 |
PeGRF10 | PeGRF18 | 0.068205 | 0.189189 | 0.360513 |
PeGRF11 | PeGRF16 | 0.083547 | 0.19539 | 0.427592 |
PeGRF11 | PeGRF15 | 0.278326 | 1.619047 | 0.171907 |
PeGRF12 | PeGRF17 | 0.136212 | 0.271054 | 0.502528 |
PeGRF13 | PeGRF19 | 0.132381 | 0.318797 | 0.415252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, Z.; Jia, M.; Li, J.; Song, T.; Jin, H.; Sun, J.; Qiu, C.; Lu, X.; Yuan, Y.; et al. The Identification and Characterization of the PeGRF Gene Family in Populus euphratica Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of PeGRF9. Int. J. Mol. Sci. 2025, 26, 66. https://doi.org/10.3390/ijms26010066
Wang Y, Wu Z, Jia M, Li J, Song T, Jin H, Sun J, Qiu C, Lu X, Yuan Y, et al. The Identification and Characterization of the PeGRF Gene Family in Populus euphratica Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of PeGRF9. International Journal of Molecular Sciences. 2025; 26(1):66. https://doi.org/10.3390/ijms26010066
Chicago/Turabian StyleWang, Ying, Zhihua Wu, Mingyu Jia, Jing Li, Tongrui Song, Hongyan Jin, Jianhao Sun, Chen Qiu, Xiaona Lu, Yang Yuan, and et al. 2025. "The Identification and Characterization of the PeGRF Gene Family in Populus euphratica Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of PeGRF9" International Journal of Molecular Sciences 26, no. 1: 66. https://doi.org/10.3390/ijms26010066
APA StyleWang, Y., Wu, Z., Jia, M., Li, J., Song, T., Jin, H., Sun, J., Qiu, C., Lu, X., Yuan, Y., Chen, Y., Jiao, P., & Li, Z. (2025). The Identification and Characterization of the PeGRF Gene Family in Populus euphratica Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of PeGRF9. International Journal of Molecular Sciences, 26(1), 66. https://doi.org/10.3390/ijms26010066