Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species
Abstract
:1. Introduction
2. Results
2.1. The Identification of the LEA Genes in Notopterygium
2.2. Phylogenetic Analysis and Classification of LEA Gene Family
2.3. Gene Structure, Protein Conserved Motif, and Cis-Acting Element Analysis
2.4. PPI Networks and GO Annotation
2.5. Chromosomal Distribution, Collinearity, and Selective Pressure Analysis
2.6. Expression Pattern Analyses of NinLEA in Notopterygium Species
2.7. Expression Analysis of NinLEAs in N. franchetii Under Different Abiotic Stress
3. Discussion
4. Materials and Methods
4.1. Identification and Characterization of LEA Genes in Notopterygium
4.2. Sequence Alignment and Phylogenetic Analysis
4.3. Analyses of Gene Structure, Protein Conserved Motifs, and Promoter Cis-Acting Elements
4.4. Prediction of Protein–Protein Interaction (PPI) Networks and Gene Ontology (GO) Annotation
4.5. Chromosomal Distribution, Collinearity, and Selective Pressure Analysis
4.6. Expression Pattern Analysis
4.7. Plant Materials, Growth Condition, and Abiotic Stress in N. franchetii
4.8. RNA Extraction and Quantitative Real-Time PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramanjulu, S.; Bartels, D. Drought- and Desiccation-Induced Modulation of Gene Expression in Plants. Plant Cell Environ. 2002, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Dure, L.; Greenway, S.C.; Galau, G.A. Developmental Biochemistry of Cottonseed Embryogenesis and Germination: Changing Messenger Ribonucleic Acid Populations As Shown by in Vitro and in Vivo Protein Synthesis. Biochemistry 1981, 20, 4162–4168. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Rikkerink, E.H.A.; Jones, W.T.; Uversky, V.N. Multifarious Roles of Intrinsic Disorder in Proteins Illustrate Its Broad Impact on Plant Biology. Plant Cell 2013, 25, 38–55. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.B.; Liang, Z.S.; Shao, M.A. LEA Proteins in Higher Plants: Structure, Function, Gene Expression and Regulation. Colloids Surf. B Biointerfaces 2005, 45, 131–135. [Google Scholar]
- Hundertmark, M.; Hincha, D.K. LEA (Late Embryogenesis Abundant) Proteins and Their Encoding Genes in Arabidopsis thaliana. BMC Genom. 2008, 9, 118. [Google Scholar] [CrossRef]
- Bies-Ethève, N.; Gaubier-Comella, P.; Debures, A.; Lasserre, E.; Jobet, E.; Raynal, M.; Cooke, R.; Delseny, M. Inventory, Evolution and Expression Profiling Diversity of the LEA (Late Embryogenesis Abundant) Protein Gene Family in Arabidopsis thaliana. Plant Mol. Biol. 2008, 67, 107–124. [Google Scholar] [CrossRef]
- Tunnacliffe, A.; Wise, M.J. The Continuing Conundrum of the LEA Proteins. Naturwissenschaften 2007, 94, 791–812. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Sanchez, I.E.; Maruri Lopez, I.; Martinez-Martinez, C.; Janis, B.; Jimenez-Bremont, J.F.; Covarrubias, A.A.; Menze, M.A.; Graether, S.P.; Thalhammer, A. LEAfing through Literature: Late Embryogenesis Abundant Proteins Coming of Age—Achievements and Perspectives. J. Exp. Bot. 2022, 73, 6525–6546. [Google Scholar] [CrossRef] [PubMed]
- Hunault, G.; Jaspard, E. LEAPdb: A Database for the Late Embryogenesis Abundant Proteins. BMC Genom. 2010, 11, 221. [Google Scholar] [CrossRef]
- Zan, T.; Li, L.Q.; Li, J.T.; Zhang, L.; Li, X.J. Genome-Wide Identification and Characterization of Late Embryogenesis Abundant Protein-Encoding Gene Family in Wheat: Evolution and Expression Profiles during Development and Stress. Gene 2020, 736, 144422. [Google Scholar] [CrossRef]
- Kentaro, S. Relative Predicativity and Dependent Recursion in Second-Order Set Theory and Higher-Order Theories. J. Symb. Log. 2014, 79, 712–732. [Google Scholar] [CrossRef]
- Geng, W.B.; Wang, Y.N.; Zhang, J.; Liu, Z.H.; Chen, X.Y.; Qin, L.T.; Yang, L.; Tang, H. Genome-Wide Identification and Expression Analyses of Late Embryogenesis Abundant (LEA) Gene Family in Tobacco (Nicotiana tabacum L.) Reveal Their Function in Abiotic Stress Responses. Gene 2022, 836, 146665. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lai, Y.M.; Wu, X.; Wu, G.; Guo, C.K. Overexpression of OsEm1 Encoding a Group I LEA Protein Confers Enhanced Drought Tolerance in Rice. Biochem. Biophys. Res. Commun. 2016, 478, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lei, X.J.; Wang, Y.H.; Di, P.; Meng, X.R.; Peng, W.Y.; Rong, J.B.; Wang, Y.P. Genome-Wide Identification of the LEA Gene Family in Panax ginseng: Evidence for the Role of PgLEA2-50 in Plant Abiotic Stress Response. Plant Physiol. Biochem. 2024, 212, 108742. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Feng, L.; Yue, M.; He, Y.L.; Zhao, G.F.; Li, Z.H. Species Delimitation and Interspecific Relationships of the Endangered Herb Genus Notopterygium Inferred from Multilocus Variations. Mol. Phylogenet. Evol. 2019, 133, 142–151. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, M.L.; Yue, M.; Zhao, Z.; Zhao, G.F.; Li, Z.H. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China. Molecules 2017, 22, 1158. [Google Scholar] [CrossRef]
- Jia, Y.; Bai, J.Q.; Liu, M.L.; Jiang, Z.F.; Wu, Y.; Fang, M.F.; Li, Z.H. Transcriptome Analysis of the Endangered Notopterygium incisum: Cold-Tolerance Gene Discovery and Identification of EST-SSR and SNP Markers. Plant Divers. 2019, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hincha, D.K.; Thalhammer, A. LEA Proteins: IDPs with Versatile Functions in Cellular Dehydration Tolerance. Biochem. Soc. Trans. 2012, 40, 1000–1003. [Google Scholar] [CrossRef]
- Yu, X.M.; Yue, W.R.; Yang, Q.; Zhang, Y.N.; Han, X.M.; Yang, F.Y.; Wang, R.G.; Li, G.J. Identification of the LEA Family Members from Caragana korshinskii (Fabaceae) and Functional Characterization of CkLEA2-3 in Response to Abiotic Stress in Arabidopsis. Braz. J. Bot. 2019, 42, 227–238. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, M.L.; López-Pujol, J.; Jia, R.W.; Kou, Y.X.; Yue, M.; Guan, T.X.; Li, Z.H. The Hybridization Origin of the Chinese Endemic Herb Genus Notopterygium (Apiaceae): Evidence from Population Genomics and Ecological Niche Analysis. Mol. Phylogenet. Evol. 2023, 182, 107736. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, X. Identification and Phylogenetic Analysis of Late Embryogenesis Abundant Proteins Family in Tomato (Solanum lycopersicum). Planta 2015, 241, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Zhu, H.B.; Jin, G.L.; Liu, H.L.; Wu, W.R.; Zhu, J. Genome-Scale Identification and Analysis of LEA Genes in Rice (Oryza sativa L.). Plant Sci. 2007, 172, 414–420. [Google Scholar] [CrossRef]
- Wang, W.D.; Gao, T.; Chen, J.F.; Yang, J.K.; Huang, H.Y.; Yu, Y.B. The Late Embryogenesis Abundant Gene Family in Tea Plant (Camellia sinensis): Genome-Wide Characterization and Expression Analysis in Response to Cold and Dehydration Stress. Plant Physiol. Biochem. 2019, 135, 277–286. [Google Scholar] [CrossRef]
- Du, D.L.; Zhang, Q.X.; Cheng, T.R.; Pan, H.T.; Yang, W.R.; Sun, L.D. Genome-Wide Identification and Analysis of Late Embryogenesis Abundant (LEA) Genes in Prunus mume. Mol. Biol. Rep. 2013, 40, 1937–1946. [Google Scholar] [CrossRef]
- Liu, H.; Xing, M.Y.; Yang, W.B.; Mu, X.Q.; Wang, X.; Lu, F.; Wang, Y.; Zhang, L.S. Genome-Wide Identification of and Functional Insights into the Late Embryogenesis Abundant (LEA) Gene Family in Bread Wheat (Triticum aestivum). Sci. Rep. 2019, 9, 13375. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, S.Z.; Chen, S.Y.; Li, H.X.; Zhang, T.; Bao, F.; Zhan, D.J.; Pang, Z.W.; Zhang, J.F.; Zhao, J. Genome-Wide Identification and Expression Analysis of Late Embryogenesis Abundant (LEA) Genes Reveal Their Potential Roles in Somatic Embryogenesis in Hybrid Sweetgum (Liquidambar styraciflua × Liquidambar formosana). For. Res. 2023, 3, 12. [Google Scholar] [CrossRef]
- Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K. Protein-Water and Protein-Buffer Interactions in the Aqueous Solution of an Intrinsically Unstructured Plant Dehydrin: NMR Intensity and DSC Aspects. Biophys. J. 2006, 91, 2243–2249. [Google Scholar] [CrossRef] [PubMed]
- Jeffares, D.C.; Penkett, C.J.; Bähler, J. Rapidly Regulated Genes Are Intron Poor. Trends Genet. 2008, 24, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Peng, T.; Dai, W.S. Critical cis-Acting Elements and Interacting Transcription Factors: Key Players Associated with Abiotic Stress Responses in Plants. Plant Mol. Biol. Rep. 2014, 32, 303–317. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, F.T.; Jia, D.M.; Li, J.T.; Zhang, Y.M.; Jia, C.G.; Wang, D.P.; Pan, H.Y. Cloning and Functional Analysis of the Promoter of a Stress-Inducible Gene (ZmRXO1) in Maize. Plant Mol. Biol. Rep. 2015, 33, 200–208. [Google Scholar] [CrossRef]
- Sun, Q.H.; Gao, F.; Zhao, L.; Li, K.P.; Zhang, J.R. Identification of a New 130 Bp cis-Acting Element in the TsVP1 Promoter Involved in the Salt Stress Response from Thellungiella halophila. BMC Plant Biol. 2010, 10, 90. [Google Scholar] [CrossRef]
- Candat, A.; Paszkiewicz, G.; Neveu, M.; Gautier, R.; Logan, D.C.; Avelange-Macherel, M.H.; Macherel, D. The Ubiquitous Distribution of Late Embryogenesis Abundant Proteins across Cell Compartments in Arabidopsis Offers Tailored Protection against Abiotic Stress. Plant Cell 2014, 26, 3148–3166. [Google Scholar] [CrossRef]
- Chakrabortee, S.; Tripathi, R.; Watson, M.; Kaminski Schierle, G.S.; Kurniawan, D.P.; Kaminski, C.F.; Wise, M.J.; Tunnacliffe, A. Intrinsically Disordered Proteins as Molecular Shields. Mol. Biosyst. 2012, 8, 210–219. [Google Scholar] [CrossRef]
- Karpinska, B.; Razak, N.; Shaw, D.S.; Plumb, W.; Van De Slijke, E.; Stephens, J.; De Jaeger, G.; Murcha, M.W.; Foyer, C.H. Late Embryogenesis Abundant (LEA)5 Regulates Translation in Mitochondria and Chloroplasts to Enhance Growth and Stress Tolerance. Front. Plant Sci. 2022, 13, 875799. [Google Scholar] [CrossRef] [PubMed]
- Freeling, M. Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition. Annu. Rev. Plant Biol. 2009, 60, 433–453. [Google Scholar] [CrossRef]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene Duplication as a Major Force in Evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Chen, C.J.; Li, C.H.; Liu, J.R.; Liu, C.Y.; He, Y.H. Genome-Wide Investigation of WRKY Gene Family in Pineapple: Evolution and Expression Profiles during Development and Stress. BMC Genom. 2018, 19, 490. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.H.; Zhang, X.M.; Yao, W.J.; Zhao, K.; Liu, L.; Fan, G.F.; Zhou, B.R.; Jiang, T.B. Genome-Wide Search and Structural and Functional Analyses for Late Embryogenesis-Abundant (LEA) Gene Family in Poplar. BMC Plant Biol. 2021, 21, 110. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhang, X.J.; Zhu, L.J.; Wang, L.X.; Zhang, H.; Zhang, X.H.; Xu, S.T.; Xue, J.Q. Identification of the Maize LEA Gene Family and Its Relationship with Kernel Dehydration. Plants 2023, 12, 3674. [Google Scholar] [CrossRef]
- Chen, L.; Xin, J.; Song, H.Y.; Xu, F.; Yang, H.; Sun, H.; Yang, M. Genome-Wide Study and Functional Characterization Elucidates the Potential Association of Late Embryogenesis Abundant (LEA) Genes with Lotus Seed Development. Int. J. Biol. Macromol. 2023, 226, 1–13. [Google Scholar] [CrossRef]
- Huang, R.L.; Xiao, D.; Wang, X.; Zhan, J.; Wang, A.Q.; He, L.F. Genome-Wide Identification, Evolutionary and Expression Analyses of LEA Gene Family in Peanut (Arachis hypogaea L.). BMC Plant Biol. 2022, 22, 155. [Google Scholar] [CrossRef]
- Ma, J.Y.; Zuo, D.J.; Ye, H.; Yan, Y.J.; Li, M.D.; Zhao, P. Genome-Wide Identification, Characterization, and Expression Pattern of the Late Embryogenesis Abundant (LEA) Gene Family in Juglans regia and Its Wild Relatives J. mandshurica. BMC Plant Biol. 2023, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER Web Server: Interactive Sequence Similarity Searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein Localization Predictor. Nucleic Acids Res 2007, 35, W585–W587. [Google Scholar] [CrossRef] [PubMed]
- Geourjon, C.; Deleage, G. SOPMA: Significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction from Multiple Alignments. Bioinformatics 1995, 11, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and Analyzing DNA and Protein Sequence Motifs. Nucleic Acids Res. 2006, 34, W369–W373. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van De Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a Database of Plant cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13 (Suppl. 2), 1194–1202. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; Von Mering, C.; Bork, P. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef]
- Wang, Y.P.; Tang, H.B.; Debarry, J.D.; Tan, X.; Li, J.P.; Wang, X.Y.; Lee, T.H.; Jin, H.Z.; Marler, B.; Guo, H.; et al. MCScanX: A Toolkit for Detection and Evolutionary Analysis of Gene Synteny and Collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhao, X.Q.; Wang, J.; Wong, G.K.S.; Yu, J. KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging. Genom. Proteom. Bioinform. 2006, 4, 259–263. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 2, 402–408. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: BestKeeper–Excel-Based Tool Using Pair-Wise Correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; He, X.; Wang, X.; Liu, P.; Ai, S.; Liu, X.; Li, Z.; Wang, X. Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species. Int. J. Mol. Sci. 2025, 26, 519. https://doi.org/10.3390/ijms26020519
Wu X, He X, Wang X, Liu P, Ai S, Liu X, Li Z, Wang X. Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species. International Journal of Molecular Sciences. 2025; 26(2):519. https://doi.org/10.3390/ijms26020519
Chicago/Turabian StyleWu, Xuanye, Xiaojing He, Xiaoling Wang, Puyuan Liu, Shaoheng Ai, Xiumeng Liu, Zhonghu Li, and Xiaojuan Wang. 2025. "Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species" International Journal of Molecular Sciences 26, no. 2: 519. https://doi.org/10.3390/ijms26020519
APA StyleWu, X., He, X., Wang, X., Liu, P., Ai, S., Liu, X., Li, Z., & Wang, X. (2025). Genome-Wide Identification, Phylogenetic Evolution, and Abiotic Stress Response Analyses of the Late Embryogenesis Abundant Gene Family in the Alpine Cold-Tolerant Medicinal Notopterygium Species. International Journal of Molecular Sciences, 26(2), 519. https://doi.org/10.3390/ijms26020519