Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats
Abstract
:1. Introduction
2. Results
2.1. Nesfatin−1 Producing Neurons in the PMv
2.2. Functional Characterization of PMv Nesfatin−1 Neurons
2.3. Afferent Innervation of PMv Nesfatin−1 Neurons
3. Discussion
4. Materials and Methods
4.1. Animals and Tissue Handling
4.2. Pheromone Challenge
4.3. Leptin Treatment
4.4. IHC
4.5. EM
4.6. ISH
4.7. Imaging
4.8. Quantitative Analyses
4.9. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, L.; Osakada, T.; Lin, D. Hypothalamic control of innate social behaviors. Science 2023, 382, 399–404. [Google Scholar] [CrossRef]
- Donato, J., Jr.; Elias, C.F. The ventral premammillary nucleus links metabolic cues and reproduction. Front. Endocrinol. 2011, 2, 57. [Google Scholar] [CrossRef]
- Canteras, N.S.; Simerly, R.B.; Swanson, L.W. Projections of the ventral premammillary nucleus. J. Comp. Neurol. 1992, 324, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Beltramino, C.; Taleisnik, S. Ventral premammillary nuclei mediate pheromonal-induced LH release stimuli in the rat. Neuroendocrinology 1985, 41, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Leshan, R.L.; Louis, G.W.; Jo, Y.H.; Rhodes, C.J.; Munzberg, H.; Myers, M.G., Jr. Direct innervation of GnRH neurons by metabolic- and sexual odorant-sensing leptin receptor neurons in the hypothalamic ventral premammillary nucleus. J. Neurosci. 2009, 29, 3138–3147. [Google Scholar] [CrossRef] [PubMed]
- Donato, J., Jr.; Cravo, R.M.; Frazao, R.; Gautron, L.; Scott, M.M.; Lachey, J.; Castro, I.A.; Margatho, L.O.; Lee, S.; Lee, C.; et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Investig. 2011, 121, 355–368. [Google Scholar] [CrossRef]
- Childs, G.V.; Odle, A.K.; MacNicol, M.C.; MacNicol, A.M. The Importance of Leptin to Reproduction. Endocrinology 2021, 162, bqaa204. [Google Scholar] [CrossRef] [PubMed]
- Donato, J., Jr.; Lee, C.; Ratra, D.V.; Franci, C.R.; Canteras, N.S.; Elias, C.F. Lesions of the ventral premammillary nucleus disrupt the dynamic changes in Kiss1 and GnRH expression characteristic of the proestrus-estrus transition. Neuroscience 2013, 241, 67–79. [Google Scholar] [CrossRef]
- Chen, A.X.; Yan, J.J.; Zhang, W.; Wang, L.; Yu, Z.X.; Ding, X.J.; Wang, D.Y.; Zhang, M.; Zhang, Y.L.; Song, N.; et al. Specific Hypothalamic Neurons Required for Sensing Conspecific Male Cues Relevant to Inter-male Aggression. Neuron 2020, 108, 763–774.e6. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.L.; Gerkin, R.C.; Dean, K.L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 2004, 24, 6466–6475. [Google Scholar] [CrossRef] [PubMed]
- Soden, M.E.; Miller, S.M.; Burgeno, L.M.; Phillips, P.E.M.; Hnasko, T.S.; Zweifel, L.S. Genetic Isolation of Hypothalamic Neurons that Regulate Context-Specific Male Social Behavior. Cell Rep. 2016, 16, 304–313. [Google Scholar] [CrossRef]
- Stagkourakis, S.; Spigolon, G.; Williams, P.; Protzmann, J.; Fisone, G.; Broberger, C. A neural network for intermale aggression to establish social hierarchy. Nat. Neurosci. 2018, 21, 834–842. [Google Scholar] [CrossRef]
- Yokosuka, M.; Matsuoka, M.; Ohtani-Kaneko, R.; Iigo, M.; Hara, M.; Hirata, K.; Ichikawa, M. Female-soiled bedding induced fos immunoreactivity in the ventral part of the premammillary nucleus (PMv) of the male mouse. Physiol. Behav. 1999, 68, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.C.; Bittencourt, J.C.; Elias, C.F. Female odors stimulate CART neurons in the ventral premammillary nucleus of male rats. Physiol. Behav. 2006, 88, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Donato, J., Jr.; Cavalcante, J.C.; Silva, R.J.; Teixeira, A.S.; Bittencourt, J.C.; Elias, C.F. Male and female odors induce Fos expression in chemically defined neuronal population. Physiol. Behav. 2010, 99, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.F.; Lee, C.E.; Kelly, J.F.; Ahima, R.S.; Kuhar, M.; Saper, C.B.; Elmquist, J.K. Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 2001, 432, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Barash, I.A.; Cheung, C.C.; Weigle, D.S.; Ren, H.; Kabigting, E.B.; Kuijper, J.L.; Clifton, D.K.; Steiner, R.A. Leptin is a metabolic signal to the reproductive system. Endocrinology 1996, 137, 3144–3147. [Google Scholar] [CrossRef]
- Cannarella, R.; Crafa, A.; Curto, R.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E. Obesity and male fertility disorders. Mol. Asp. Med. 2024, 97, 101273. [Google Scholar] [CrossRef]
- Kobayashi, T.; Namekawa, J.; Shimomoto, T.; Yasui, M.; Iijima, T.; Itano, Y.; Miura, D.; Kasahara, Y. The effects of long-lasting hypoglycemia on male reproductive organs in rats. J. Toxicol. Sci. 2015, 40, 719–725. [Google Scholar] [CrossRef]
- Oltmanns, K.M.; Fruehwald-Schultes, B.; Kern, W.; Born, J.; Fehm, H.L.; Peters, A. Hypoglycemia, but not insulin, acutely decreases LH and T secretion in men. J. Clin. Endocrinol. Metab. 2001, 86, 4913–4919. [Google Scholar] [CrossRef] [PubMed]
- Pitteloud, N.; Hardin, M.; Dwyer, A.A.; Valassi, E.; Yialamas, M.; Elahi, D.; Hayes, F.J. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J. Clin. Endocrinol. Metab. 2005, 90, 2636–2641. [Google Scholar] [CrossRef]
- Oh, I.S.; Shimizu, H.; Satoh, T.; Okada, S.; Adachi, S.; Inoue, K.; Eguchi, H.; Yamamoto, M.; Imaki, T.; Hashimoto, K.; et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006, 443, 709–712. [Google Scholar] [CrossRef]
- Konczol, K.; Pinter, O.; Ferenczi, S.; Varga, J.; Kovacs, K.; Palkovits, M.; Zelena, D.; Toth, Z.E. Nesfatin-1 exerts long-term effect on food intake and body temperature. Int. J. Obes. 2012, 36, 1514–1521. [Google Scholar] [CrossRef]
- Kras, K.; Muszyński, S.; Tomaszewska, E.; Arciszewski, M.B. Minireview: Peripheral Nesfatin-1 in Regulation of the Gut Activity-15 Years since the Discovery. Animals 2022, 12, 101. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Wang, Y.; Tian, Z. Role of brain NUCB2/nesfatin-1 in stress and stress-related gastrointestinal disorders. Peptides 2023, 167, 171043. [Google Scholar] [CrossRef]
- Maejima, Y.; Sedbazar, U.; Suyama, S.; Kohno, D.; Onaka, T.; Takano, E.; Yoshida, N.; Koike, M.; Uchiyama, Y.; Fujiwara, K.; et al. Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab. 2009, 10, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Oh, I.S.; Hashimoto, K.; Nakata, M.; Yamamoto, S.; Yoshida, N.; Eguchi, H.; Kato, I.; Inoue, K.; Satoh, T.; et al. Peripheral administration of nesfatin-1 reduces food intake in mice: The leptin-independent mechanism. Endocrinology 2009, 150, 662–671. [Google Scholar] [CrossRef]
- Garcia-Galiano, D.; Navarro, V.M.; Roa, J.; Ruiz-Pino, F.; Sanchez-Garrido, M.A.; Pineda, R.; Castellano, J.M.; Romero, M.; Aguilar, E.; Gaytan, F.; et al. The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat. J. Neurosci. 2010, 30, 7783–7792. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, K.; Song, M.; Li, X.; Luo, L.; Tian, Y.; Zhang, Y.; Li, Y.; Zhang, X.; Ling, Y.; et al. Role of Nesfatin-1 in the Reproductive Axis of Male Rat. Sci. Rep. 2016, 6, 32877. [Google Scholar] [CrossRef] [PubMed]
- Hatef, A.; Unniappan, S. Gonadotropin-releasing hormone, kisspeptin, and gonadal steroids directly modulate nucleobindin-2/nesfatin-1 in murine hypothalamic gonadotropin-releasing hormone neurons and gonadotropes. Biol. Reprod. 2017, 96, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Seon, S.; Jeon, D.; Kim, H.; Chung, Y.; Choi, N.; Yang, H. Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland. Dev. Reprod. 2017, 21, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Durst, M.; Könczöl, K.; Ocskay, K.; Sípos, K.; Várnai, P.; Szilvásy-Szabó, A.; Fekete, C.; Tóth, Z.E. Hypothalamic Nesfatin-1 Resistance May Underlie the Development of Type 2 Diabetes Mellitus in Maternally Undernourished Non-obese Rats. Front. Neurosci. 2022, 16, 828571. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, Y.; Fang, G.; Dong, J.; Li, Z. Increased nucleobindin-2 (NUCB2) transcriptional activity links the regulation of insulin sensitivity in Type 2 diabetes mellitus. J. Endocrinol. Investig. 2013, 36, 883–888. [Google Scholar]
- Yang, M.; Zhang, Z.; Wang, C.; Li, K.; Li, S.; Boden, G.; Li, L.; Yang, G. Nesfatin-1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet-induced insulin resistance. Diabetes 2012, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Kim, K.W.; Kim, M.S. Leptin signalling pathways in hypothalamic neurons. Cell Mol. Life Sci. 2016, 73, 1457–1477. [Google Scholar] [CrossRef]
- Gu, W.; Geddes, B.J.; Zhang, C.; Foley, K.P.; Stricker-Krongrad, A. The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosci. 2004, 22, 93–103. [Google Scholar] [CrossRef]
- Canteras, N.S.; Simerly, R.B.; Swanson, L.W. Organization of projections from the medial nucleus of the amygdala: A PHAL study in the rat. J. Comp. Neurol. 1995, 360, 213–245. [Google Scholar] [CrossRef]
- Boehm, U. The vomeronasal system in mice: From the nose to the hypothalamus- and back! Semin. Cell Dev. Biol. 2006, 17, 471–479. [Google Scholar] [CrossRef]
- Cavalcante, J.C.; Bittencourt, J.C.; Elias, C.F. Distribution of the neuronal inputs to the ventral premammillary nucleus of male and female rats. Brain Res. 2014, 1582, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Leshan, R.L.; Pfaff, D.W. The hypothalamic ventral premammillary nucleus: A key site in leptin’s regulation of reproduction. J. Chem. Neuroanat. 2014, 61–62, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Arias, P.; Refojo, D.; Feleder, C.; Moguilevsky, J. Arrest of pulsatile luteinizing hormone (LH) secretion during insulin-induced hypoglycemia (IIH): Improvement by intrahypothalamic perfusion with glucose. Exp. Clin. Endocrinol. Diabetes 1999, 107, 257–261. [Google Scholar] [CrossRef]
- Cameron, J.L.; Weltzin, T.E.; McConaha, C.; Helmreich, D.L.; Kaye, W.H. Slowing of pulsatile luteinizing hormone secretion in men after forty-eight hours of fasting. J. Clin. Endocrinol. Metab. 1991, 73, 35–41. [Google Scholar] [CrossRef]
- Leisegang, K.; Sengupta, P.; Agarwal, A.; Henkel, R. Obesity and male infertility: Mechanisms and management. Andrologia 2021, 53, e13617. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Méndez, J.P.; Zambrano, E.; Cárdenas, M.; Tovar, A.; Perera-Marín, G.; Ulloa-Aguirre, A. Reproductive axis function and gonadotropin microheterogeneity in a male rat model of diet-induced obesity. Gen. Comp. Endocrinol. 2010, 166, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.C.; Pinilla, L.; Tena-Sempere, M.; Aguilar, E. Leptin(116-130) stimulates prolactin and luteinizing hormone secretion in fasted adult male rats. Neuroendocrinology 1999, 70, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.K.; Suzuki, M.; Yamasaki, Y.; Okuno, S.; Hishigaki, H.; Ono, T.; Oga, K.; Mizoguchi-Miyakita, A.; Tsuji, A.; Kanemoto, N.; et al. Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin. Exp. Pharmacol. Physiol. 2005, 32, 355–366. [Google Scholar] [CrossRef]
- Talbot, F.; Feetham, C.H.; Mokrosiński, J.; Lawler, K.; Keogh, J.M.; Henning, E.; Mendes de Oliveira, E.; Ayinampudi, V.; Saeed, S.; Bonnefond, A.; et al. A rare human variant that disrupts GPR10 signalling causes weight gain in mice. Nat. Commun. 2023, 14, 1450. [Google Scholar] [CrossRef] [PubMed]
- Pražienková, V.; Funda, J.; Pirník, Z.; Karnošová, A.; Hrubá, L.; Kořínková, L.; Neprašová, B.; Janovská, P.; Benzce, M.; Kadlecová, M.; et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 2021, 774, 145427. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, H.; An, X.F.; Ma, S.L.; Chen, B.Y. Expression of brain prolactin releasing peptide (PrRP) changes in the estrous cycle of female rats. Neurosci. Lett. 2007, 419, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Okuno, S.; Okano, M.; Jordan, S.; Aihara, K.; Watanabe, T.K.; Yamasaki, Y.; Kitagawa, H.; Sugawara, K.; Kato, S. Altered emotional behaviors in the diabetes mellitus OLETF type 1 congenic rat. Brain Res. 2007, 1178, 114–124. [Google Scholar] [CrossRef]
- Vas, S.; Papp, R.S.; Könczöl, K.; Bogáthy, E.; Papp, N.; Ádori, C.; Durst, M.; Sípos, K.; Ocskay, K.; Farkas, I.; et al. Prolactin-Releasing Peptide Contributes to Stress-Related Mood Disorders and Inhibits Sleep/Mood Regulatory Melanin-Concentrating Hormone Neurons in Rats. J. Neurosci. 2023, 43, 846–862. [Google Scholar] [CrossRef] [PubMed]
- Bialy, M.; Bogacki-Rychlik, W.; Przybylski, J.; Zera, T. The Sexual Motivation of Male Rats as a Tool in Animal Models of Human Health Disorders. Front. Behav. Neurosci. 2019, 13, 257. [Google Scholar] [CrossRef]
- Matuska, R.; Zelena, D.; Könczöl, K.; Papp, R.S.; Durst, M.; Guba, D.; Török, B.; Varnai, P.; Tóth, Z.E. Colocalized neurotransmitters in the hindbrain cooperate in adaptation to chronic hypernatremia. Brain Struct. Funct. 2020, 225, 969–984. [Google Scholar] [CrossRef]
- Könczöl, K.; Bodnár, I.; Zelena, D.; Pintér, O.; Papp, R.S.; Palkovits, M.; Nagy, G.M.; Tóth, Z.E. Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats. Neurochem. Int. 2010, 57, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, J.C.; Sita, L.V.; Mascaro, M.B.; Bittencourt, J.C.; Elias, C.F. Distribution of urocortin 3 neurons innervating the ventral premammillary nucleus in the rat brain. Brain Res. 2006, 1089, 116–125. [Google Scholar] [CrossRef]
- Deussing, J.M.; Breu, J.; Kühne, C.; Kallnik, M.; Bunck, M.; Glasl, L.; Yen, Y.C.; Schmidt, M.V.; Zurmühlen, R.; Vogl, A.M.; et al. Urocortin 3 modulates social discrimination abilities via corticotropin-releasing hormone receptor type 2. J. Neurosci. 2010, 30, 9103–9116. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S. Urocortins and their unfolding role in mammalian social behavior. Cell Tissue Res. 2019, 375, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, P.M.; Li, C.; Kukura, C.; Vaughan, J.; Vale, W. Urocortin 3 modulates the neuroendocrine stress response and is regulated in rat amygdala and hypothalamus by stress and glucocorticoids. Endocrinology 2006, 147, 4578–4588. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.; Li, X.F.; McIntyre, C.; Liu, Y.; Kong, L.; O’Byrne, K.T. Urocortin3 in the Posterodorsal Medial Amygdala Mediates Stress-induced Suppression of LH Pulsatility in Female Mice. Endocrinology 2021, 162, bqab206. [Google Scholar] [CrossRef]
- Zhou, L.; Podolsky, N.; Sang, Z.; Ding, Y.; Fan, X.; Tong, Q.; Levin, B.E.; McCrimmon, R.J. The medial amygdalar nucleus: A novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia. Diabetes 2010, 59, 2646–2652. [Google Scholar] [CrossRef] [PubMed]
- Pražienková, V.; Popelová, A.; Kuneš, J.; Maletínská, L. Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int. J. Mol. Sci. 2019, 20, 5297. [Google Scholar] [CrossRef]
- Hosoi, T.; Kohda, T.; Matsuzaki, S.; Ishiguchi, M.; Kuwamura, A.; Akita, T.; Tanaka, J.; Ozawa, K. Key role of heat shock protein 90 in leptin-induced STAT3 activation and feeding regulation. Br. J. Pharmacol. 2016, 173, 2434–2445. [Google Scholar] [CrossRef]
- Tóth, Z.E.; Mezey, E. Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J. Histochem. Cytochem. 2007, 55, 545–554. [Google Scholar] [CrossRef]
- Vas, S.; Ádori, C.; Könczöl, K.; Kátai, Z.; Pap, D.; Papp, R.S.; Bagdy, G.; Palkovits, M.; Tóth, Z.E. Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS ONE 2013, 8, e59809. [Google Scholar] [CrossRef]
- Amantea, D.; Tassorelli, C.; Russo, R.; Petrelli, F.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Neuroprotection by leptin in a rat model of permanent cerebral ischemia: Effects on STAT3 phosphorylation in discrete cells of the brain. Cell Death Dis. 2011, 2, e238. [Google Scholar] [CrossRef]
- Frontini, A.; Bertolotti, P.; Tonello, C.; Valerio, A.; Nisoli, E.; Cinti, S.; Giordano, A. Leptin-dependent STAT3 phosphorylation in postnatal mouse hypothalamus. Brain Res. 2008, 1215, 105–115. [Google Scholar] [CrossRef]
- Li, C.; Vaughan, J.; Sawchenko, P.E.; Vale, W.W. Urocortin III-immunoreactive projections in rat brain: Partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J. Neurosci. 2002, 22, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Mullen, R.J.; Buck, C.R.; Smith, A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992, 116, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Hanics, J.; Szodorai, E.; Tortoriello, G.; Malenczyk, K.; Keimpema, E.; Lubec, G.; Hevesi, Z.; Lutz, M.I.; Kozsurek, M.; Puskár, Z.; et al. Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proc. Natl. Acad. Sci. USA 2017, 114, E2006–E2015. [Google Scholar] [CrossRef]
- Király, K.; Kozsurek, M.; Lukácsi, E.; Barta, B.; Alpár, A.; Balázsa, T.; Fekete, C.; Szabon, J.; Helyes, Z.; Bölcskei, K.; et al. Glial cell type-specific changes in spinal dipeptidyl peptidase 4 expression and effects of its inhibitors in inflammatory and neuropatic pain. Sci. Rep. 2018, 8, 3490. [Google Scholar] [CrossRef]
- Todd, A.J.; Spike, R.C.; Polgár, E. A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 1998, 85, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Elsevier: London, UK; Amsterdam, The Netherlands, 2007; p. 462. [Google Scholar]
Area | Nesfatin-1/NeuN % | Nesfatin-1 % | n (Animal/Section) |
---|---|---|---|
PMv | 52.7 ± 0.3 | 100 | 2/5 |
PMv “core” | 84.4 ± 0.1 | 47.5 ± 1.8 | 2/5 |
PMv “mantle” | 37.7 ± 2.2 | 52.5 ± 1.8 | 2/5 |
Area | Fos−Nesfatin−1/Total Nesfatin−1 % | Fos−Nesfatin−1/Total Fos % | ||
---|---|---|---|---|
Saline | Insulin | Saline | Insulin | |
PMv “core” | 38.5 ± 1.7 | 27.7 * ± 1.8 | 77.0 ± 3.5 | 69.7 *# ± 1.8 |
PMv “mantle” | 35.4 ± 2.5 | 28.2 ± 3.2 | 75.9 ± 1.7 | 78.3 ± 1.2 |
Purpose | Number |
---|---|
Developmental study (PD7, PD10, PD21) (n = 2/age) | N = 6 |
Pheromone challenge, 3 groups of adults (n = 4/group) | N = 12 |
Leptin treatment, 2 groups of adults (n = 2/group) | N = 4 |
Naive adults for IHC | N = 2 |
Naive adults for ISH or ISH combined with IHC | N = 2 |
Naive adult for EM | N = 1 |
Total: | N = 27 |
Subjects | Figure | Pretreatment | 1st Antibody | Detection |
---|---|---|---|---|
Naive rats | 1 | H2O2 15 min NDS, Tx | anti-Nesfatin-1 1:3000 anti-NeuN, 1:500 | AlexaFluor568-anti-rabbit IgG 1:500 AlexaFluor488-anti-mouse IgG, 1:1000 DAPI |
Developing rats | 2 | H2O2 15 min BSA, Tx | anti-Nesfatin-1 1:6000 | Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3000, DAB |
Pheromone challenged rats | 3/4 | H2O2 15 min BSA, Tx | anti-cFos 1:20,000 anti-Nesfatin-1 1:6000 or anti-Ucn3 1:5000 | Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3000, Ni-DAB Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3000, DAB |
Leptin treated rats | 3 | HNSG 20 min BSA, Tx MW | anti-pSTAT3 1:1000 anti-Nesfatin-1 1:6000 | Polymer-HRP-conjugated anti-rabbit IgG, 1:4 FITC-tyramide 1:10,000, 10 min Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3000, BT 1:20,000, 10 min SA-conjugated AlexaFluor568 1:1000 |
Naive rats GPR10 ISH | 3 | H2O2 15 min BSA, Tx | anti-Nesfatin-1 1:3000 | Polymer-HRP-conjugated anti-rabbit IgG 1:4 FITC-tyramide, 1:10,000, 10 min |
Pheromone challenged saline treated rats | 4 | H2O2 15 min BSA, Tx MW anti-rabbit Fab, 1:500, Na-azide-H2O2, 20 min | anti-cFos 1:20,000 anti-Nesfatin-1 1:6000 anti-Ucn3 1:5000 | Polymer-HRP-conjugated anti-rabbit IgG 1:4 FITC-tyramide 1:10,000, 10 min Polymer-HRP-conjugated anti-rabbit IgG 1:4 AlexaFluor568-tyramide 1:1,000, 10 min Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3000, BT 1:20,000 10 min SA-conjugated Cy5 1:1000 |
Naive rats | 4 | H2O2 15 min BSA MW | anti-Nesfatin-1 1:6000 anti-Ucn3 1:5000 anti-Syn 1:1000 | Polymer-HRP-conjugated anti-rabbit IgG 1:4 AlexaFluor568-tyramide 1:1000, 10 min Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3,000, FITC-tyramide 1:10,0000, 10 min Cy5-conjugated anti-mouse IgG 1:1000, |
Naive rat for EM | 4 | H2O2 15 min BSA anti-rabbit Fab, 1:500 CWFS gelatin, 30 min 1% glutaraldehyde | anti-Ucn3 1:5000 anti-Nesfatin-1 1:3000 | Biotinylated anti-rabbit IgG 1:1000 EA-HRP 1:3000, DAB Nanogold-anti-rabbit IgG 1:80, 24 h, 4 °C in CWSF gelatin Silver intensification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papp, R.S.; Könczöl, K.; Sípos, K.; Tóth, Z.E. Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. Int. J. Mol. Sci. 2025, 26, 739. https://doi.org/10.3390/ijms26020739
Papp RS, Könczöl K, Sípos K, Tóth ZE. Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. International Journal of Molecular Sciences. 2025; 26(2):739. https://doi.org/10.3390/ijms26020739
Chicago/Turabian StylePapp, Rege Sugárka, Katalin Könczöl, Klaudia Sípos, and Zsuzsanna E. Tóth. 2025. "Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats" International Journal of Molecular Sciences 26, no. 2: 739. https://doi.org/10.3390/ijms26020739
APA StylePapp, R. S., Könczöl, K., Sípos, K., & Tóth, Z. E. (2025). Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats. International Journal of Molecular Sciences, 26(2), 739. https://doi.org/10.3390/ijms26020739