A Parallel Image Registration Algorithm Based on a Lattice Boltzmann Model
Abstract
:1. Introduction
2. Method
2.1. Basic Theory of the Lattice Boltzmann Model
2.2. LB-Based 2D Image Registration Model
2.3. LB-Based 3D Volume Registration
3. Experiments and Discussion
3.1. Algorithm
- (1)
- Initialize the values of , and as zero;
- (2)
- Particles collision and streaming according to Equations (31) and (32);
- (3)
- Update , and according to Equation (34);
- (4)
- Update equilibrium distribution functions according to Equation (33);
- (5)
- Go to step (2).
3.2. Experimental Results
3.2.1. 2D Image Registration
3.2.2. 3D Volume Registration
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qian, Y.H.; DHumières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- Dawson, S.P.; Chen, S.; Doolen, G.D. Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 1993, 98, 1514–1523. [Google Scholar] [CrossRef]
- Będkowski, J.; Majek, K.; Musialik, P.; Adamek, A.; Andrzejewski, D.; Czekaj, D. Towards terrestrial 3D data registration improved by parallel programming and evaluated with geodetic precision. Autom. Constr. 2014, 14, 78–91. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Jiang, Z.; Dong, S.; Tang, L.; Liu, Y.; Zhou, L. SIFT-aided path-independent digital image correlation accelerated by parallel computing. Opt. Lasers Eng. 2020. [Google Scholar] [CrossRef]
- Cervi, J.; Spiteri, J. A comparison of fourth-order operator splitting methods for cardiac simulations. Appl. Numer. Math. 2019, 145, 227–235. [Google Scholar] [CrossRef]
- Gidey, H.H.; Reddy, B.D. Operator-splitting methods for the 2D convective Cahn–Hilliard equation. Comput. Math. Appl. 2019, 77, 3128–3153. [Google Scholar] [CrossRef]
- He, X.; Luo, L. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 1997, 56, 6811. [Google Scholar] [CrossRef] [Green Version]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Navarro, L.; Wang, Y.; Courbebaisse, G. Segmentation of the Thrombus of Giant Intracranial Aneurysms from CT Angiography Scans with Lattice Boltzmann Method, Medical Image Analysis; Elsevier: Amsterdam, The Netherlands, 2014; Volume 18, pp. 1–8. [Google Scholar]
- Rafsanjani, H.K.; Sedaaghi, M.H.; Saryazdi, S. Efficient diffusion coefficient for image denoising. Comput. Math. Appl. 2016, 72, 893–903. [Google Scholar] [CrossRef]
- Nnolim, U.A. Improved partial differential equation-based enhancement for underwater images using local–global contrast operators and fuzzy homomorphic processes. IET Image Process. 2017, 11, 1059–1067. [Google Scholar] [CrossRef]
- Minaeian, S.; Liu, J.; Son, Y.J. Effective and Efficient Detection of Moving Targets from a UAVs Camera. IEEE Trans. Intell. Transp. Syst. 2018, 19, 497–506. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, S.; Yan, L.; Wu, F.; Zhang, W. Moving object detection in aerial infrared images with registration accuracy prediction and feature points selection. Infrared Phys. Technol. 2018, 92, 318–326. [Google Scholar] [CrossRef]
- Bo, G.; Qu, E.; Cao, J.; Zhou, Z.F.; Hua, W. A Robust Panoramic Image Mosaic Algorithm Based on Harris and SIFT Descriptors. In Proceedings of the 2nd International Conference on Electric Information and Control Engineering, IEEE Computer Society, Changsha, China, 1–2 July 2012. [Google Scholar]
- Alam, F.; Rahman, S.U.; Ullah, S.; Gulati, K. Medical image registration in image guided surgery: Issues, challenges and research opportunities. Biocybern. Biomed. Eng. 2017, 38, 71–89. [Google Scholar] [CrossRef]
- Kahaki, S.; Nordin, M.; Ashtari, A. Contour-Based Corner Detection and Classification by Using Mean Projection Transform. Sensors 2014, 14, 4126–4143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H.; Zahra, S.J. Deformation invariant image matching based on dissimilarity of spatial features. Neurocomputing 2016, 175, 1009–1018. [Google Scholar] [CrossRef]
- Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H.; Zahra, S.J. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features. PLoS ONE 2016, 11, e0149710. [Google Scholar]
- Liang, L.; Zhao, W.; Hao, X.; Yang, Y.; Yang, K.; Liang, L.; Yang, Q. Image registration using two-layer cascade reciprocal pipeline and context-aware dissimilarity measure. Neurocomputing 2020, 371, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Dong, L.; ODaniel, J.; Mohan, R.; Garden, A.S.; Ang, K.K.; Cheung, R. Validation of an accelerated demons algorithm for deformable image registration in radiation therapy. Phys. Med. Biol. 2005, 50, 2887–2905. [Google Scholar] [CrossRef]
- Dougherty, L.; Asmuth, J.C.; Blom, A.S.; Axel, L.; Kumar, R. Validation of an optical flow method for tag displacement estimation. IEEE Trans. Med. Imaging 1999, 18, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Szeliski, R.; Coughlan, J. Spline-Based Image Registration. Int. J. Comput. Vis. 1997, 22, 199–218. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, S. A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows. In Computational Science—ICCS 2018; Lecture Notes in Computer Science; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.; Springer: Cham, Switzerland, 2018; Volume 10862. [Google Scholar]
- Campos, O.; Oliveira, R.S.; dos Santos, R.W.; Rocha, B.M. Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs. J. Comput. Appl. Math. 2016, 295, 70–82. [Google Scholar] [CrossRef]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Struwe, M. Variational Methods, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Fischer, B.; Modersitzki, J. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 2004, 380, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Chai, Z.; Zhao, T.S. Lattice Boltzmann model for the convection-diffusion equation. Nonlin. Soft Matter. Phys. 2013, 86, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Arunachalam, K. Geometric Transformation Pinched Hallway and its Restoration. 2001. Available online: https://www.researchgate.net/publication/277287488_Geometric_Transformation_of_Pinched_Hallways (accessed on 14 December 2019).
- Cocosco, C.A.; Kollokian, V.; Kwan, R.K.-S.; Pike, G.B.; Evans, A.C. Brainweb: Online interface to a 3D MRI simulated brain database. NeuroImage 1997, 55, 425. [Google Scholar]
1 | 1 | 1 | 2.5 | 1.5 |
Experiment | Method | MSE | RE | NMI | ETPI (s) |
---|---|---|---|---|---|
1 | LB model | 7.8517 | 0.0295 | 1.6129 | 0.0160 |
Wangs demons | 136.639 | 0.0889 | 1.4093 | 0.0237 | |
B-Spline | 1035.5 | 0.2173 | 1.3303 | 73.8824 | |
Optical flow | 278.0928 | 0.1348 | 1.3984 | 0.0253 | |
2 | LB model | 71.1387 | 0.3127 | 1.1951 | 0.0067 |
Wangs demons | 73.8568 | 0.3286 | 1.1919 | 0.0157 | |
B-Spline | 147.9227 | 0.5063 | 1.1495 | 6.1764 | |
Optical flow | 69.3849 | 0.3051 | 1.2135 | 0.0186 | |
3 | LB model | 38.6518 | 0.4376 | 1.2507 | 0.0091 |
Wangs demons | 115.7656 | 0.6347 | 1.2149 | 0.0193 | |
B-Spline | 250.1226 | 1.0404 | 1.1789 | 13.6078 | |
Optical flow | 43.3073 | 0.4484 | 1.2489 | 0.0158 | |
4 | LB model | 318.5778 | 0.2767 | 1.2466 | 0.0213 |
Wangs demons | 1479.3864 | 0.4590 | 1.1907 | 0.0297 | |
B-Spline | 922.9010 | 0.5030 | 1.1774 | 49.4118 | |
Optical flow | 968.6714 | 0.4240 | 1.2263 | 0.0298 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lu, D.; Courbebaisse, G. A Parallel Image Registration Algorithm Based on a Lattice Boltzmann Model. Information 2020, 11, 1. https://doi.org/10.3390/info11010001
Chen Y, Lu D, Courbebaisse G. A Parallel Image Registration Algorithm Based on a Lattice Boltzmann Model. Information. 2020; 11(1):1. https://doi.org/10.3390/info11010001
Chicago/Turabian StyleChen, Yu, Dongxiang Lu, and Guy Courbebaisse. 2020. "A Parallel Image Registration Algorithm Based on a Lattice Boltzmann Model" Information 11, no. 1: 1. https://doi.org/10.3390/info11010001
APA StyleChen, Y., Lu, D., & Courbebaisse, G. (2020). A Parallel Image Registration Algorithm Based on a Lattice Boltzmann Model. Information, 11(1), 1. https://doi.org/10.3390/info11010001