Application and Investigation of Multimedia Design Principles in Augmented Reality Learning Environments
Abstract
:1. Introduction
1.1. Multimedia Learning
1.2. Sensory Modalities
1.3. Multimedia Design Principles
1.4. AR Characteristics
2. Study One: Spatial Contiguity Principle
2.1. Methods
2.1.1. Participants
2.1.2. Materials
2.1.3. Procedure
2.2. Results
2.2.1. H1.1: Cognitive Load
2.2.2. H1.2: Task Load
2.2.3. H1.3: Knowledge
2.3. Discussion
3. Study Two: Coherence Principle
3.1. Methods
3.1.1. Participants
3.1.2. Materials
3.1.3. Procedure
3.2. Results
3.2.1. H2.1: Cognitive Load
3.2.2. H2.2: Task Load
3.2.3. H2.3: Knowledge
3.3. Discussion
4. General Discussion
4.1. Methodological Approach
4.2. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study One—Levene’s Test | F-Value | df1 | df2 | p |
---|---|---|---|---|
H1.1a: extraneous cognitive load | 0.09 | 1 | 78 | 0.764 |
H1.1b: germane cognitive load | 1.00 | 1 | 78 | 0.320 |
H1.2a: mental demand | 0.64 | 1 | 78 | 0.427 |
H1.2b: physical demand | 4.07 | 1 | 78 | 0.047 * |
H1.2c: temporal demand | 0.53 | 1 | 78 | 0.469 |
H1.2d: performance | 0.18 | 1 | 78 | 0.671 |
H1.2e: effort | 0.15 | 1 | 78 | 0.696 |
H1.2f: frustration | 1.25 | 1 | 78 | 0.266 |
H1.3: knowledge | 0.78 | 1 | 78 | 0.379 |
Study two—Levene’s Test | F-Value | df1 | df2 | p |
H2.1a: extraneous cognitive load | 0.53 | 2 | 127 | 0.592 |
H2.1b: germane cognitive load | 0.54 | 2 | 127 | 0.585 |
H2.2a: mental demand | 0.20 | 2 | 127 | 0.819 |
H2.2b: physical demand | 0.93 | 2 | 127 | 0.397 |
H2.2c: temporal demand | 0.46 | 2 | 127 | 0.633 |
H2.2d: performance | 0.06 | 2 | 127 | 0.944 |
H2.2e: effort | 0.46 | 2 | 127 | 0.633 |
H2.2f: frustration | 0.05 | 2 | 127 | 0.952 |
H2.3: knowledge | 1.48 | 2 | 127 | 0.232 |
References
- Mayer, R. 2 Science of Learning: Determining How Multimedia Learning Works. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; pp. 29–62. ISBN 978-1-316-94135-5. [Google Scholar]
- Radu, I. Augmented Reality in Education: A Meta-Review and Cross-Media Analysis. Pers. Ubiquitous Comput. 2014, 18, 1533–1543. [Google Scholar] [CrossRef]
- Krüger, J.M.; Buchholz, A.; Bodemer, D. Augmented Reality in Education: Three Unique Characteristics from a User’s Perspective. In Proceedings of the 27th International Conference on Computers in Education, Kenting, Taiwan, 2–6 December 2019; Chang, M., So, H.-J., Wong, L.-H., Yu, F.-Y., Shih, J.L., Eds.; Asia-Pacific Society for Computers in Education: Kenting, Taiwan, 2019; pp. 412–422. [Google Scholar]
- Garzón, J. An Overview of Twenty-Five Years of Augmented Reality in Education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Mayer, R.E. Multimedia Learning, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-511-81167-8. [Google Scholar]
- Baddeley, A.D. Essentials of Human Memory; Cognitive psychology; Psychology Press: Hove, UK, 1999; ISBN 978-0-86377-545-1. [Google Scholar]
- Paivio, A. Mental Representations: A Dual Coding Approach; Oxford Psychology Series; Oxford University Press: Oxford, UK; Clarendon Press: New York, NY, USA, 1986; ISBN 978-0-19-503936-8. [Google Scholar]
- Sweller, J.; van Merrienboer, J.J.G.; Paas, F.G.W.C. Cognitive Architecture and Instructional Design. Educ. Psychol. Rev. 1998, 10, 251–296. [Google Scholar] [CrossRef]
- Sweller, J.; van Merriënboer, J.J.G.; Paas, F.G.W.C. Cognitive Architecture and Instructional Design: 20 Years Later. Educ. Psychol. Rev. 2019, 31, 261–292. [Google Scholar] [CrossRef] [Green Version]
- Mayer, R. 13 Modality Principle. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; pp. 281–300. ISBN 978-1-316-94135-5. [Google Scholar]
- Hong, J.Y.; He, J.; Lam, B.; Gupta, R.; Gan, W.-S. Spatial Audio for Soundscape Design: Recording and Reproduction. Appl. Sci. 2017, 7, 627. [Google Scholar] [CrossRef] [Green Version]
- Mayer, R. 9 Spatial Contiguity Principle. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; pp. 207–226. ISBN 978-1-316-94135-5. [Google Scholar]
- Ayres, P.; Sweller, J. The Split-Attention Principle in Multimedia Learning. In The Cambridge Handbook of Multimedia Learning; Mayer, R.E., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 206–226. ISBN 978-1-139-54736-9. [Google Scholar]
- Schroeder, N.L.; Cenkci, A.T. Spatial Contiguity and Spatial Split-Attention Effects in Multimedia Learning Environments: A Meta-Analysis. Educ. Psychol. Rev. 2018, 30, 679–701. [Google Scholar] [CrossRef]
- Mayer, R. 6 Coherence Principle. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; pp. 143–165. ISBN 978-1-316-94135-5. [Google Scholar]
- Jung, T.; tom Dieck, M.C.; Lee, H.; Chung, N. Relationships among Beliefs, Attitudes, Time Resources, Subjective Norms, and Intentions to Use Wearable Augmented Reality in Art Galleries. Sustainability 2020, 12, 8628. [Google Scholar] [CrossRef]
- Han, K.; Park, K.; Choi, K.-H.; Lee, J. Mobile Augmented Reality Serious Game for Improving Old Adults’ Working Memory. Appl. Sci. 2021, 11, 7843. [Google Scholar] [CrossRef]
- Cabero-Almenara, J.; Barroso-Osuna, J.; Martinez-Roig, R. Mixed, Augmented and Virtual, Reality Applied to the Teaching of Mathematics for Architects. Appl. Sci. 2021, 11, 7125. [Google Scholar] [CrossRef]
- Akçayır, M.; Akçayır, G. Advantages and Challenges Associated with Augmented Reality for Education: A Systematic Review of the Literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Wu, H.-K.; Lee, S.W.-Y.; Chang, H.-Y.; Liang, J.-C. Current Status, Opportunities and Challenges of Augmented Reality in Education. Comput. Educ. 2013, 62, 41–49. [Google Scholar] [CrossRef]
- Bacca, J.; Baldiris, S.; Fabregat, R.; Graf, S. Kinshuk Augmented Reality Trends in Education: A Systematic Review of Research and Applications. Educ. Technol. Soc. 2014, 17, 133–149. [Google Scholar]
- Goff, E.E.; Mulvey, K.L.; Irvin, M.J.; Hartstone-Rose, A. Applications of Augmented Reality in Informal Science Learning Sites: A Review. J. Sci. Educ. Technol. 2018, 27, 433–447. [Google Scholar] [CrossRef]
- Bower, M.; Howe, C.; McCredie, N.; Robinson, A.; Grover, D. Augmented Reality in Education–Cases, Places and Potentials. Educ. Media Int. 2014, 51, 1–15. [Google Scholar] [CrossRef]
- Mayer, R. 1 The Promise of Multimedia Learning. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; pp. 3–28. ISBN 978-1-316-94135-5. [Google Scholar]
- Mystakidis, S.; Christopoulos, A.; Pellas, N. A Systematic Mapping Review of Augmented Reality Applications to Support STEM Learning in Higher Education. Educ. Inf. Technol. 2021. [Google Scholar] [CrossRef]
- Sommerauer, P.; Müller, O. Augmented Reality for Teaching and Learning-a Literature Review on Theoretical and Empirical Foundations. In Proceedings of the Twenty-Sixth European Conference on Information Systems (ECIS2018), Portsmouth, UK, 23–28 June 2018. [Google Scholar]
- Da Silva, M.M.O.; Teixeira, J.M.X.N.; Cavalcante, P.S.; Teichrieb, V. Perspectives on How to Evaluate Augmented Reality Technology Tools for Education: A Systematic Review. J. Braz. Comput. Soc. 2019, 25, 3. [Google Scholar] [CrossRef] [Green Version]
- Garzón, J.; Baldiris, S.; Gutiérrez, J.; Pavón, J. How Do Pedagogical Approaches Affect the Impact of Augmented Reality on Education? A Meta-Analysis and Research Synthesis. Educ. Res. Rev. 2020, 31, 100334. [Google Scholar] [CrossRef]
- Buchner, J.; Buntins, K.; Kerres, M. The Impact of Augmented Reality on Cognitive Load and Performance: A Systematic Review. J. Comput. Assist. Learn. 2021. [Google Scholar] [CrossRef]
- Altmeyer, K.; Kapp, S.; Thees, M.; Malone, S.; Kuhn, J.; Brünken, R. The Use of Augmented Reality to Foster Conceptual Knowledge Acquisition in STEM Laboratory Courses—Theoretical Background and Empirical Results. Br. J. Educ. Technol. 2020. [Google Scholar] [CrossRef]
- Mayer, R. 18 Immersion Principle. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; ISBN 978-1-316-94135-5. [Google Scholar]
- Buchner, J.; Buntins, K.; Kerres, M. A Systematic Map of Research Characteristics in Studies on Augmented Reality and Cognitive Load. Comput. Educ. Open 2021, 2, 100036. [Google Scholar] [CrossRef]
- Wigfield, A.; Eccles, J.S. Expectancy–Value Theory of Achievement Motivation. Contemp. Educ. Psychol. 2000, 25, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Klepsch, M.; Schmitz, F.; Seufert, T. Development and Validation of Two Instruments Measuring Intrinsic, Extraneous, and Germane Cognitive Load. Front. Psychol. 2017, 8, 1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. ISBN 978-0-444-70388-0. [Google Scholar]
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Delacre, M.; Lakens, D.; Leys, C. Why Psychologists Should by Default Use Welch’s t-Test Instead of Student’s t-Test. Rips 2017, 30, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Seufert, T. Supporting Coherence Formation in Learning from Multiple Representations. Learn. Instr. 2003, 13, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Seufert, T.; Brünken, R. Supporting Coherence Formation in Multimedia Learning. In Proceedings of the Instructional design for effective and enjoyablecomputer-supported learning. In Proceedings of the First Joint Meeting of the EARLI SIGs Instructional Design and Learning and Instruction with Computers, Tübingen, Germany, 7–9 July 2004; Gerjets, P., Kirschner, P., Elen, J., Joiner, R., Eds.; Knowledge Media Research Center: Tübingen, Germany, 2004; pp. 138–147. [Google Scholar]
- Dunleavy, M.; Dede, C.; Mitchell, R. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning. J. Sci. Educ. Technol. 2009, 18, 7–22. [Google Scholar] [CrossRef]
- Moreno, R.; Mayer, R.E. Interactive Multimodal Learning Environments. Educ. Psychol. Rev. 2007, 19, 309–326. [Google Scholar] [CrossRef]
- Plass, J.L.; Kaplan, U. Chapter 7-Emotional Design in Digital Media for Learning. In Emotions, Technology, Design, and Learning; Tettegah, S.Y., Gartmeier, M., Eds.; Emotions and Technology; Academic Press: San Diego, CA, USA, 2016; pp. 131–161. ISBN 978-0-12-801856-9. [Google Scholar]
- Park, B.; Flowerday, T.; Brünken, R. Cognitive and Affective Effects of Seductive Details in Multimedia Learning. Comput. Hum. Behav. 2015, 44, 267–278. [Google Scholar] [CrossRef]
- Derby, J.L.; Chaparro, B.S. The Challenges of Evaluating the Usability of Augmented Reality (AR). Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2021, 65, 994–998. [Google Scholar] [CrossRef]
- Chang, R.-C.; Chung, L.-Y.; Huang, Y.-M. Developing an Interactive Augmented Reality System as a Complement to Plant Education and Comparing Its Effectiveness with Video Learning. Interact. Learn. Environ. 2016, 24, 1245–1264. [Google Scholar] [CrossRef]
- Tsiatsos, T.; Stavridou, E.; Grammatikopoulou, A.; Douka, S.; Sofianidis, G. Exploiting Annotated Video to Support Dance Education. In Proceedings of the 2010 Sixth Advanced International Conference on Telecommunications, Barcelona, Spain, 9–15 May 2010; pp. 100–105. [Google Scholar]
- Seidel, N. Interaction Design Patterns for Spatio-Temporal Annotations in Video Learning Environments. In Proceedings of the Proceedings of the 20th European Conference on Pattern Languages of Programs; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1–21. [Google Scholar]
- Zu, T.; Munsell, J.; Rebello, N.S. Subjective Measure of Cognitive Load Depends on Participants’ Content Knowledge Level. Front. Educ. 2021, 6, 647097. [Google Scholar] [CrossRef]
- Mayer, R. 5 Multimedia Principle. In Multimedia Learning; Cambridge University Press: Cambridge, UK, 2020; pp. 117–138. ISBN 978-1-316-94135-5. [Google Scholar]
- Mayer, R.E.; Pilegard, C. Principles for Managing Essential Processing in Multimedia Learning: Segmenting, Pre-Training, and Modality Principles. In The Cambridge Handbook of Multimedia Learning; Mayer, R., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 316–344. ISBN 978-1-139-54736-9. [Google Scholar]
- Mayer, R.E. Temporal Contiguity Principle. In Multimedia Learning; Mayer, R.E., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 153–169. ISBN 978-0-511-81167-8. [Google Scholar]
- Cruz, A.; Paredes, H.; Morgado, L.; Martins, P. Non-Verbal Aspects of Collaboration in Virtual Worlds: A CSCW Taxonomy-Development Proposal Integrating the Presence Dimension. JUCS-J. Univers. Comput. Sci. 2021, 27, 913–954. [Google Scholar] [CrossRef]
Hypotheses in Study One |
|
|
|
|
|
|
|
|
|
Condition | n | Gender | Age | Prior Knowledge | Usage AR Applications | ||
---|---|---|---|---|---|---|---|
General | Learning | ||||||
Male | Female | M (SD) | M (SD) | M (SD) | M (SD) | ||
Integrated | 39 | 8 | 31 | 21.72 (2.76) | 1.93 (0.60) | 2.31 (0.92) | 1.82 (1.00) |
Separated | 41 | 12 | 29 | 22.68 (3.43) | 1.89 (0.85) | 2.15 (1.04) | 1.56 (0.92) |
Mean and SD per Condition a | Possible Range | Integrated M (SD) | Separated M (SD) |
---|---|---|---|
H1.1a: extraneous CL | 1–7 | 2.57 (1.19) | 2.90 (1.13) |
H1.1b: germane CL | 1–7 | 4.91 (1.29) | 4.46 (1.44) |
H1.2a: mental demand | 1–21 | 9.62 (4.42) | 10.51 (4.88) |
H1.2b: physical demand | 1–21 | 1.82 (1.50) | 2.68 (3.38) |
H1.2c: temporal demand | 1–21 | 6.90 (4.85) | 8.85 (5.44) |
H1.2d: performance | 1–21 | 13.31 (4.75) | 10.68 (4.99) |
H1.2e: effort | 1–21 | 8.77 (4.49) | 10.24 (5.05) |
H1.2f: frustration | 1–21 | 5.97 (4.81) | 6.95 (5.79) |
H1.3: knowledge | 0–15 | 10.51 (2.81) | 10.49 (3.53) |
Hypotheses in Study Two |
---|
|
|
|
|
|
|
|
|
|
Condition | n | Gender | Age | Prior Knowledge | Usage AR Applications | ||
---|---|---|---|---|---|---|---|
General | Learning | ||||||
Male | Female | M (SD) | M (SD) | M (SD) | M (SD) | ||
No sounds | 43 | 11 | 32 | 22.30 (6.13) | 1.54 (0.42) | 1.84 (0.72) | 1.35 (0.81) |
Matching | 44 | 13 | 31 | 26.52 (11.10) | 1.61 (0.45) | 1.73 (0.79) | 1.36 (0.72) |
Non-matching | 43 | 10 | 33 | 22.28 (4.23) | 1.61 (0.62) | 1.86 (0.91) | 1.21 (0.47) |
Mean and SD per Condition a | Possible Range | No Sound M (SD) | Matching M (SD) | Non-Matching M (SD) |
---|---|---|---|---|
H2.1a: extraneous CL | 1–7 | 2.24 (1.08) | 2.55 (1.00) | 2.53 (1.16) |
H2.1b: germane CL | 1–7 | 4.81 (1.41) | 4.76 (1.26) | 5.12 (1.22) |
H2.2a: mental demand | 1–21 | 8.60 (4.47) | 9.98 (4.71) | 9.74 (4.33) |
H2.2b: physical demand | 1–21 | 4.12 (4.23) | 3.93 (3.39) | 3.40 (3.58) |
H2.2c: temporal demand | 1–21 | 6.84 (4.57) | 7.64 (4.92) | 7.47 (4.67) |
H2.2d: performance | 1–21 | 11.95 (4.89) | 10.95 (5.25) | 13.00 (4.72) |
H2.2e: effort | 1–21 | 7.95 (4.54) | 9.70 (4.52) | 8.21 (4.38) |
H2.2f: frustration | 1–21 | 5.65 (4.83) | 6.11 (4.94) | 5.00 (4.89) |
H2.3: knowledge | 0–8 | 3.70 (1.74) | 3.86 (1.77) | 4.02 (1.57) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, J.M.; Bodemer, D. Application and Investigation of Multimedia Design Principles in Augmented Reality Learning Environments. Information 2022, 13, 74. https://doi.org/10.3390/info13020074
Krüger JM, Bodemer D. Application and Investigation of Multimedia Design Principles in Augmented Reality Learning Environments. Information. 2022; 13(2):74. https://doi.org/10.3390/info13020074
Chicago/Turabian StyleKrüger, Jule M., and Daniel Bodemer. 2022. "Application and Investigation of Multimedia Design Principles in Augmented Reality Learning Environments" Information 13, no. 2: 74. https://doi.org/10.3390/info13020074