Avoidable Blood Loss in Critical Care and Patient Blood Management: Scoping Review of Diagnostic Blood Loss
Abstract
:1. Introduction
1.1. Anemia in Critically Ill Patients
1.2. Pathophysiology of Anemia in Critically Ill Patients
1.3. Patient Blood Management
2. Materials and Methods
2.1. Study Design
2.2. Information Sources
2.3. Search Term
2.4. Data Items
3. Results
3.1. Interventional Trials
3.2. Observational Trials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARDS | Acute respiratory distress syndrome |
BGA | Blood gas analysis |
COPD | chronic obstructive pulmonary disease |
CRRT | continuous renal replacement therapy |
ECMO | extra corporal membrane oxygenation |
EPO | Erythropoietin |
ESA | Erythropoiesis-stimulating agents |
Hb | Hemoglobin |
ICU | Intensive care unit |
PBM | Patient Blood Management |
RCT | Randomized controlled trial |
RBC | Red blood cell |
TNF | Tumor necrosis factor |
VAMP | venous arterial blood management protection device |
WHA | World Health Assembly |
Appendix A
References
- Thomas, J.; Jensen, L.; Nahirniak, S.; Gibney, R.T. Anemia and blood transfusion practices in the critically ill: A prospective cohort review. Heart Lung 2010, 39, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.S.; Saleh, E.E. Anaemia during critical illness. Br. J. Anaesth. 2006, 97, 278–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, D.M.; Hochrieser, H.; Posch, M.; Metnitz, B.; Rhodes, A.; Moreno, R.P.; Pearse, R.M.; Metnitz, P.; European Surgical Outcomes Study group for Trials Groups of European Society of Intensive Care Medicine and the European Society of Anaesthesiology. Preoperative anaemia is associated with poor clinical outcome in non-cardiac surgery patients. Br. J. Anaesth. 2014, 113, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Musallam, K.M.; Tamim, H.M.; Richards, T.; Spahn, D.R.; Rosendaal, F.R.; Habbal, A.; Khreiss, M.; Dahdaleh, F.S.; Khavandi, K.; Sfeir, P.M.; et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: A retrospective cohort study. Lancet 2011, 378, 1396–1407. [Google Scholar] [CrossRef]
- Bellmann-Weiler, R.; Lanser, L.; Barket, R.; Rangger, L.; Schapfl, A.; Schaber, M.; Fritsche, G.; Woll, E.; Weiss, G. Prevalence and Predictive Value of Anemia and Dysregulated Iron Homeostasis in Patients with COVID-19 Infection. J. Clin. Med. 2020, 9, 2429. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, M.T.; Shander, A. Anemia, bleeding, and blood transfusion in the intensive care unit: Causes, risks, costs, and new strategies. Am. J. Crit. Care 2013, 22, eS1–eS13.quiz eS14. [Google Scholar] [CrossRef]
- Rasmussen, L.; Christensen, S.; Lenler-Petersen, P.; Johnsen, S.P. Anemia and 90-day mortality in COPD patients requiring invasive mechanical ventilation. Clin. Epidemiol. 2010, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.; Stanworth, S.J.; Lee, A.; Johnston, L.; Docherty, A.B. Prevalence, management and outcomes associated with anaemia in ICU survivors: A retrospective study. Anaesthesia 2021, 76, 1421–1423. [Google Scholar] [CrossRef] [PubMed]
- Cioc, A.; Fodor, R.; Benedek, O.; Moldovan, A.; Copotoiu, S.-M. Blood sampling as a cause of anemia in a general ICU_a pilot study. Rom. J. Anaesth. Intensive Care 2015, 22, 13–16. [Google Scholar]
- Corwin, H.L.; Parsonnet, K.C.; Gettinger, A. RBC transfusion in the ICU. Is there a reason? Chest 1995, 108, 767–771. [Google Scholar] [CrossRef]
- Nguyen, B.V.; Bota, D.P.; Melot, C.; Vincent, J.L. Time course of hemoglobin concentrations in nonbleeding intensive care unit patients. Crit. Care Med. 2003, 31, 406–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schobersberger, W.; Hobisch-Hagen, P.; Fuchs, D.; Hoffmann, G.; Jelkmann, W. Pathogenesis of anaemia in the critically ill patient. Clin. Intensive Care 1998, 9, 111–117. [Google Scholar] [CrossRef]
- Corwin, H.; Gettinger, A.; Pearl, R.; Fhnk, M.; Levy, M.; Shapiro, M.; Corwin, M.; Colton, T.; Group, E.C.c.t. Efficacy of recombinant human erythropoietin in critically ill patients. JAMA 2002, 288, 2827–2835. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, v.A.; Christian, M.; Stefan, S.; Ulrich, F.; Kai-Uwe, E. Important role of nondiagnostic blood loss and blunted erythropoietic response in the anemia of medical intensive care patients. Crit. Care Med. 1999, 27, 2630–2639. [Google Scholar]
- Scharte, M.; Fink, M.P. Red blood cell physiology in critical illness. Crit. Care Med. 2003, 31, S651–S657. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, I.; Jelkmann, W. Impact of erythropoietin on intensive care unit patients. Transfus. Med. Hemother. 2013, 40, 310–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado Rafael, L. Iron, Infections, and Anemia of Inflammation. Clin. Infect. Dis. 1997, 25, 888–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, R.M.; Corwin, H.L.; Gettinger, A.; Corwin, M.J.; Gubler, D.; Pearl, R.G. Nutritional deficiencies and blunted erythropoietin response as causes of the Amemia of critical illness. J. Crit. Care 2001, 16, 36–41. [Google Scholar] [CrossRef]
- Rawal, G.; Kumar, R.; Yadav, S.; Singh, A. Anemia in Intensive Care: A Review of Current Concepts. J. Crit. Care Med. 2016, 2, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graw, J.A.; Baron, D.M.; Francis, R.C. Die Bedeutung der Hämolyse in Anästhesie und Intensivmedizin. Anästhesiol. Intensivmed. Notf. Schmerzther. 2018, 53, 296–305. [Google Scholar] [CrossRef]
- Dolman, H.S.; Evans, K.; Zimmerman, L.H.; Lavery, T.; Baylor, A.E.; Wilson, R.F.; Tyburski, J.G. Impact of minimizing diagnostic blood loss in the critically ill. Surgery 2015, 158, 1083–1087. [Google Scholar] [CrossRef]
- Cook, D.; Fuller, H.; Guyatt, G.H.; Marshall, J.C.; Leasa, D.; Hall, R.; Winton, T.L.; Rutledge, F.; Todd, T.J.; Roy, P.; et al. Risk factors for GI bleeding in Critcally ill patients. N. Engl. J. Med. 1994, 330, 377–381. [Google Scholar] [CrossRef]
- Arnold, D.M.; Donahoe, L.; Clarke, F.J.; Tkacyzk, A.J.; Heels-Ansdell, D.; Zytaruk, N.; Cook, R.; Webert, K.; McDonald, E.; Cook, D.J. Bleeding during critical illness: A prospective cohort study using a new measurment tool. Clin. Invest. Med. 2007, 30, E93–E102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granholm, A.; Zeng, L.; Dionne, J.C.; Perner, A.; Marker, S.; Krag, M.; MacLaren, R.; Ye, Z.; Moller, M.H.; Alhazzani, W.; et al. Predictors of gastrointestinal bleeding in adult ICU patients: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 1347–1359. [Google Scholar] [CrossRef]
- Marks, P.W. Coagulation disorders in the ICU. Clin. Chest Med. 2009, 30, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Eyster, E.; Bernene, J. Nosocomial Anemia. JAMA 1973, 223, 73–74. [Google Scholar] [CrossRef]
- Koch, C.G.; Reineks, E.Z.; Tang, A.S.; Hixson, E.D.; Phillips, S.; Sabik, J.F., 3rd; Henderson, J.M.; Blackstone, E.H. Contemporary bloodletting in cardiac surgical care. Ann. Thorac. Surg. 2015, 99, 779–784. [Google Scholar] [CrossRef]
- Salisbury, A.C. Diagnostic Blood Loss From Phlebotomy and Hospital-Acquired Anemia During Acute Myocardial Infarction. Arch. Intern. Med. 2011, 171, 1646–1653. [Google Scholar] [CrossRef]
- Chant, C.; Wilson, G.; Friedrich, J.O. Anemia, transfusion, and phlebotomy practices in critically ill patients with prolonged ICU length of stay: A cohort study. Crit. Care 2006, 10, R140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, R.M.; Christman, J.W.; Liu, K.D.; Matthay, M.A.; Self, W.H.; McVerry, B.J.; Hite, R.D.; Paine, R., 3rd; Wurfel, M.M.; Shapiro, N.I.; et al. Monitoring Research Blood Sampling in Critically Ill Patients: Avoiding Iatrogenic Anemia. Am. J. Respir. Crit. Care Med. 2020, 202, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Pabla, L.; Watkins, E.; Doughty, H.A. A study of blood loss from phlebotomy in renal medical inpatients. Transfus. Med. 2009, 19, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.G.; Levy, A.R.; Cheng, C.K.; Doucette, S.; Theriault, C.; Doiron, D.; Kiberd, B.A.; Tennankore, K.K. A contemporary description of patients’ estimated blood losses from diagnostic phlebotomy in a census of hospital episodes from a Canadian tertiary care center. Transfusion 2019, 59, 2849–2856. [Google Scholar] [CrossRef] [PubMed]
- WHA63.12. Availability, Safety and Quality of Blood Products. Available online: https://apps.who.int/iris/handle/10665/3086 (accessed on 5 December 2021).
- Meybohm, P.; Richards, T.; Isbister, J.; Hofmann, A.; Shander, A.; Goodnough, L.T.; Munoz, M.; Gombotz, H.; Weber, C.F.; Choorapoikayil, S.; et al. Patient Blood Management Bundles to Facilitate Implementation. Transfus. Med. Rev. 2017, 31, 62–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodnough, L.T.; Shander, A.; Brecher, M.E. Transfusion medicine: Looking to the future. Lancet 2003, 361, 161–169. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Briggs, E.N.; Hawkins, D.J.; Hodges, A.M.; Monk, A.M. Small volume vacuum phlebotomy tubes: A controlled beforeand-and-after study of a paitent blood management initiative in an Australian adult intensive care unit. Crit. Care Resusc. 2019, 21, 251–257. [Google Scholar]
- Barreda Garcia, J.; Xian, J.Z.; Pedroza, C.; Salahuddin, M.; Mak, G.; Keene, A.; Cherian, S.V.; Young, A.Y.; Vijhani, P.; Doshi, P.B. Pediatric size phlebotomy tubes and transfusions in adult critically ill patients: A pilot randomized controlled trial. Pilot Feasibility Stud. 2020, 6, 112. [Google Scholar] [CrossRef]
- Macisaac, C.M.; Presneill, J.J.; Boyce, C.A.; Byron, K.L.; Cade, J.F. The Influence of a Blood Conserving Device on Anaemia in Intensive Care Patients. Anaesth. Intensive Care 2003, 31, 653–657. [Google Scholar]
- Peruzzi, W.T.; Parker, M.A.; Lichtenthal, P.R.; Cochran-Zull, C.; Toth, B.; Blake, M. A clinical evaluation of a blood conservation device in medical intensive care unit patients. Crit. Care Med. 1993, 21, 501–506. [Google Scholar] [CrossRef]
- Pinto, T.; Belley-Cote, E.; Esmail, A.; Zotova, E.; Meeks, B.; Connolly, S.; Siegal, D.M. Small-Volume Tubes to Reduce Transufusion (STRATUS): A Pilot Study. Blood 2018, 132, 825. [Google Scholar] [CrossRef]
- Silver, M.J.; Li, Y.H.; Gragg, L.A.; Jubran, F.; Stoller, J.K. Reduction of blood loss from diagnostic sampling in critically ill patients using a blood-conserving arterial line system. Chest 1993, 104, 1711–1715. [Google Scholar] [CrossRef]
- Riessen, R.; Behmenburg, M.; Glumenstock, G.; Guenon, D.; Enkel, S.; Schäfer, R.; Haap, M. A Simple “Blood-Saving Bundle” Reduces Diagnostic Blood Loss and the Transfusion Rate in Mechanically Ventilated Patients. PLoS ONE 2015, 10, e0138879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, H.L.; Warren, G.L.; Peter, F.J. Iatrogenic Anemia. Am. J. Surg. 1986, 151, 362–363. [Google Scholar]
- Bedayse, N.; Hariharan, S.; Chen, D. Red Cell Transfusion Practices and the Impact of Phlebotomy in an Adult Intensive care unit in trinidad. West. Indian Med. J. 2010, 59, 67–72. [Google Scholar]
- Foulke, G.E.; Harlow, D.J. Effective measures for reducing blood loss from diagnostic laboratory test in intensive care unit patients. Crit. Care Med. 1989, 17, 1143–1145. [Google Scholar] [CrossRef]
- Hashimoto, F. Bleeding Less for Diagnostics. JAMA 1982, 248, 171. [Google Scholar] [CrossRef] [PubMed]
- Holland, J.; Peralta, R.M.; Moss, R.L.; Feane, K.; Uprichard, J. A single-centre review of iatrogenic anaemia in adult intensive care. Transfus. Med. 2020, 30, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Low, L.L.; Harrington, G.R.; Stoltzfus, D.P. The effect of arterial lines on blood-drawing practices and costs in intensive care units. Chest 1995, 108, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Pitima, T.; Nonglak, K.; Apichart, K. Approximate Iatrogenic Blood Loss in Medical Intensive Care Patients and the Causes of Anemia. J. Med. Assoc. Thai 2010, 93, 271–276. [Google Scholar]
- Vincent, J.L.; Baron, J.-F.; Reinhart, K.; Gattinoni, L.; Thijs, L.; Webb, A.; Meier-Hellmann, A.; Nollet, G.; Peres-Bota, D.; Investigators, A. Anemia and Blood Transfusion in Critically ill Patients. JAMA 2002, 288, 1499–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witosz, K.; Wojnarowicz, O.; Krzych, L.J. Iatrogenic blood loss due to daily laboratory testing and the risk of subsequent anaemia in intensive care unit patients: Case series. Acta Biochim. Pol. 2021, 68, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Andrews, T.; Waterman, H.; Hillier, V. Blood gas analysis: A study of blood loss in intensive care. J. Adv. Nurs. 1990, 30, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Beverina, I.; Borotto, E.; Novelli, C.; Radrizzani, D.; Brando, B. Iatrogenic anaemia and transfusion thresholds in ICU patients with COVID-19 disease at a tertiary care hospital. Transfus. Apher. Sci. 2021, 60, 103068. [Google Scholar] [CrossRef]
- Bodley, T.; Chan, M.; Levi, O.; Clarfield, L.; Yip, D.; Smith, O.; Friedrich, J.O.; Hicks, L.K. Patient harm associated with serial phlebotomy and blood waste in the intensive care unit: A retrospective cohort study. PLoS ONE 2021, 16, e0243782. [Google Scholar] [CrossRef] [PubMed]
- Jackson Chornenki, N.L.; James, T.E.; Barty, R.; Liu, Y.; Rochwerg, B.; Heddle, N.M.; Siegal, D.M. Blood loss from laboratory testing, anemia, and red blood cell transfusion in the intensive care unit: A retrospective study. Transfusion 2020, 60, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.C.; Pruett, S.K. Phlebotomy—A Minimalist Approach. Mayo Clin. Proc. 1993, 68, 249–255. [Google Scholar] [CrossRef]
- Shaffer, C. Diagnostic blood loss in mechanically ventilated patients. Heart Lung 2007, 36, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Smoller, B.R.; Kruskall, M.S. Phlebotomy for diagnostic laboratory tests in adults. Pattern of use and effect on transfusion requirements. N. Engl. J. Med. 1986, 314, 1233–12335. [Google Scholar] [CrossRef]
- Tarpey, J.; Lawler, P.G. Iatrogenic anaemia: A survey of venesection in patients in the intensive therapy unit. Anaesthesia 1990, 45, 396–398. [Google Scholar] [CrossRef]
- Wisser, D.; Ackern, K.v.; Knoll, E.; Wisser, H.; Bertsch, T. Blood Loss from Laboratory Tests. Clin. Chem. 2003, 49, 1654–1655. [Google Scholar] [CrossRef]
- Astles, T. Iatrogenic Anaemia in the Critically Ill: A Survey of the Frequency of Blood Testing in a Teaching Hospital Intensive Care Unit. J. Intensive Care Soc. 2009, 10, 279–281. [Google Scholar] [CrossRef]
- Smoller, B.R.; Kruskall, M.S.; Horowitz, G.L. Reducing Adult Phlebotomy Blood Loss with the use of pediatric sized blood collection tubes. A.J.C.P. 1989, 91, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Ullman, A.J.; Keogh, S.; Coyer, F.; Long, D.A.; New, K.; Rickard, C.M. ‘True Blood’ The Critical Care Story: An audit of blood sampling practice across three adult, paediatric and neonatal intensive care settings. Aust. Crit. Care 2016, 29, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegal, D.M.; Manning, N.; Jackson Chornenki, N.L.; Hillis, C.M.; Heddle, N.M. Devices to Reduce the Volume of Blood Taken for Laboratory Testing in ICU Patients: A Systematic Review. J. Intensive Care Med. 2020, 35, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.P.; McArdle, F.; Walsh, T.S. Time course of anemia during six months follow up following intensive care discharge and factors associated with impaired recovery of erythropoiesis. Crit. Care Med. 2009, 37, 1906–1912. [Google Scholar] [CrossRef]
- Warner, M.A.; Hanson, A.C.; Frank, R.D.; Schulte, P.J.; Go, R.S.; Storlie, C.B.; Kor, D.J. Prevalence of and Recovery From Anemia Following Hospitalization for Critical Illness Among Adults. JAMA Netw Open 2020, 3, e2017843. [Google Scholar] [CrossRef]
- van der Laan, S.; Billah, T.; Chi, C.; Lai, C.; Litton, E. Anaemia among intensive care unit survivors and association with days alive and at home: An observational study. Anaesthesia 2021, 76, 1352–1357. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Oberweis, B.S.; Nukala, S.; Rosenberg, A.; Zhao, S.; Xu, J.; Stuchin, S.; Iorio, R.; Errico, T.; Radford, M.J.; et al. Association between Anemia, Bleeding, and Transfusion with Long-term Mortality Following Noncardiac Surgery. Am. J. Med. 2016, 129, 315–323 e312. [Google Scholar] [CrossRef] [Green Version]
- Zelie, D.F.; Nancy, S.L. Nursing Strategies to Minimize Blood Loss Associated With Phlebotomy. AACN Clin. Issues 1996, 7, 277–287. [Google Scholar]
- Loftus, T.J.; Brakenridge, S.C.; Murphy, T.W.; Nguyen, L.L.; Moore, F.A.; Efron, P.A.; Mohr, A.M. Anemia and blood transfusion in elderly trauma patients. J. Surg Res. 2018, 229, 288–293. [Google Scholar] [CrossRef] [PubMed]
- McBride, C.; Miller-Hoover, S.; Proudfoot, J.A. A Standard Push-Pull Protocol for Waste-Free Sampling in the Pediatric Intensive Care Unit. J. Infus. Nurs. 2018, 41, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Spaulding, A.C.; Borkar, S.; Shoaei, M.M.; Mendoza, M.; Grant, R.L.; Barber, B.W.; Johns, G.S.; Franco, P.M. Reducing Blood Loss by Changing to Small Volume Tubes for Laboratory Testing. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Adam, E.H.; Zacharowski, K.; Hintereder, G.; Zierfuss, F.; Raimann, F.; Meybohm, P. Validation of a New Small-Volume Sodium Citrate Collection Tube for Coagulation Testing in Critically Ill Patients with Coagulopathy. Clin. Lab. 2018, 64, 1083–1089. [Google Scholar] [CrossRef]
- Eaton, K.P.; Levy, K.; Soong, C.; Pahwa, A.K.; Petrilli, C.; Ziemba, J.B.; Cho, H.J.; Alban, R.; Blanck, J.F.; Parsons, A.S. Evidence-Based Guidelines to Eliminate Repetitive Laboratory Testing. JAMA Intern. Med. 2017, 177, 1833–1839. [Google Scholar] [CrossRef]
- Pilackas, K.; El-Oshar, S.; Carter, C. Clinical Reliability of Point-of-Care Glucose Testing in Critically Ill Patients. J. Diabetes Sci. Technol. 2020, 14, 65–69. [Google Scholar] [CrossRef]
- Crane, B.C.; Barwell, N.P.; Gopal, P.; Gopichand, M.; Higgs, T.; James, T.D.; Jones, C.M.; Mackenzie, A.; Mulavisala, K.P.; Paterson, W. The Development of a Continuous Intravascular Glucose Monitoring Sensor. J. Diabetes Sci. Technol. 2015, 9, 751–761. [Google Scholar] [CrossRef] [Green Version]
Pathophysiological Causes for Anemia | Iatrogenic Causes for Anemia |
---|---|
Inflammation leads to:
| Frequency and volume of phlebotomies |
Endogenous kidney dysfunction with low EPO concentration | Hemolysis due to ECMO-therapy and CRRT |
Altered iron metabolism | Blood volume discarded |
Nutritional deficiency of iron, folate, vitamin B12 | Invasive procedures |
Fluid shift due to sepsis | Coagulation disorders due to pharmacotherapy |
Major hemorrhages | Impaired/insufficient enteral feeding |
Occult bleedings | Fluid resuscitation in septic patients |
Coagulation disorders due to thrombocytopenia and liver synthesis disorders | Surgical interventions |
Author | Year | Country/Region | Study Design | Number Population (n) | Cohort (ICU) | Intervention | Mean Phlebotomy Volume (mL/d) | Length of Stay on ICU for Inclusion | Effects on Blood Transfusion (Transfused Patients %) | Days on ICU |
---|---|---|---|---|---|---|---|---|---|---|
Briggs et al. [38] | 2019 | AUS | C, before-and-after study | 318 | General | Pediatric tubes vs. control tubes | 15–16 vs. 28–32 | 48 h | n.s. 1,2 | / |
Garcia et al. [39] | 2020 | USA | Ra, C | 200 | Medical | Pediatric tubes vs. control tubes | 8.6 (4–18) vs. 21.6 (15–31) | <12 h | 6% vs. 11%, n.s | 2.5 (1.5–4) vs. 2.5 (1.5-5) |
Macisaac et al. [40] | 2003 | AUS | Ra, C, unblinded | 160 | General | Blood conservation devices vs. control | 63 (0–787) vs. 133 (7–1227) 4 | After admission | 30% vs. 17% (p = 0.04) | 3.1 (0.2–30) vs. 2.0 (0.2–54) |
Peruzzi et al. [41] | 1993 | USA | Pro, Ra, C | 100 | Medical | Blood conservation devices vs. control | 19.4 ± 47.4 vs. 103.5 ± 99.9 | / | 26% vs. 32%, n.s | 4.1 ± 3.6 vs. 4.6 ± 4.9 |
Pinto et al. [42] | 2018 | CAN | Pro, before-after design | 369 | Cardio | Pediatric tubes vs. control tubes | 6 (4–8) vs. 11 (8–17) | / | 20% vs. 28% (p = 0.08) | 1 (1–35) |
Silver et al. [43] | 1993 | USA | Pro, Ra, crossover comparison | 31 | Medical | Blood conservation devices vs. control | 36.77 5 | <48 h | / | / |
Dolman et al. [22] | 2015 | USA | Re, before-and-after study | 248 | Medical and surgical | Pediatric tubes vs. control tubes | 22.5 ± 17.3 vs. 31.7 ± 15.5 | 48 h | 4.4 ± 3.6 vs. 6.0 ± 8.2 RBC units, n.s. | / |
Riessen et al. [44] | 2015 | DEU | Re, before-and-after study | 91 | Medical | Blood saving bundle vs. control | 15.0 (14.3–15.7) vs. 43.3 (95% CI 41.2-45.3) | >72 h | 8.0% vs. 31.7%, n.s | 9.8 (8.6 to 11.3) vs. 13.2 (10.9 to 15.4) |
Henry et al. [45] | 1986 | USA | / | 20 | General with cardiosurgery | Pediatric tubes vs. control tubes | Cardiology: 196 vs. 377 (234–478) 3 Surgical: 150 vs. 240 (147–312) 3 | / | / | / |
Author | Year | Country/Region | Study Design | Number Population (n) | Cohort | Mean Phlebotomy Volume/Cumulative (mL) | Mean Phlebotomy Volume/d (mL) | Days on ICU (d) |
---|---|---|---|---|---|---|---|---|
Bedayse [46] | 2010 | TTO | Pro | 134 | General ICU | / | 13.5 ± 4.3 | / |
Cioc et al. [9] | 2015 | ROU | Pro | 35 | General ICU | / | 18.1 ± 14.4 | 9.7 ± 6.1 |
Foulke et al. [47] | 1989 | USA | Pro | 151 | Medical ICU | 168 ± 18 | 43.6 ± 3 | 4.6 ± 5 |
Hashimot et al. [48] | 1982 | USA | Pro | / | Medical ICU | / | 25.8 ± 15.8 | / |
Holland et al. [49] | 2020 | UK | Pro | 40 | General with cardiac ICU | / | 86.3 ± 19.6 | / |
Low et al. [50] | 1995 | USA | Pro | 25 1 | General ICU | / | 70.9 ± 37.2 2 | / |
Pabla et al. [32] | 2009 | UK | Pro | 70 | Acute renal medicine ward | 215.8 ± 166 | 55.7 ± 11.23/week | 23.1 ± 19.8 |
Thomas et al. [1] | 2010 | CAN | Pro | 100 | General ICU | / | 24.7 ± 10.3 | 7.7 ± 6.6 |
Tosiri et al. [51] | 2010 | THA | Pro | 44 | Medical ICU | 77.8 ± 59.2 | 9.8 ± 5.5 | 10.89 |
Vincent et al. [52] | 2002 | EU | Pro | 1136 | All ICU | / | 41.1 ± 39.7 | 4.5 ± 6.7 |
Vinh Nguyen et al. [11] | 2003 | BEL | Pro | 91 | Medicosurgical | / | 40.3 ± 15.4 | 7.7 ± 9.7 |
Witosz et al. [53] | 2021 | POL | Pro | 36 | Anesthesiology ICU | / | 143.15 (121.4–161.65)/week | >7day |
Andrews et al. [54] | 1999 | UK | Re | 65 | Medical ICU | / | 45.74 ± 16.61 | 8.5 ± 8.8 |
Beverina et al. [55] | 2021 | ITA | Re | 24 | COVID-ICU | 719 (424–1342) 3 | 21.7 (18.7–26.7) 3 | 29 (20–43) 4 |
Bodley et al. [56] | 2021 | CAN | Re | 428 5 | Medical/surgical ICU | / | 48.1 ± 22.2 | 12.2 ± 15.9 |
Chornenki et al. [57] | 2020 | CAN | Re | 7273 | Multicenter medical + surgical ICU | 337 ± 411 | 32.3 ± 27.0 | 9.3 ± 13.4 |
Corwin et al. [10] | 1995 | LBN/USA | Re | / | General ICU | 2156 ± 208 1 | 70 ± 6 1 | 25 ± 3 1 |
Dale et al. [58] | 1993 | / | Re | 14 | Medical ICU | 550 (50–2500) 4,6 | / | / |
Koch et al. [28] | 2015 | USA | Re | 1921 | Cardiac surgery ICU | 332 (197, 619) 7 | / | 44 (24, 77) 7 h |
Quinn et al. [33] | 2019 | CAN | Re | 2052 | Surgical ICU | 145.2 ± 182.5 8 | 27.2 ± 20.0 8 | 5.5 ± 6.1 8 |
Salisbury et al. [29] | 2011 | USA | Re, multicenter | 3551 | Medical ICU | 173.8 ± 139.3 9 | 24.4 ± 34.1 9 | / |
Shaffer et al. [59] | 2007 | NA | Re | 43 | Mechanical ventilated | 245 ± 213 10 | 16 ± 7 | / |
Smoller et al. [60] | 1986 | USA | Re | 31 11 | General ICU | 798.1 11 | 73.9 11 | 10.8 11 |
Tarpey et al. [61] | 1990 | USA | Re | 26 | ICU | 336 | 66.1 | 5.5 |
Wisser et al. [62] | 2003 | DEU | Re | 170 12 | Medical + surgical ICU | 144 12 | 40 12 | 4 12 |
Astles et al. [63] | 2009 | UK | / | 151 13 | Teaching hospital ICU | / | 52.4 (0–128.7) 4 | / |
Eyster et al. [27] | 1973 | USA | / | 93 | Medical ICU | / | 54 ± 17 | 20.9 ± 7.8 6 |
Smoller [64] | 1989 | USA | / | 41 | Surgical ICU | 120.2 | 32.2 | / |
Ullman et al. [65] | 2016 | AUS | Cross-sectional descriptive study | 50 | Multiple ICUs | / | 37.7 (23.1) | 64.1 ± 60.9 h |
Normal Sized (mL) | Reduced Size (mL) | Δ (mL) | |
---|---|---|---|
EDTA | 13,317 | 7891 | 5425 |
Citrate tubes | 24,871 | 10,411 | 14,460 |
Serum chemistry | 39,390 | 24,684 | 14,706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmer, P.; Hottenrott, S.; Steinisch, A.; Röder, D.; Schubert, J.; Steigerwald, U.; Choorapoikayil, S.; Meybohm, P. Avoidable Blood Loss in Critical Care and Patient Blood Management: Scoping Review of Diagnostic Blood Loss. J. Clin. Med. 2022, 11, 320. https://doi.org/10.3390/jcm11020320
Helmer P, Hottenrott S, Steinisch A, Röder D, Schubert J, Steigerwald U, Choorapoikayil S, Meybohm P. Avoidable Blood Loss in Critical Care and Patient Blood Management: Scoping Review of Diagnostic Blood Loss. Journal of Clinical Medicine. 2022; 11(2):320. https://doi.org/10.3390/jcm11020320
Chicago/Turabian StyleHelmer, Philipp, Sebastian Hottenrott, Andreas Steinisch, Daniel Röder, Jörg Schubert, Udo Steigerwald, Suma Choorapoikayil, and Patrick Meybohm. 2022. "Avoidable Blood Loss in Critical Care and Patient Blood Management: Scoping Review of Diagnostic Blood Loss" Journal of Clinical Medicine 11, no. 2: 320. https://doi.org/10.3390/jcm11020320
APA StyleHelmer, P., Hottenrott, S., Steinisch, A., Röder, D., Schubert, J., Steigerwald, U., Choorapoikayil, S., & Meybohm, P. (2022). Avoidable Blood Loss in Critical Care and Patient Blood Management: Scoping Review of Diagnostic Blood Loss. Journal of Clinical Medicine, 11(2), 320. https://doi.org/10.3390/jcm11020320