Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Németh, J.; Tapasztó, B.; Aclimandos, W.A.; Kestelyn, P.; Jonas, J.B.; De Faber, J.T.H.N.; Januleviciene, I.; Grzybowski, A.; Nagy, Z.Z.; Pärssinen, O.; et al. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur. J. Ophthalmol. 2021, 31, 853–883. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cheung, S.W.; Cho, P.; Vincent, S.J. Comparison between estimated and measured myopia progression in Hong Kong children without myopia control intervention. Ophthalmic Physiol. Opt. 2021, 41, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Lopes-Ferreira, D.; Yeoh, B.; Issacs, S.; Amorim-De-Sousa, A.; Villa-Collar, C.; González-Méijome, J. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology. Clin. Exp. Optom. 2020, 103, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Wildsoet, C.F.; Chia, A.; Cho, P.; Guggenheim, J.A.; Polling, J.R.; Read, S.; Sankaridurg, P.; Saw, S.M.; Trier, K.; Walline, J.J.; et al. IMI–Interventions myopia institute: Interventions for controlling myopia onset and progression report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M106–M131. [Google Scholar] [CrossRef] [Green Version]
- González-Méijome, J.M.; Peixoto-De-Matos, S.C.; Faria-Ribeiro, M.; Lopes-Ferreira, D.P.; Jorge, J.; Legerton, J.; Queiros, A. Strategies to regulate myopia progression with contact lenses: A review. Eye Contact Lens 2016, 42, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queirós, A.; Lopes-Ferreira, D.; González-Méijome, J.M. Astigmatic Peripheral Defocus with Different Contact Lenses: Review and Meta-Analysis. Curr. Eye Res. 2016, 41, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Zadnik, K.; Mutti, D.O.; Mitchell, G.L.; Jones, L.A.; Burr, D.; Moeschberger, M.L. Normal eye growth in emmetropic schoolchildren. Optom. Vis. Sci. 2004, 81, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, P.; Lazon de la Jara, P.; Arumugam, B.; Bullimore, M.A. Axial length targets for myopia control. Ophthalmic Physiol. Opt. 2021, 41, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.; Sankaridurg, P.; Ho, A.; Naduvilath, T.; Smith, E.L., III; Holden, B.A. Myopia Progression Rates in Urban Children Wearing Single-Vision Spectacles. Optom. Vis. Sci. 2011, 89, 27–32. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Jones, L.A.; Moeschberger, M.L.; Zadnik, K.; Payor, R.E. A retrospective study of myopia progression in adult contact lens wearers. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2110–2113. [Google Scholar]
- Morgan, I.G.; Rose, K.A. Myopia: Is the nature-nurture debate finally over? Clin. Exp. Optom. 2019, 102, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolffsohn, J.S.; Calossi, A.; Cho, P.; Gifford, K.; Jones, L.; Li, M.; Lipener, C.; Logan, N.S.; Malet, F.; Matos, S.; et al. Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens Anterior Eye 2016, 39, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Kollbaum, P.S.; Berntsen, D.A.; Atchison, D.A.; Benavente, A.; Bradley, A.; Buckhurst, H.; Collins, M.; Fujikado, T.; Hiraoka, T.; et al. IMI–Clinical myopia control trials and instrumentation report. Investig. Ophthalmol. Vis. Sci. 2019, 60, M132–M160. [Google Scholar] [CrossRef] [Green Version]
- Morgan, P.B.; McCullough, S.J.; Saunders, K.J. Estimation of ocular axial length from conventional optometric measures. Contact Lens Anterior Eye 2019, 43, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, F.E.; Logan, N.S. Optical ‘dampening’ of the refractive error to axial length ratio: Implications for outcome measures in myopia control studies. Ophthalmic Physiol. Opt. 2018, 38, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Queirós, A.; González-Méijome, J.; Jorge, J. Influence of fogging lenses and cycloplegia on open-field automatic refraction. Ophthalmic Physiol. Opt. 2008, 28, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Thibos, L.N.; Wheeler, W.; Horner, D. Power vectors: An application of Fourier analysis to the description and statistical analysis of refractive error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, P.; Peixoto-De-Matos, S.C.; Logan, N.S.; Ngo, C.; Jones, D.; Young, G. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom. Vis. Sci. 2019, 96, 556–567. [Google Scholar] [CrossRef] [Green Version]
- McCullough, S.J.; O’Donoghue, L.; Saunders, K.J. Six Year Refractive Change among White Children and Young Adults: Evidence for Significant Increase in Myopia among White UK Children. PLoS ONE 2016, 11, e0146332. [Google Scholar] [CrossRef] [PubMed]
- Galvis, V.; Tello, A.; Rey, J.J.; Serrano Gomez, S.; Prada, A.M. Estimation of ocular axial length with optometric parameters is not accurate. Contact Lens Anterior Eye 2021, 45, 101448. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Mitchell, G.L.; Mutti, D.O.; Hayes, J.R.; Moeschberger, M.L.; Zadnik, K. Comparison of ocular component growth curves among refractive error groups in children. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2317–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunert, K.S.; Peter, M.; Blum, M.; Haigis, W.; Sekundo, W.; Schütze, J.; Büehren, T. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J. Cataract Refract. Surg. 2016, 42, 76–83. [Google Scholar] [CrossRef] [PubMed]
n | M (D) | K (mm) | AL_Real (mm) | AL_Predicted (mm) | AL_Real—AL_Predicted (mm) | Correlation Real vs. Predicted | |
---|---|---|---|---|---|---|---|
Male | 870 | −0.70 ± 1.56 | 7.80 ± 0.28 | 23.74 ± 0.99 | 23.95 ± 0.81 | −0.20 ± 0.46 (¥) | r = 0.873 (§) |
Female | 913 | −0.86 ± 1.76 | 7.75 ± 0.28 | 23.62 ± 1.01 | 23.91 ± 0.82 | −0.29 ± 0.50 (¥) | r = 0.863 (§) |
Sphere ≤ −1.00 | 562 | −2.78 ± 1.38 | 7.68 ± 0.26 | 24.41 ± 0.90 | 24.56 ± 0.84 | −0.15 ± 0.46 (¥) | r = 0.839 (§) |
Sphere > −1.00 | 1221 | 0.14 ± 0.70 | 7.81 ± 0.28 | 23.34 ± 0.86 | 23.63 ± 0.62 | −0.29 ± 0.49 (¥) | r = 0.811 (§) |
Myopia | 738 | −2.34 ± 1.45 | 7.70 ± 0.28 | 24.25 ± 0.94 | 24.42 ± 0.86 | −0.16 ± 0.78 (¥) | r = 0.854 (§) |
Emmetrope | 770 | +0.08 ± 0.26 | 7.81 ± 0.27 | 23.37 ± 0.80 | 23.66 ± 0.57 | −0.29 ± 0.47 (¥) | r = 0.792 (§) |
Hyperope | 275 | +0.98 ± 0.65 | 7.83 ± 0.27 | 22.97 ± 0.83 | 23.34 ± 0.57 | −0.37 ± 0.52 (*) | r = 0.750 (§) |
With-the-Rule | 856 | −0.73 ± 1.76 | 7.77 ± 0.28 | 23.64 ± 1.03 | 23.92 ± 0.85 | −0.28 ± 0.47 (¥) | r = 0.883 (§) |
Oblique | 266 | −0.70 ± 1.60 | 7.79 ± 0.29 | 23.65 ± 0.92 | 23.94 ± 0.79 | −0.28 ± 0.46 (¥) | r = 0.845 (§) |
Against-the-Rule | 375 | −0.81 ± 1.65 | 7.76 ± 0.31 | 23.67 ± 1.01 | 23.91 ± 0.82 | −0.24 ± 0.48 (*) | r = 0.864 (§) |
6–9 years | 262 | −0.44 ± 1.56 | 7.75 ± 0.25 | 23.24 ± 0.94 | 23.74 ± 0.73 | −0.50 ± 0.53 (¥) | r = 0.818 (§) |
10–12 years | 437 | −1.50 ± 1.67 | 7.70 ± 0.28 | 23.87 ± 1.00 | 24.07 ± 0.86 | −0.21 ± 0.47 (¥) | r = 0.874 (§) |
13–17 years | 433 | −0.64 ± 1.49 | 7.79 ± 0.27 | 23.69 ± 0.96 | 23.92 ± 0.76 | −0.23 ± 0.45 (¥) | r = 0.860 (§) |
≥18 years | 651 | −0.53 ± 1.68 | 7.80 ± 0.30 | 23.72 ± 1.00 | 23.91 ± 0.84 | −0.19 ± 0.46 (¥) | r = 0.882 (§) |
M (D) | K (mm) | AL_Real(mm) | AL_Morgan(mm) | AL_Queiros (mm) | Pairwise | |
---|---|---|---|---|---|---|
Baseline | −0.59 ± 1.66 | 7.73 ± 0.26 | 23.44 ± 0.91 | 23.78 ± 0.82 | 23.50 ± 0.88 | 1–0; 1–2 |
After 1 year | −0.75 ± 1.72 | 7.72 ± 0.26 | 23.50 ± 0.93 | 23.83 ± 0.86 | 23.56 ± 0.91 | 1–0; 1–2 |
difference | −0.15 ± 0.42 | −0.01 ± 0.06 | +0.067 ± 0.125 | +0.043 ± 0.163 | +0.066 ± 0.178 | p = 0.241 * |
p | <0.001 ¥ | 0.149 ¥ | <0.001 ¥ | 0.005 ¥ | <0.001 ¥ | |
Correlation | r = 0.970, <0.001 § | r = 0.970, <0.001 § | r = 0.991, <0.001 § | r = 0.982, <0.001 § | r = 0.981, <0.001 § |
Area under the Curve | p | Sensitivity | 1—Specificity | |
---|---|---|---|---|
Morgan et al. [10] | 0.623 [0.501 to 0.744] | 0.042 | 0.464 | 0.218 |
This study | 0.690 [0.580 to 0.801] | 0.002 | 0.679 | 0.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queirós, A.; Amorim-de-Sousa, A.; Fernandes, P.; Ribeiro-Queirós, M.S.; Villa-Collar, C.; González-Méijome, J.M. Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression. J. Clin. Med. 2022, 11, 6200. https://doi.org/10.3390/jcm11206200
Queirós A, Amorim-de-Sousa A, Fernandes P, Ribeiro-Queirós MS, Villa-Collar C, González-Méijome JM. Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression. Journal of Clinical Medicine. 2022; 11(20):6200. https://doi.org/10.3390/jcm11206200
Chicago/Turabian StyleQueirós, António, Ana Amorim-de-Sousa, Paulo Fernandes, Maria Sameiro Ribeiro-Queirós, César Villa-Collar, and José M. González-Méijome. 2022. "Mathematical Estimation of Axial Length Increment in the Control of Myopia Progression" Journal of Clinical Medicine 11, no. 20: 6200. https://doi.org/10.3390/jcm11206200