Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 Composites by Low-Exotherm Thermitic Combustion with PTFE Activation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermodynamic Analysis
3.2. Self-Propagating Combustion Kinetics
3.3. Phase Composition and Microstructure of Synthesized Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsawat, M.; Altalhi, T.; Alotaibi, N.F.; Zaki, Z.I. Titanium carbide—Titanium boride composites by self propagating high temperature synthesis approach: Influence of zirconia additives on the mechanical properties. Results Phys. 2019, 13, 102292. [Google Scholar] [CrossRef]
- Tsuchida, T.; Yamamoto, S. Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures. J. Eur. Ceram. Soc. 2004, 24, 45–51. [Google Scholar] [CrossRef]
- Zhang, M.; Huo, Y.; Huang, M.; Fang, Y.; Zou, B. In situ synthesis and formation mechanism of ZrC and ZrB2 by combustion synthesis from the Co-Zr-B4C system. J. Asian Ceram. Soc. 2015, 3, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Vallauri, D.; Atías Adrián, I.C.; Chrysanthou, A. TiC–TiB2 composites: A review of phase relationships, processing and properties. J. Eur. Ceram. Soc. 2008, 28, 1697–1713. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, K.; Li, F.; Hou, Y.; Tang, Y. The oxidation behavior of ZrB2–ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction. Ceram. Int. 2020, 46, 10409–10415. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, M.; Hu, Z.; Li, H.; Ouyang, J.H.; Chen, L.; Huo, S.; Zhou, Y. Microstructure and mechanical properties of TiB2–40 wt% TiC composites: Effects of adding a low-temperature hold prior to sintering at high temperatures. Ceram. Int. 2018, 44, 23297–23300. [Google Scholar] [CrossRef]
- Neuman, E.W.; Hilmas, G.E.; Fahrenholtz, W.G. Ultra-high temperature mechanical properties of a zirconium diboride–zirconium carbide ceramic. J. Am. Ceram. Soc. 2016, 99, 597–603. [Google Scholar] [CrossRef]
- Guo, S.Q.; Kagawa, Y.; Nishimura, T.; Chung, D.; Yang, J.M. Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites. J. Eur. Ceram. Soc. 2008, 28, 1279–1285. [Google Scholar] [CrossRef]
- Xu, J.; Zou, B.; Tao, S.; Zhang, M.; Cao, X. Fabrication and properties of Al2O3–TiB2–TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders. J. Alloys Compd. 2016, 672, 251–259. [Google Scholar] [CrossRef]
- Li, Z.; Wei, M.; Xiao, K.; Bai, Z.; Xue, W.; Dong, C.; Wei, D.; Li, X. Microhardness and wear resistance of Al2O3–TiB2–TiC ceramic coatings on carbon steel fabricated by laser cladding. Ceram. Int. 2019, 45, 115–121. [Google Scholar] [CrossRef]
- Xiao, G.Q.; Fu, Y.L.; Zhang, Z.W.; Hou, A.D. Mechanism and microstructural evolution of combustion synthesis of ZrB2–Al2O3 composite powders. Ceram. Int. 2015, 41, 5790–5797. [Google Scholar] [CrossRef]
- Xu, C. Preparation and performance of an advanced multiphase composite ceramic material. J. Eur. Ceram. Soc. 2005, 25, 605–611. [Google Scholar] [CrossRef]
- Kim, D.K.; Kriven, W.M. Processing and characterization of multiphase ceramic composites part II: Triplex composites with a wide sintering temperature range. J. Am. Ceram. Soc. 2008, 91, 793–798. [Google Scholar] [CrossRef]
- Aydin, H.; Elmusa, B. Fabrication and characterization of Al2O3–TiB2 nanocomposite powder by mechanochemical processing. J. Aust. Ceram. Soc. 2021, 57, 731–741. [Google Scholar] [CrossRef]
- Popov, O.; Chornobuk, S.; Vishnyakov, V. Structure formation of TiB2–TiC–B4C–C hetero-modulus ceramics via reaction hot pressing. Int. J. Refract. Met. Hard Mater. 2017, 64, 106–112. [Google Scholar] [CrossRef]
- Venkatachalam, V.; Blem, S.; Gülhan, A.; Binner, J. Thermal qualification of the UHTCMCs produced using RF-CVI technique with VMK facility at DLR. J. Compos. Sci. 2022, 6, 24. [Google Scholar] [CrossRef]
- Arai, Y.; Marumo, T.; Inoue, R. Use of Zr–Ti alloy melt infiltration for fabricating carbon-fiber-reinforced ultrahigh-temperature ceramic matrix composites. J. Compos. Sci. 2021, 5, 186. [Google Scholar] [CrossRef]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chen, K.T. Fabrication of FeSi/α-FeSi2—Based composites by metallothermically assisted combustion synthesis. J. Aust. Ceram. Soc. 2021, 57, 1415–1424. [Google Scholar] [CrossRef]
- Kirakosyan, H.; Nazaretyan, K.; Aydinyan, S.; Kharatyan, S. The mechanism of joint reduction of MoO3 and CuO by combined Mg/C reducer at high heating rates. J. Compos. Sci. 2021, 5, 318. [Google Scholar] [CrossRef]
- Myint Maung, S.T.; Chanadee, T.; Niyomwas, S. Two reactant systems for self-propagating high-temperature synthesis of tungsten silicide. J. Aust. Ceram. Soc. 2019, 55, 873–882. [Google Scholar] [CrossRef]
- Gibot, P.; Puel, E. Study on indium (III) oxide/aluminum thermite energetic composites. J. Compos. Sci. 2021, 5, 166. [Google Scholar] [CrossRef]
- Yeh, C.L.; Liou, G.T. A novel route for synthesis of alumina–chromium carbide composites from PTFE-activated Cr2O3/Al/C combustion. Ceram. Int. 2018, 44, 19486–19491. [Google Scholar] [CrossRef]
- Abovyan, L.S.; Nersisyan, H.H.; Kharatyan, S.L.; Orrù, R.; Saiu, R.; Cao, G.; Zedda, D. Synthesis of alumina–silicon carbide composites by chemically activated self-propagating reactions. Ceram. Int. 2001, 27, 163–169. [Google Scholar] [CrossRef]
- Yeh, C.L.; Wang, Y.H. Preparation of ZrB2–SiC–Al2O3 composites by SHS method with aluminothermic reduction. Ceram. Int. 2021, 47, 11202–11208. [Google Scholar] [CrossRef]
- Yeh, C.-L.; Chen, K.-T.; Shieh, T.-H. Effects of Fe/Si stoichiometry on formation of Fe3Si/FeSi-Al2O3 composites by aluminothermic combustion synthesis. Metals 2021, 11, 1709. [Google Scholar] [CrossRef]
- Merzhanov, A.G. Combustion processes that synthesize materials. J. Mater. Process. Technol. 1996, 56, 222–241. [Google Scholar] [CrossRef]
- Binnewies, M.; Milke, E. Thermochemical Data of Elements and Compounds; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002. [Google Scholar]
- Wang, L.L.; Munir, Z.A.; Maximov, Y.M. Thermite reactions: Their utilization in the synthesis and processing of materials. J. Mater. Sci. 1993, 28, 3693–3708. [Google Scholar] [CrossRef]
- Kim, T.; Wooldridge, M.S. Catalytically assisted self-propagating high-temperature synthesis of tantalum carbide powders. J. Am. Ceram. Soc. 2001, 84, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Licheri, R.; Orrù, R.; Cao, G. Chemically-activated combustion synthesis of TiC–Ti composites. Mater. Sci. Eng. A 2004, 367, 185–197. [Google Scholar] [CrossRef]
- Yang, K.; Yang, Y.; Lin, Z.M.; Li, J.T.; Du, J.S. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater. Res. Bull. 2007, 42, 1625–1632. [Google Scholar] [CrossRef]
- Varma, A.; Rogachev, A.S.; Mukasyan, A.S.; Hwang, S. Combustion synthesis of advanced materials: Principals and applications. Adv. Chem. Eng. 1998, 24, 79–225. [Google Scholar]
- Oppermann, H. The role of halogens, halogenides, oxide halogenides and their complexes in chemical transport reactions. Solid State Ionics 1990, 39, 17–25. [Google Scholar] [CrossRef]
- Chen, J.; Qian, H.; Wu, H.; Gao, Y.; Li, X. Assessment of arsenic and fluoride pollution in groundwater in Dawukou area, Northwest China, and the associated health risk for inhabitants. Environ. Earth Sci. 2017, 76, 314. [Google Scholar] [CrossRef]
- Ghorai, S.; Pant, K.K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol. 2005, 42, 265–271. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The powder diffraction file: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Nersisyan, H.H.; Jeong, H.-G.; Lee, K.-H.; Noh, J.-S.; Lee, J.-H. Efficient synthesis route to quasi-aligned and high-aspect-ratio aluminum nitride micro- and nanostructures. Chem. Eng. J. 2011, 174, 461–466. [Google Scholar] [CrossRef]
- Merzhanov, G.; Rogachev, A.S. Structural macrokinetics of SHS processes. Pure Appl. Chem. 1992, 64, 941–953. [Google Scholar]
- Mishra, S.K.; Das, S.K.; Sherbacov, V. Fabrication of Al2O3–ZrB2 in situ composite by SHS dynamic compaction: A novel approach. Compos. Sci. Technol. 2007, 67, 2447–2453. [Google Scholar] [CrossRef]
- Lee, J.H.; Ko, S.K.; Won, C.W. Sintering behavior of Al2O3–TiC composite powder prepared by SHS process. Mater. Res. Bull. 2001, 36, 989–996. [Google Scholar] [CrossRef]
- Licheri, R.; Orrù, R.; Musa, C.; Cao, G. Combination of SHS and SPS techniques for fabrication of fully dense ZrB2–ZrC–SiC composites. Mater. Lett. 2008, 62, 432–435. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, C.-L.; Liu, K.-T. Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 Composites by Low-Exotherm Thermitic Combustion with PTFE Activation. J. Compos. Sci. 2022, 6, 111. https://doi.org/10.3390/jcs6040111
Yeh C-L, Liu K-T. Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 Composites by Low-Exotherm Thermitic Combustion with PTFE Activation. Journal of Composites Science. 2022; 6(4):111. https://doi.org/10.3390/jcs6040111
Chicago/Turabian StyleYeh, Chun-Liang, and Kuan-Ting Liu. 2022. "Synthesis of TiB2/TiC/Al2O3 and ZrB2/ZrC/Al2O3 Composites by Low-Exotherm Thermitic Combustion with PTFE Activation" Journal of Composites Science 6, no. 4: 111. https://doi.org/10.3390/jcs6040111