The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites
Abstract
:1. Introduction
- (1)
- Oxidation of CNTs with concentrated nitric acid to form carboxyl groups;
- (2)
- Reduction of carboxyl groups on the surface of CNTs to hydroxyl groups through interaction with LiAlH4;
- (3)
- Silanization of hydroxylated CNTs as a result of their interaction with [3-(2-aminoethyl)aminopropyl]trimethoxysilane in an aqueous-methanol medium, followed by washing from excess reagents and vacuum drying.
- (1)
- Manufacturing of elastic organosilicon matrices of modified MWCNTs synthesized by CVD technology;
- (2)
- The study of electrically conductive nanomodified elastomers of heat release under tension and torsion under the action of electric voltage.
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- (1)
- The synthesis of CNT based on Ni/Mo (Ni/0.3MgO, Ni/0.5MgO, Ni/0.16MgO) was carried out. The obtained CNT were characterized using SEM and PEM, as well as Raman spectroscopy. SEM image analysis allowed us to evaluate the morphological properties of MWCNTs samples based on filamentous structures.
- (2)
- The electrical conductivity of samples of elastomers with CNT was studied. Optimal values of the CNT concentration in elastomers were revealed. The influence of stretching and torsion on the process of heat release in elastomers has been studied. The power of heat release is presented in the form of regression equations, where there is a dependence of heat release on temperature, applied tension strain, and electric heating.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, K.; Xu, S.; Hao, W.; Wang, J.; Huang, A.; Zhang, Y. Surface effect of the MgCl2 support in Ziegler–Natta catalyst for ethylene polymerization: A computational study. Appl. Surf. Sci. 2022, 589, 153002. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Mohamed, Y.S.; El-Gamal, H. Fatigue and tensile behaviors of fiber-reinforced thermosetting composites embedded with nanoparticles. J. Compos. Mater. 2019, 53, 709–718. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.M.; Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Developments in polyester composite materials—An in-depth review on natural fibres and nano fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Influence of flame retardant magnesium hydroxide on the mechanical properties of high density polyethylene composites. J. Reinf. Plast. Compos. 2017, 36, 1802–1816. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.M. Mechanical properties of linear low-density polyethylene fire-retarded with melamine polyphosphate. J. Appl. Polym. Sci. 2018, 135, 46770. [Google Scholar] [CrossRef]
- Xie, K.; Wang, W.; Li, Y.; Xu, M.; Han, Z.; Zhang, Y.; Gao, W. Study on structure-performance relationship of RGO enhanced polypropylene composites with improved atomic oxygen resistance. Compos. Part B Eng. 2022, 239, 109970. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y. Investigation of Electrophoretic Deposition of PANI Nano fibers as a Manufacturing Technology for corrosion protection. Prog. Org. Coat. 2022, 171, 107015. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.Y.M.; Zaghloul, M.M.Y. Experimental and modeling analysis of mechanical-electrical behaviors of polypropylene composites filled with graphite and MWCNT fillers. Polym. Test. 2017, 63, 467–474. [Google Scholar] [CrossRef]
- El Moumen, A.; Tarfaoui, M.; Nachtane, M.; Lafdi, K. Carbon nanotubes as a player to improve mechanical shock wave absorption. Compos. Part B Eng. 2019, 164, 67–71. [Google Scholar] [CrossRef]
- Rouway, M.; Nachtane, M.; Tarfaoui, M.; Chakhchaoui, N.; Omari, L.E.H.; Fraija, F.; Cherkaoui, O. Mechanical Properties of a Biocomposite Based on Carbon Nanotube and Graphene Nanoplatelet Reinforced Polymers: Analytical and Numerical Study. J. Compos. Sci. 2021, 5, 234. [Google Scholar] [CrossRef]
- Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733. [Google Scholar] [CrossRef]
- Wei, C.; Akinwolemiwa, B.; Yu, L.; Hu, D.; Chen, G.Z. 7-Polymer Composites with Functionalized Carbon Nanotube and Graphene. In Polymer Composites with Functionalized Nanoparticles; Woodhead Publishing: Sawston, UK, 2019; pp. 211–248. [Google Scholar]
- Punetha, V.D.; Rana, S.; Yoo, H.J.; Chaurasia, A.; McLeskey, J.T., Jr.; Ramasamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–67. [Google Scholar] [CrossRef]
- Shi, Y.; He, L.; Chen, D.; Wang, Q.; Shen, J.; Guo, S. Simultaneously improved electromagnetic interference shielding and flame retarding properties of poly (butylene succinate)/thermoplastic polyurethane blends by constructing segregated flame retardants and multi-walled carbon nanotubes double network. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106037. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Nguyen, Q.-D.; Min, B.K.; Yi, Y.; Choi, C.-G. Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications. Chem. Eng. J. 2022, 430, 133171. [Google Scholar] [CrossRef]
- Tarfaoui, M.; El Moumen, A.; Boehle, M.; Shah, O.; Lafdi, K. Self-heating and deicing epoxy/glass fiber based carbon nanotubes buckypaper composite. J. Mater. Sci. 2019, 54, 1351–1362. [Google Scholar] [CrossRef]
- Novikov, G.F.; Rabenok, E.V.; Estrin, Y.I.; Ol’Hov, Y.A.; Badamshina, E.R. Effect of small additions of carbon nanotubes on the electrical conductivity of polyurethane elastomer. Russ. J. Phys. Chem. A 2014, 88, 1790–1794. [Google Scholar] [CrossRef]
- Kolosov, A.E.; Kolosova, E.P.; Vanin, V.V.; Khan, A. Ultrasonic treatment in the production of classical composites and carbon nanocomposites. In Nanocarbon and Its Composites: Preparation, Properties and Applications, 1st ed.; Khan, A., Jawaid, S.M., Inamuddin, Asiri, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; Chapter 25; pp. 733–780. [Google Scholar] [CrossRef]
- Rana, S.; Cho, J.W.; Kumar, I. Synthesis and characterization of polyurethane-grafted single-walled carbon nanotubes via click chemistry. J. Nanosci. Nanotechnol. 2010, 10, 5700–5707. [Google Scholar] [CrossRef]
- Song, H.; Qi, H.; Li, N.; Zhang, X. Tribological behavior of carbon nanotubes/polyurethane nanocomposite coatings. Micro Nano Lett. 2011, 6, 48–51. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Q.; Zhao, Y.; Wang, J.; Kang, M. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos. Sci. Technol. 2015, 110, 87–94. [Google Scholar] [CrossRef]
- Joshi, M.; Adak, B.; Butola, B.S. Polyurethane nanocomposites based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential application. Prog. Mater. Sci. 2018, 97, 230–282. [Google Scholar] [CrossRef]
- Kim, H.; Miura, Y.; MacOsko, C.W. Graphene/polyurethane composites for improved gas barrier and electrical conductivity. Chem. Mater. 2010, 22, 3441–3450. [Google Scholar] [CrossRef]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Xiang, C.; Cox, P.; Kukovecz, A.; Genorio, B.; Hashim, D.; Yan, Z.; Peng, Z.; Hwang, C.-C.; Ruan, G.; Samuel, E.L.G.; et al. Functionalized low defect graphene noribbons and polyurethane composite film for improved gas barrier and mechanical performances. ACS Nano 2013, 7, 10380–10386. [Google Scholar] [CrossRef] [Green Version]
- Genorio, B.; Lu, W.; Dimiev, A.M.; Zhu, Y.; Raji, A.-R.O.; Novosel, B.; Alemany, L.B.; Tour, J.M. In Situ Intercalation Replacement and Selective Functionalization of Graphene Nanoribbon Stacks. ACS Nano 2012, 6, 4231–4240. [Google Scholar] [CrossRef]
- Yadav, S.K.; Yoo, H.J.; Cho, J.W. Click coupled graphene for fabrication of high-performance polymer nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 39–47. [Google Scholar] [CrossRef]
- Cai, D.; Jin, J.; Yusoh, K.; Rafiq, R.; Song, M. High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol. 2012, 72, 702–707. [Google Scholar] [CrossRef]
- Ma, W.; Wu, L.; Zhang, D.; Wang, S. Preperation and properties of 3-aminopropyltriethoxysilane functionalized graphene/polyurethane nanocomposite coatings. Colloid Polumer Sci. 2013, 291, 2765–2773. [Google Scholar] [CrossRef]
- Khatoon, H.; Ahmad, S. A review on conducting polymer reinforced polyurethane composites. J. Ind. Eng. Chem. 2017, 53, 1–22. [Google Scholar] [CrossRef]
- Chiou, W.-C.; Han, J.-L.; Lee, S.-N. Synthesis and studies of the physical properties of polyaniline and polyurethane-modified epoxy composites. Polym. Eng. Sci. 2008, 48, 345–354. [Google Scholar] [CrossRef]
- Sobha, A.P.; Narayanankutty, S.K. Improved strain sensing property of functionalized carbon nanotube/polyaniline composites in TPU matrix. Sens. Actuators A 2015, 233, 98–107. [Google Scholar] [CrossRef]
- Raja, M.; Ryu, S.H.; Shanmugharaj, A.M. Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly(lactid acid) (PLA)/CNT nanocomposites. Eur. Polym. J. 2013, 49, 3492–3500. [Google Scholar] [CrossRef]
- Costa, T.H.D.; Choi, J.-W. An all-elastomer pressure sensor utilizing printed carbon nanotube patterns with high sensitivity. Micro Nano Eng. 2022, 14, 100113. [Google Scholar] [CrossRef]
- Cacucciolo, V.; Shintake, J.; Kuwajima, Y.; Maeda, S.; Floreano, D.; Shea, H. Stretchable pumps for soft machines. Nature 2019, 572, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Shchegolkov, A.; Shchegolkov, A.; Zemtsova, N.; Bogoslovskiy, V.; Shigabaeva, G.; Galunin, E.; Hussain, I.; Almalki, A.S.A.; Alsharif, M.A.; et al. Preparation and application practice of temperature self-regulating flexible polymer electric heaters. Polym. Eng. Sci. 2022, 62, 730–742. [Google Scholar] [CrossRef]
- Aouraghe, M.A.; Xu, F.; Liu, X.; Qiu, Y. Flexible, quickly responsive and highly efficient E-heating carbon nanotube film. Compos. Sci. Technol. 2019, 183, 107824. [Google Scholar] [CrossRef]
- Xu, P.; Kang, J.; Suhr, J.; Smith, J.P.; Booksh, K.S.; Wei, B.; Yu, J.; Li, F.; Byun, J.-H.; Oh, Y.; et al. Spatial strain variation of graphene films for stretchable electrodes. Carbon 2015, 93, 620–624. [Google Scholar] [CrossRef]
- Hudaya, C.; Jeon, B.J.; Lee, J.K. High Thermal Performance of SnO2:F Thin Transparent Heaters with Scattered Metal Nanodots. ACS Appl. Mater. Interfaces 2015, 7, 57–61. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Guadagno, L.; Vertuccio, L. Damage Monitoring of Structural Resins Loaded with Carbon Fillers: Experimental and Theoretical Study. Nanomaterials 2020, 10, 434. [Google Scholar] [CrossRef] [Green Version]
- Guadagno, L.; Foglia, F.; Pantani, R.; Romero-Sanchez, M.D.; Calderón, B.; Vertuccio, L. Low-Voltage Icing Protection Film for Automotive and Aeronautical Industries. Nanomaterials 2020, 10, 1343. [Google Scholar] [CrossRef]
- Luo, J.; Lu, H.; Zhang, Q.; Yao, Y.; Chen, M.; Li, Q. Flexible carbon nanotube/polyurethane electrothermal films. Carbon 2016, 110, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in grapheme. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.; Moreno-Villoslada, I.; Bose, R.; Picchioni, F.; Flores, M.; Araya-Hermosilla, R. Self-Healing Polymer Nanocomposite Materials by Joule Effect. Polymers 2021, 13, 649. [Google Scholar] [CrossRef] [PubMed]
- Potts, J.R.; Shankar, O.; Murali, S.; Du, L.; Ruoff, R.S. Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos. Sci. Technol. 2013, 74, 166–172. [Google Scholar] [CrossRef]
- Chu, K.; Yun, D.-J.; Kim, D.; Park, H.; Park, S.-H. Study of electric heating effects on carbon nanotube polymer composites. Org. Electron. 2014, 15, 2734–2741. [Google Scholar] [CrossRef]
- Ning, N.; Ji, L.; Zhang, L.; Liu, J.; Lu, Y.; Wu, S.; Zou, H.; Tian, M.; Chan, T.W. High elasticity and conductivity of elastomer composites with arrayed carbon nanotubes as nanosprings. Compos. Sci. Technol. 2015, 118, 78–84. [Google Scholar] [CrossRef]
- Ali, I.; AlGarni, T.S.; Shchegolkov, A.; Shchegolkov, A.; Jang, S.-H.; Galunin, E.; Komarov, F.; Borovskikh, P.; Imanova, G.T. Temperature self-regulating flat electric heaters based on MWCNTs-modified polymers. Polym. Bull. 2021, 78, 6689–6703. [Google Scholar] [CrossRef]
- Xu, F.; Aouraghe, M.A.; Xie, X.; Zheng, L.; Zhang, K.; Fu, K.K. Highly stretchable, fast thermal response carbon nanotube composite heater. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106471. [Google Scholar] [CrossRef]
- Yan, J.; Kim, B.; Jeong, Y.G. Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation. J. Mater. Sci. 2015, 50, 5599–5608. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Gang, H.-E.; Park, G.-T.; Jeon, H.-B.; Kim, H.B.; Oh, S.-H.; Jeong, Y.G. Synergistic effect of polyurethane-coated carbon fiber and electron beam irradiation on the thermal/mechanical properties and long-term durability of polyamide-based thermoplastic composites. Polym. Compos. 2022, 43, 1685. [Google Scholar] [CrossRef]
- Gu, B.; Pu, G.; Ding, B.; Zhang, K.; He, R.; Fan, J.; Xing, T.; Wu, J.; Yang, W. Improved interfacial bonding strength of silicone rubber/carbon fiber modified by dopamine. Polym. Compos. 2022, 11, 1639. [Google Scholar] [CrossRef]
- Sanei, S.H.R.; Doles, R.; Ekaitis, T. Effect of Nanocomposite Microstructure on Stochastic Elastic Properties: An Finite Element Analysis Study. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2019, 5, 030903. [Google Scholar] [CrossRef]
- Shchegolkov, A.V.; Tambov State Technical University; Zemtsova, N.V. Investigation of heat release in nanomodified elastomers during stretching and torsion under the action of electric voltage. Front. Mater. Technol. 2022, 2, 121–132. [Google Scholar] [CrossRef]
- Mamunya, Y.; Davydenko, V.; Pissis, P.; Lebedev, E. Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
# | Parameter | Value |
---|---|---|
1 | Shore A hardness | 25–35 |
2 | Compound lifetime, min, at 20 °C for at least | 30 |
3 | Relative elongation at break, %, not less | 450 |
4 | Tensile strength, MPa, not less | 3.5 |
5 | Component ratio (paste/hardener) | 1/1 |
MWCNTs Content in Elastomer, % | Elastomer’s Designation | ||
---|---|---|---|
Ni/0.16MgO | Ni/0.3MgO | Ni/0.5MgO | |
1 | NCOC 1 (0.16) | NCOC 1 (0.3) | NCOC 1 (0.5) |
2 | NCOC 2 (0.16) | NCOC 2 (0.3) | NCOC 2 (0.5) |
3 | NCOC 3 (0.16) | NCOC 3 (0.3) | NCOC 3 (0.5) |
4 | NCOC 4 (0.16) | NCOC 4 (0.3) | NCOC 4 (0.5) |
5 | NCOC 5 (0.16) | NCOC 5 (0.3) | NCOC 5 (0.5) |
6 | NCOC 6 (0.16) | NCOC 6 (0.3) | NCOC 6 (0.5) |
7 | NCOC 7 (0.16) | NCOC 7 (0.3) | NCOC 7 (0.5) |
8 | NCOC 8 (0.16) | NCOC 8 (0.3) | NCOC 8 (0.5) |
Composition | Specific Surface Area, m2/g | Effectiveness, gC/gcat |
---|---|---|
9:1 | 51.9 | 9.64 |
8:2 | 55.6 | 11.30 |
7:3 | 60.8 | 4.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchegolkov, A.V.; Nachtane, M.; Stanishevskiy, Y.M.; Dodina, E.P.; Rejepov, D.T.; Vetcher, A.A. The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites. J. Compos. Sci. 2022, 6, 333. https://doi.org/10.3390/jcs6110333
Shchegolkov AV, Nachtane M, Stanishevskiy YM, Dodina EP, Rejepov DT, Vetcher AA. The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites. Journal of Composites Science. 2022; 6(11):333. https://doi.org/10.3390/jcs6110333
Chicago/Turabian StyleShchegolkov, Alexander V., Mourad Nachtane, Yaroslav M. Stanishevskiy, Ekaterina P. Dodina, Dovlet T. Rejepov, and Alexandre A. Vetcher. 2022. "The Effect of Multi-Walled Carbon Nanotubes on the Heat-Release Properties of Elastic Nanocomposites" Journal of Composites Science 6, no. 11: 333. https://doi.org/10.3390/jcs6110333