Ballistic Performance of Raffia Fiber Fabric Reinforcing Epoxy Composites as Standalone Targets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Composite Manufacturing
2.2.2. Density Determination of Composites
2.2.3. Stand-Alone Ballistics Tests
2.2.4. Statistical Analysis
2.2.5. Fracture Surface Analysis
3. Results and Discussion
3.1. Density Analysis
3.2. Stand-Alone Ballistics Test Results
3.3. Statistical Analysis
3.3.1. Statistical Analysis of Experimental Density
3.3.2. Statistical Analysis of Energy Absorption
3.4. Fracture Surface Analysis
4. Summary and Conclusions
- Adding 10, 20, and 30 vol% of raffia fabric to the epoxy resulted a decrease in density in relation to the plain epoxy. This decrease in composite densities might be attributed to the great hygroscopicity of the raffia fabric.
- The comparison of the theoretical densities calculated using the rule of mixtures with experimental densities revealed discrepancies of 96.32%, 53.62%, and 38.15% for the incorporation of 10, 20, and 30 vol% of raffia, respectively. The discrepancy in calculated density versus experimental density can be attributed to the presence of voids.
- The Eabs results presented indicated a low degree of compatibilization of the components of the manufactured composites. One way to improve the material characteristics can be achieved by using another manufacturing process (vacuum-assisted manual lamination or vacuum infusion) and performing a surface pre-treatment of the fiber.
- Epoxy matrix composites containing 10 vol% raffia fabric showed the highest energy absorption value among the samples tested. The reason for this was mainly due to the fragile nature of the epoxy matrix, leading to the composite plates breaking apart completely. Hence, the lack of integrity post-ballistic impact is considered unsuitable for use in multilayer armor systems (MASs) requiring multiple shots for proper evaluation.
- The 30 vol% raffia fabric composites showed an appropriate ballistic performance by combining improved Eabs with good physical integrity. These findings highlight the significance of incorporating NLFs for strengthening polymeric composites and contribute to our understanding, particularly in the case of raffia fabric, which has not yet been documented in the literature.
- SEM micrographs revealed that the epoxy matrix exhibited a brittle fracture mechanism, along with the presence of raffia fiber ruptures, pullout, and delamination on the fractured surface.
- Finally, the current epoxy composites strengthened by raffia fabric were assessed as highly suitable for personal ballistic protection in an MAS, particularly in the role of an intermediate layer. Cost-effectiveness and reduced weight are key factors in the decision to choose this innovative ballistic material.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, W.; Wang, X.; Ye, Y.; Wu, W.; Wang, Y.; Jiang, S.; Wang, J.; Han, X. Recent progress of biomass in conventional wood adhesives: A review. Green Chem. 2023, 25, 10304–10337. [Google Scholar] [CrossRef]
- Govil, T.; Wang, J.; Samanta, D.; David, A.; Tripathi, A.; Rauniyar, S.; Salem, D.R.; Sani, R.K. Lignocellulosic Feedstock: A Review of a Sustainable Platform for Cleaner Production of Nature’s Plastics. J. Clean. Prod. 2020, 270, 122521. [Google Scholar] [CrossRef]
- EMBRAPA. Agriculture and Environmental Preservation Summary of Land Occupation and Use in Brazil. 2018. Available online: https://www.embrapa.br/car/sintese (accessed on 12 May 2024).
- Ribeiro, M.M.; Pinheiro, M.A.; Rodrigues, J.d.S.; Ramos, R.P.B.; Corrêa, A.d.C.; Monteiro, S.N.; da Silva, A.C.R.; Candido, V.S. Comparison of Young’s Modulus of Continuous and Aligned Lignocellulosic Jute and Mallow Fibers Reinforced Polyester Composites Determined Both Experimentally and from Theoretical Prediction Models. Polymers 2022, 14, 401. [Google Scholar] [CrossRef] [PubMed]
- Chandgude, S.; Salunkhe, S. In state of art: Mechanical behavior of natural fiber-based hybrid polymeric composites for application of automobile components. Polym. Compos. 2021, 42, 2678–2703. [Google Scholar] [CrossRef]
- Choi, H.; Choi, Y.C. Setting Characteristics of Natural Cellulose Fiber Reinforced Cement Composite. Constr. Build. Mater. 2021, 271, 121910. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Ramakrishnan, S.; Sanjay, M.R.; Siengchin, S.; Nagaraja, K.C. A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies. Polym. Compos. 2021, 42, 3687–3701. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, S.; Li, Y.; Wang, Z.; Long, Y.; Yu, T.; Shen, Y. High Performances of Plant Fiber Reinforced Composites—A New Insight from Hierarchical Microstructures. Compos. Sci. Technol. 2020, 194, 108151. [Google Scholar] [CrossRef]
- Setlak, L.; Kowalik, R.; Lusiak, T. Practical Use of Composite Materials Used in Military Aircraft. Materials 2021, 14, 4812. [Google Scholar] [CrossRef]
- Key, C.T.; Alexander, C.S. Numerical and Experimental Evaluations of a Glass-Epoxy Composite Material under High Velocity Oblique Impacts. Int. J. Impact Eng. 2020, 137, 103443. [Google Scholar] [CrossRef]
- Meliande, N.M.; Oliveira, M.S.; Pereira, A.C.; Balbino, F.D.P.; Figueiredo, A.B.S.; Monteiro, S.N.; Nascimento, L.F.C. Ballistic properties of curaua-aramid laminated hybrid composites for military helmet. J. Mater. Res. Technol. 2023, 25, 3943–3956. [Google Scholar] [CrossRef]
- Reis, R.H.M.; Nunes, L.F.; da Luz, F.S.; Candido, V.S.; da Silva, A.C.R.; Monteiro, S.N. Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target. Polymers 2021, 13, 1203. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, R.F.; Silva, A.O.d.; Weber, R.P.; Monteiro, S.N. Influence of UV radiation and moisten associated with natural weathering on the ballistic performance of aramid fabric armor. J. Mater. Res. Technol. 2020, 9, 10334–10345. [Google Scholar] [CrossRef]
- Scazzosi, R.; de Souza, S.D.B.; Amico, S.C.; Giglio, M.; Manes, A. Experimental and Numerical Evaluation of the Perforation Resistance of Multi-Layered Alumina/Aramid Fiber Ballistic Shield Impacted by an Armor Piercing Projectile. Compos. Part B Eng. 2022, 230, 109488. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Neuba, L.M.; Pereira Junio, R.F.; Ribeiro, M.P.; Souza, A.T.; de Sousa Lima, E.; Garcia Filho, F.d.C.; Figueiredo, A.B.-H.d.S.; Braga, F.d.O.; Azevedo, A.R.G.d.; Monteiro, S.N. Promising Mechanical, Thermal, and Ballistic Properties of Novel Epoxy Composites Reinforced with Cyperus malaccensis Sedge Fiber. Polymers 2020, 12, 1776. [Google Scholar] [CrossRef]
- da Luz, F.S.; Garcia Filho, F.d.C.; del-Río, M.T.G.; Nascimento, L.F.C.; Pinheiro, W.A.; Monteiro, S.N. Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview. Polymers 2020, 12, 1601. [Google Scholar] [CrossRef]
- Garcia Filho, F.D.C.; Oliveira, M.S.; Pereira, A.C.; Nascimento, L.F.C.; Matheus, J.R.G.; Monteiro, S.N. Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. J. Mater. Res. Technol. 2020, 9, 1734–1741. [Google Scholar] [CrossRef]
- Neuba, L.M.; Camposo Pereira, A.; Felipe Pereira Junio, R.; Teixeira Souza, A.; Soares Chaves, Y.; Picanço Oliveira, M.; Neves Monteiro, S. Ballistic Performance of Cyperus malaccensis Sedge Fibers Reinforcing Epoxy Matrix as a Standalone Target. J. Mater. Res. Technol. 2023, 23, 4367–4375. [Google Scholar] [CrossRef]
- Braga, F.O.; Bolzan, L.T.; Lima, E.P.; Monteiro, S.N. Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as a stand-alone ballistic armor. J. Mater. Res. Technol. 2017, 6, 323–328. [Google Scholar] [CrossRef]
- Braga, F.O.; Bolzan, L.T.; Ramos, F.J.H.T.V.; Monteiro, S.N.; Lima, E.P., Jr.; da Silva, L.C. Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites. Mater. Res. 2018, 20, 767–774. [Google Scholar] [CrossRef]
- da Luz, F.S.; Monteiro, S.N.; Lima, E.S.; Lima Júnior, E.P. Ballistic application of coir fiber reinforced epoxy composite in multilayered armor. Mater. Res. 2017, 20, 23–28. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Candido, V.S.; Braga, F.O.; Bolzan, L.T.; Weber, R.P.; Drelich, J.W. Sugarcane bagasse waste in composites for multilayered armor. Eur. Polym. J. 2016, 78, 173–185. [Google Scholar] [CrossRef]
- NIJ 0101.06; Ballistic Resistance of Body Armor. National Institute of Justice: Washington, DC, USA, 2008.
- Demosthenes, L.C.d.C.; Luz, F.S.d.; Nascimento, L.F.C.; Monteiro, S.N. Buriti Fabric Reinforced Epoxy Composites as a Novel Ballistic Component of a Multilayered Armor System. Sustainability 2022, 14, 10591. [Google Scholar] [CrossRef]
- Silva, D.S.; Junio, R.F.P.; Neuba, L.M.; Aguilera, L.S.; Monteiro, S.N.; da Silva, M.H.P. Thermochemical and structural characterization of raffia fiber fabric (Raphia vinifera) from the Amazon region. J. Mater. Res. Technol. 2024, 30, 5069–5079. [Google Scholar] [CrossRef]
- Callister William, D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2018; Volume 26. [Google Scholar]
- Oliveira, M.S.; Garcia Filho, F.D.C.; Pereira, A.C.; Nunes, L.F.; da Luz, F.S.; Braga, F.O.; Colorado, H.A.; Monteiro, S.N. Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis. J. Mater. Res. Technol. 2019, 8, 5899–5908. [Google Scholar] [CrossRef]
- Swain, P.T.R.; Biswas, S. Physical and mechanical behavior of Al2O3 filled jute fiber reinforced epoxy composites. Int. J. Curr. Eng. Technol. 2014, 2, 67–71. [Google Scholar] [CrossRef]
- Hamidi, Y.K.; Aktas, L.; Altan, M.C. Effect of packing on void morphology in resin transfer molded E-glass/epoxy composites. Polym. Compos. 2005, 26, 614–627. [Google Scholar] [CrossRef]
- Huang, H.; Talreja, R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 2005, 65, 1964–1981. [Google Scholar] [CrossRef]
- Manfredi, L.B.; Fraga, A.N.; Vázquez, A. Influence of the network structure and void content on hygrothermal stability of resol resin modified with epoxy–amine. J. Appl. Polym. Sci. 2006, 102, 588–597. [Google Scholar] [CrossRef]
- He, Y.; Fan, X. In-situ Characterization of Moisture Absorption and Desorption in a Thin BT Core Substrate. In Proceedings of the 57th Electronic Components and Technology Conference, Sparks, NV, USA, 29 May–1 June 2007; pp. 1375–1383. [Google Scholar] [CrossRef]
- Thomason, J.L. The interface region in glass fibre reinforced epoxy resin composites: 2. Water absorption, voids and the interface. Composites 1995, 26, 477–485. [Google Scholar] [CrossRef]
- Fornari Junior, C.C.M. Vegetable Fibers for Polymeric Composites, 1st ed.; Editus UESC: Ilhéus-Bahia, Brazil, 2017; Volume 1, 198p. [Google Scholar]
- Chee, S.S.; Jawaid, M.; Sultan, M.; Alothman, O.Y.; Abdullah, L.C. Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym. Test. 2019, 79, 106054. [Google Scholar] [CrossRef]
- Kumar, R.; Ul Haq, M.I.; Sharma, S.M.; Raina, A.; Anand, A. Effect of water absorption on mechanical and tribological properties of Indian ramie/epoxy composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 1871–1879. [Google Scholar] [CrossRef]
- Zeng, Q.; Lu, Q.; Zhou, Y.; Chen, N.; Rao, J.; Fan, M. Circular development of recycled natural fibers from medium density fiberboard wastes. J. Clean. Prod. 2018, 202, 456–464. [Google Scholar] [CrossRef]
- Dittenber, D.B.; Gangarao, H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1419–1429. [Google Scholar] [CrossRef]
- Guo, Z.S.; Liu, L.; Zhang, B.M.; Du, S. Critical Void Content for Thermoset Composite Laminates. J. Compos. Mater. 2009, 43, 1775–1790. [Google Scholar] [CrossRef]
- Costa, M.L.; Almeida, S.F.M.; Rezende, M.C. Resistência ao Cisalhamento Interlaminar de Compósitos com Resina Epóxi com Diferentes Arranjos das Fibras na Presença de Vazios. Polímeros 2001, 11, 182. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, B.M.; Wang, D.F.; Wu, Z.J. Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 2006, 73, 303. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, B.M.; Wang, D.F.; Wu, Z. Experimental characterization of porosity and interlaminar shear strength in polymeric matrix composites. J. Aeronaut. Mater. 2006, 26, 115. [Google Scholar]
- Sreekala, M.; George, J.; Kumaran, M.; Thomas, S. The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos. Sci. Technol. 2002, 62, 339–353. [Google Scholar] [CrossRef]
- Norizan, M.N.; Abdan, K.; Salit, M.S.; Mohamed, R.; Mara, M.U.T. Physical, mechanical and thermal properties of sugar palm yarn fibre loading on reinforced unsaturated polyester composites. J. Phys. Sci. 2017, 28, 115–136. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; Monteiro, S.N. Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. J. Mater. Res. Technol. 2020, 9, 373–382. [Google Scholar] [CrossRef]
- Marchi, B.Z.; Silveira, P.H.P.M.d.; Bezerra, W.B.A.; Nascimento, L.F.C.; Lopes, F.P.D.; Candido, V.S.; Silva, A.C.R.d.; Monteiro, S.N. Ballistic Performance, Thermal and Chemical Characterization of Ubim Fiber (Geonoma baculifera) Reinforced Epoxy Matrix Composites. Polymers 2023, 15, 3220. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, J.d.S.C.; Nascimento, L.F.C.; Costa, U.O.; Bezerra, W.B.A.; Oliveira, M.S.; Marques, M.d.F.V.; Soares, A.P.S.; Monteiro, S.N. Ballistic Behavior of Epoxy Composites Reinforced with Amazon Titica Vine Fibers (Heteropsis flexuosa) in Multilayered Armor System and as Stand-Alone Target. Polymers 2023, 15, 3550. [Google Scholar] [CrossRef] [PubMed]
- Luz, F.S.d.; Junior, E.P.L.; Louro, L.H.L.; Monteiro, S.N. Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Mater. Res. 2015, 18, 170–177. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Louro, L.H.L.; Trindade, W.; Elias, C.N.; Ferreira, C.L.; Lima, E.d.S.; Weber, R.P.; Suarez, J.C.M.; Figueiredo, A.B.-H.d.S.; Pinheiro, W.A.; et al. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor. Metall. Mater. Trans. 2015, 46, 4567–4577. [Google Scholar] [CrossRef]
- Odesanya, K.O.; Ahmad, R.; Jawaid, M.; Bingol, S.; Adebayo, G.O.; Wong, Y.H. Natural Fibre-Reinforced Composite for Ballistic Applications: A Review. J. Polym. Environ. 2021, 29, 3795–3812. [Google Scholar] [CrossRef]
- Harish, S.; Michael, D.P.; Bensely, A.; Lal, D.M.; Rajadurai, A. Mechanical property evaluation of natural fiber coir composite. Mater. Charact. 2009, 6, 44–49. [Google Scholar] [CrossRef]
- de Assis, F.S.; Pereira, A.C.; da Costa Garcia Filho, F.; Lima, E.P., Jr.; Monteiro, S.N.; Weber, R.P. Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor. J. Mater. Res. Technol. 2018, 7, 535–540. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Monteiro, S.N.; da Luz, F.S.; Pinheiro, W.A. Effect of graphene oxide coating on natural fiber composite for multilayered ballistic armor. Polymers 2019, 11, 1356. [Google Scholar] [CrossRef]
Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | |||||||
MS a (g) | MU b (g) | MI c (g) | MS a (g) | MU b (g) | MI c (g) | MS a (g) | MU b (g) | MI c (g) | |
3.37 | 3.58 | 0.37 | 5.82 | 6.18 | 0.38 | 2.09 | 2.32 | 0.09 | |
3.58 | 3.78 | 0.33 | 2.97 | 3.14 | 0.17 | 2.42 | 2.72 | 0.14 | |
2.91 | 3.15 | 0.23 | 3.08 | 3.32 | 0.25 | 2.21 | 2.49 | 0.12 | |
3.23 | 3.53 | 0.37 | 2.48 | 2.78 | 0.19 | 3.06 | 3.28 | 0.17 | |
4.29 | 4.81 | 0.53 | 2.60 | 2.84 | 0.16 | 2.82 | 3.09 | 0.17 | |
M d | 3.48 | 3.78 | 0.37 | 3.39 | 3.66 | 0.23 | 2.52 | 2.78 | 0.14 |
SD e | 0.52 | 0.63 | 0.11 | 1.38 | 1.43 | 0.09 | 0.41 | 0.40 | 0.03 |
Sample | E.D a (g/cm3) | T.D b (g/cm3) | Reference |
---|---|---|---|
10 vol% raffia fabric | 0.55 (±0.12) | 1.08 | PW* |
20 vol% raffia fabric | 0.69 (±0.08) | 1.06 | PW* |
30 vol% raffia fabric | 0.76 (±0.02) | 1.05 | PW* |
Plain epoxy | 1.11 | - | [28] |
Conditions | 10% | 20% | 30% |
---|---|---|---|
Energy absorbed (J) | 206.96 | 108.34 | 181.08 |
197.33 | 93.83 | 160.78 | |
205.09 | 105.79 | 164.00 | |
206.81 | 97.87 | 198.85 | |
198.83 | 79.73 | 182.46 | |
167.24 | 81.42 | 170.47 | |
Mean | 168.91 | 81.03 | 151.13 |
Standard deviation | 13.84 | 10.95 | 12.88 |
Conditions | |||||||||
---|---|---|---|---|---|---|---|---|---|
10% | 20% | 30% | |||||||
Vi (m/s) | Vr (m/s) | VL (m/s) | Vi (m/s) | Vr (m/s) | VL (m/s) | Vi (m/s) | Vr (m/s) | VL (m/s) | |
872.40 | 847.59 | 206.57 | 842.73 | 829.37 | 149.46 | 833.04 | 810.32 | 193.23 | |
840.92 | 816.37 | 201.71 | 843.34 | 831.79 | 139.09 | 831.44 | 811.26 | 182.07 | |
833.98 | 808.23 | 205.64 | 844.55 | 831.61 | 147.27 | 845.05 | 824.80 | 183.89 | |
845.63 | 820.03 | 206.49 | 833.12 | 820.92 | 142.05 | 840.33 | 815.57 | 202.48 | |
835.32 | 810.41 | 202.47 | 842.80 | 832.99 | 128.22 | 838.92 | 816.19 | 193.96 | |
877.23 | 857.35 | 185.69 | 841.84 | 831.81 | 129.56 | 865.05 | 844.49 | 187.48 | |
M a | 850.91 | 826.66 | 201.43 | 841.39 | 829.75 | 139.28 | 842.30 | 820.44 | 190.52 |
SD b | 17.37 | 18.85 | 7.29 | 3.79 | 4.09 | 8.08 | 11.14 | 11.73 | 6.91 |
Sample | Eabs (J) | VL (m/s) | Reference |
---|---|---|---|
10 vol% raffia fabric | 168.91 | 201.43 | PW* |
20 vol% raffia fabric | 81.03 | 139.28 | PW* |
30 vol% raffia fabric | 151.13 | 190.52 | PW* |
10 vol% ubim fibers | 187.03 | 195.98 | [47] |
20 vol% ubim fibers | 169.07 | 185.98 | [47] |
30 vol% ubim fibers | 159.42 | 180.79 | [47] |
10 vol% TVFs** | 171.82 | 192.06 | [48] |
20 vol% TVFs** | 176.19 | 193.88 | [48] |
30 vol% TVFs** | 166.51 | 188.84 | [48] |
DGEBA/TETA epoxy | 190.00 | 196.00 | [49] |
Kevlar (ply of aramid fabric) | 58.00 | 109.00 | [50] |
Causes of Variation | Degrees of Freedom | Sums of Squares | Mean Square | F (Calculated) | Fc (Tabulated) |
---|---|---|---|---|---|
Treatment | 2 | 0.111 | 0.055 | 7.32 | 3.89 |
Residue | 12 | 0.091 | 0.007 | ||
Total | 14 | 0.202 |
Conditions | 10% | 20% | 30% |
---|---|---|---|
10% | 0 | 0.137 | 0.207 |
20% | 0.137 | 0 | 0.070 |
30% | 0.207 | 0.070 | 0 |
Causes of Variation | Degrees of Freedom | Sums of Squares | Mean Square | F (Calculated) | Fc (Tabulated) |
---|---|---|---|---|---|
Treatment | 2 | 17,535.49 | 8767.74 | 11.39 | 3.89 |
Residue | 12 | 9235.98 | 769.66 | ||
Total | 14 | 26,771.47 |
Conditions | 10% | 20% | 30% |
---|---|---|---|
10% | 0 | 83.50 | 36.18 |
20% | 83.50 | 0 | 47.32 |
30% | 36.18 | 47.32 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.S.; Junio, R.F.P.; Silva, M.H.P.d.; Monteiro, S.N. Ballistic Performance of Raffia Fiber Fabric Reinforcing Epoxy Composites as Standalone Targets. J. Compos. Sci. 2024, 8, 370. https://doi.org/10.3390/jcs8090370
Silva DS, Junio RFP, Silva MHPd, Monteiro SN. Ballistic Performance of Raffia Fiber Fabric Reinforcing Epoxy Composites as Standalone Targets. Journal of Composites Science. 2024; 8(9):370. https://doi.org/10.3390/jcs8090370
Chicago/Turabian StyleSilva, Douglas Santos, Raí Felipe Pereira Junio, Marcelo Henrique Prado da Silva, and Sergio Neves Monteiro. 2024. "Ballistic Performance of Raffia Fiber Fabric Reinforcing Epoxy Composites as Standalone Targets" Journal of Composites Science 8, no. 9: 370. https://doi.org/10.3390/jcs8090370