Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes
Abstract
:1. Introduction
2. Wnt Signaling Pathways
3. Maternal Wnt/β-Catenin Signaling Dictates Dorsal Axis Specification
4. Zygotic Wnt/β-Catenin Signaling in D-V and A-P Axis Patterning
5. Wnt/PCP Pathway Regulates Morphogenetic Movements to Elongate the A-P Axis
5.1. Wnt Ligands
5.2. “Core” PCP Proteins
5.3. Co-Receptors
6. Wnt/PCP Signaling Initiates L–R Asymmetry
6.1. L–R Organizers
6.2. Wnt/PCP Signaling Promotes the Asymmetric Orientation of Motile Cilia
6.3. Laterality Defects Associated with Dysfunction of PCP Genes
7. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Hayat, R.; Manzoor, M.; Hussain, A. Wnt signaling pathway: A comprehensive review. Cell Biol. Int. 2022, 46, 863–877. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Steinhart, Z.; Angers, S. Wnt signaling in development and tissue homeostasis. Development 2018, 145, dev146589. [Google Scholar] [CrossRef]
- Qin, K.; Yu, M.; Fan, J.; Wang, H.; Zhao, P.; Zhao, G.; Zeng, W.; Chen, C.; Wang, Y.; Wang, A.; et al. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis. 2023, 11, 103–134. [Google Scholar] [CrossRef]
- Carron, C.; Shi, D.L. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. Wiley Interdiscip. Rev. Dev. Biol. 2016, 5, 150–168. [Google Scholar] [CrossRef]
- Fuentes, R.; Tajer, B.; Kobayashi, M.; Pelliccia, J.L.; Langdon, Y.; Abrams, E.W.; Mullins, M.C. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr. Top. Dev. Biol. 2020, 140, 341–389. [Google Scholar] [CrossRef]
- De Robertis, E.M.; Larraín, J.; Oelgeschläger, M.; Wessely, O. The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 2000, 1, 171–181. [Google Scholar] [CrossRef]
- Shi, D.L. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J. Genet. Genom. 2023, 50, 63–76. [Google Scholar] [CrossRef]
- Capdevila, I.; Izpisúa Belmonte, J.C. Knowing left from right: The molecular basis of laterality defects. Mol. Med. Today 2000, 6, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hikasa, H.; Sokol, S.Y. Wnt signaling in vertebrate axis specification. Cold Spring Harb. Perspect. Biol. 2013, 5, a007955. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.L. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell. Mol. Life Sci. 2022, 79, 586. [Google Scholar] [CrossRef]
- Yamaguchi, T.P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol. 2001, 11, R713–R724. [Google Scholar] [CrossRef]
- Petersen, C.P.; Reddien, P.W. Wnt signaling and the polarity of the primary body axis. Cell 2009, 139, 1056–1068. [Google Scholar] [CrossRef]
- Kozin, V.V.; Borisenko, I.E.; Kostyuchenko, R.P. Establishment of the axial polarity and cell fate in Metazoa via canonical Wnt signaling: New insights from sponges and annelids. Biol. Bull. Russ. Acad. Sci. 2019, 46, 14–25. [Google Scholar] [CrossRef]
- Holstein, T.W. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev. Biol. 2022, 487, 74–98. [Google Scholar] [CrossRef]
- Sharma, R.P.; Chopra, V.L. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol. 1976, 48, 461–465. [Google Scholar] [CrossRef]
- Nüsslein-Volhard, C.; Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 1980, 287, 795–801. [Google Scholar] [CrossRef]
- Rijsewijk, F.; Schuermann, M.; Wagenaar, E.; Parren, P.; Weigel, D.; Nusse, R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987, 50, 649–657. [Google Scholar] [CrossRef]
- Cabrera, C.V.; Alonso, M.C.; Johnston, P.; Phillips, R.G.; Lawrence, P.A. Phenocopies induced with antisense RNA identify the wingless gene. Cell 1987, 50, 659–663. [Google Scholar] [CrossRef]
- Nusse, R.; Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982, 31, 99–109. [Google Scholar] [CrossRef]
- Nusse, R.; van Ooyen, A.; Cox, D.; Fung, Y.K.; Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 1984, 307, 131–136. [Google Scholar] [CrossRef]
- McMahon, A.P.; Moon, R.T. int-1--a proto-oncogene involved in cell signalling. Development 1989, 107, 161–167. [Google Scholar] [CrossRef]
- Green, J.; Nusse, R.; van Amerongen, R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb. Perspect. Biol. 2014, 6, a009175. [Google Scholar] [CrossRef]
- Niehrs, C. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 767–779. [Google Scholar] [CrossRef]
- Stricker, S.; Rauschenberger, V.; Schambony, A. ROR-family receptor tyrosine kinases. Curr. Top. Dev. Biol. 2017, 123, 105–142. [Google Scholar] [CrossRef]
- Jiang, X.; Cong, F. Novel regulation of Wnt signaling at the proximal membrane level. Trends Biochem. Sci. 2016, 41, 773–783. [Google Scholar] [CrossRef]
- Lehoczky, J.A.; Tabin, C.J. Rethinking WNT signalling. Nature 2018, 557, 495–496. [Google Scholar] [CrossRef]
- Adler, P.N.; Wallingford, J.B. From planar cell polarity to ciliogenesis and back: The curious tale of the PPE and CPLANE proteins. Trends Cell Biol. 2017, 27, 379–390. [Google Scholar] [CrossRef]
- De, A. Wnt/Ca2+ signaling pathway: A brief overview. Acta Biochim. Biophys. Sin. 2011, 43, 745–756. [Google Scholar] [CrossRef]
- Gao, C.; Chen, Y.G. Dishevelled: The hub of Wnt signaling. Cell. Signal. 2010, 22, 717–727. [Google Scholar] [CrossRef]
- Shi, D.L. Decoding Dishevelled-mediated Wnt signaling in vertebrate early development. Front. Cell Dev. Biol. 2020, 8, 588370. [Google Scholar] [CrossRef]
- Lee, H.J.; Shi, D.L.; Zheng, J.J. Conformational change of Dishevelled plays a key regulatory role in the Wnt signaling pathways. Elife 2015, 4, e08142. [Google Scholar] [CrossRef]
- Qi, J.; Lee, H.J.; Saquet, A.; Cheng, X.N.; Shao, M.; Zheng, J.J.; Shi, D.L. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J. Biol. Chem. 2017, 292, 5898–5908. [Google Scholar] [CrossRef]
- Tauriello, D.V.; Jordens, I.; Kirchner, K.; Slootstra, J.W.; Kruitwagen, T.; Bouwman, B.A.; Noutsou, M.; Rüdiger, S.G.; Schwamborn, K.; Schambony, A.; et al. Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc. Natl. Acad. Sci. USA 2012, 109, E812–E820. [Google Scholar] [CrossRef]
- Davey, C.F.; Moens, C.B. Planar cell polarity in moving cells: Think globally, act locally. Development 2017, 144, 187–200. [Google Scholar] [CrossRef]
- Spemann, H.; Mangold, H. Über induktion von embryonalanlagen durch implantation artfremder organisatoren. Arch. Für Mikrosk. Anat. Und Entwicklungsmechanik 1924, 100, 599–638. [Google Scholar] [CrossRef]
- Anderson, C.; Stern, C.D. Organizers in development. Curr. Top. Dev. Biol. 2016, 117, 435–454. [Google Scholar] [CrossRef]
- De Robertis, E.M. Spemann’s organizer and self-regulation in amphibian embryos. Nat. Rev. Mol. Cell Biol. 2006, 7, 296–302. [Google Scholar] [CrossRef]
- Harland, R.; Gerhart, J. Formation and function of Spemann’s organizer. Annu. Rev. Cell Dev. Biol. 1997, 13, 611–667. [Google Scholar] [CrossRef]
- Jones, W.D.; Mullins, M.C. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr. Top. Dev. Biol. 2022, 150, 149–209. [Google Scholar] [CrossRef]
- Kumar, V.; Park, S.; Lee, U.; Kim, J. The organizer and its signaling in embryonic development. J. Dev. Biol. 2021, 9, 47. [Google Scholar] [CrossRef]
- Niehrs, C. Regionally specific induction by the Spemann-Mangold organizer. Nat. Rev. Genet. 2004, 5, 425–434. [Google Scholar] [CrossRef]
- McMahon, A.P.; Moon, R.T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 1989, 58, 1075–1084. [Google Scholar] [CrossRef]
- Smith, W.C.; Harland, R.M. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 1991, 67, 753–765. [Google Scholar] [CrossRef]
- Sokol, S.; Christian, J.L.; Moon, R.T.; Melton, D.A. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 1991, 67, 741–752. [Google Scholar] [CrossRef]
- Funayama, N.; Fagotto, F.; McCrea, P.; Gumbiner, B.M. Embryonic axis induction by the armadillo repeat domain of beta-catenin: Evidence for intracellular signaling. J. Cell Biol. 1995, 128, 959–968. [Google Scholar] [CrossRef]
- Sokol, S.Y.; Klingensmith, J.; Perrimon, N.; Itoh, K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development 1995, 121, 1637–1647. [Google Scholar] [CrossRef]
- Klein, P.S.; Melton, D.A. A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 1996, 93, 8455–8459. [Google Scholar] [CrossRef]
- Bellipanni, G.; Varga, M.; Maegawa, S.; Imai, Y.; Kelly, C.; Myers, A.P.; Chu, F.; Talbot, W.S.; Weinberg, E.S. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development 2006, 133, 1299–1309. [Google Scholar] [CrossRef]
- Kelly, C.; Chin, A.J.; Leatherman, J.L.; Kozlowski, D.J.; Weinberg, E.S. Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 2000, 127, 3899–3911. [Google Scholar] [CrossRef]
- Laurent, M.N.; Blitz, I.L.; Hashimoto, C.; Rothbächer, U.; Cho, K.W. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 1997, 124, 4905–4916. [Google Scholar] [CrossRef]
- Lemaire, P.; Garrett, N.; Gurdon, J.B. Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 1995, 81, 85–94. [Google Scholar] [CrossRef]
- Sokol, S.Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 1996, 6, 1456–1467. [Google Scholar] [CrossRef]
- Houston, D.W.; Elliott, K.L.; Coppenrath, K.; Wlizla, M.; Horb, M.E. Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: Analysis of maternal-effect wnt11b mutants. Development 2022, 149, dev200552. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Cheng, X.N.; Li, Y.L.; Zhang, C.; Saquet, A.; Liu, Y.Y.; Shao, M.; Shi, D.L. Mutational analysis of dishevelled genes in zebrafish reveals distinct functions in embryonic patterning and gastrulation cell movements. PLoS Genet. 2018, 14, e1007551. [Google Scholar] [CrossRef]
- Yan, L.; Chen, J.; Zhu, X.; Sun, J.; Wu, X.; Shen, W.; Zhang, W.; Tao, Q.; Meng, A. Maternal Huluwa dictates the embryonic body axis through beta-catenin in vertebrates. Science 2018, 362, eaat1045. [Google Scholar] [CrossRef]
- He, M.; Zhang, R.; Jiao, S.; Zhang, F.; Ye, D.; Wang, H.; Sun, Y. Nanog safeguards early embryogenesis against global activation of maternal beta-catenin activity by interfering with TCF factors. PLoS Biol. 2020, 18, e3000561. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, P.; Wei, J.; Li, Y.; Zhai, J.; Zheng, T.; Tao, Q. Lysosomal degradation of the maternal dorsal determinant Hwa safeguards dorsal body axis formation. EMBO Rep. 2021, 22, e53185. [Google Scholar] [CrossRef]
- Azbazdar, Y.; De Robertis, E.M. The early dorsal signal in vertebrate embryos requires endolysosomal membrane trafficking. Bioessays 2024, 46, e2300179. [Google Scholar] [CrossRef]
- Tejeda-Muñoz, N.; De Robertis, E.M. Lysosomes are required for early dorsal signaling in the Xenopus embryo. Proc. Natl. Acad. Sci. USA 2022, 119, e2201008119. [Google Scholar] [CrossRef]
- Chang, L.S.; Kim, M.; Glinka, A.; Reinhard, C.; Niehrs, C. The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. Elife 2020, 9, e51248. [Google Scholar] [CrossRef]
- Rong, X.; Zhou, Y.; Liu, Y.; Zhao, B.; Wang, B.; Wang, C.; Gong, X.; Tang, P.; Lu, L.; Li, Y.; et al. Glutathione peroxidase 4 inhibits Wnt/β-catenin signaling and regulates dorsal organizer formation in zebrafish embryos. Development 2017, 144, 1687–1697. [Google Scholar] [CrossRef]
- Wang, B.; Rong, X.; Zhou, Y.; Liu, Y.; Sun, J.; Zhao, B.; Deng, B.; Lu, L.; Lu, L.; Li, Y.; et al. Eukaryotic initiation factor 4A3 inhibits Wnt/β-catenin signaling and regulates axis formation in zebrafish embryos. Development 2021, 148, dev198101. [Google Scholar] [CrossRef]
- Zhang, H.; Rong, X.; Wang, C.; Liu, Y.; Lu, L.; Li, Y.; Zhao, C.; Zhou, J. VBP1 modulates Wnt/β-catenin signaling by mediating the stability of the transcription factors TCF/LEFs. J. Biol. Chem. 2020, 295, 16826–16839. [Google Scholar] [CrossRef]
- Herbst, C. Experimentelle Untersuchungen über den Einfluss der veränderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwickelung der Thiere. Arch. Für Entwicklungsmechanik Org. 1896, 2, 455–516. [Google Scholar] [CrossRef]
- Niehrs, C. The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation. Dev. Biol. 2022, 482, 1–6. [Google Scholar] [CrossRef]
- Christian, J.L.; Moon, R.T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 1993, 7, 13–28. [Google Scholar] [CrossRef]
- Bouwmeester, T.; Kim, S.H.; Sasai, Y.; Lu, B.; De Robertis, E.M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 1996, 382, 595–601. [Google Scholar] [CrossRef]
- Glinka, A.; Wu, W.; Delius, H.; Monaghan, A.P.; Blumenstock, C.; Niehrs, C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998, 391, 357–362. [Google Scholar] [CrossRef]
- Leyns, L.; Bouwmeester, T.; Kim, S.H.; Piccolo, S.; De Robertis, E.M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 1997, 88, 747–756. [Google Scholar] [CrossRef]
- Piccolo, S.; Agius, E.; Leyns, L.; Bhattacharyya, S.; Grunz, H.; Bouwmeester, T.; De Robertis, E.M. The head inducer Cerberus is a multifunctional antagonist of nodal, BMP and Wnt signals. Nature 1999, 397, 707–710. [Google Scholar] [CrossRef]
- Wang, S.; Krinks, M.; Lin, K.; Luyten, F.P.; Moos, M. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 1997, 88, 757–766. [Google Scholar] [CrossRef]
- Itoh, K.; Sokol, S.Y. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm. Mech. Dev. 1997, 61, 113–125. [Google Scholar] [CrossRef]
- Kiecker, C.; Niehrs, C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 2001, 128, 4189–4201. [Google Scholar] [CrossRef]
- McGrew, L.L.; Lai, C.J.; Moon, R.T. Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev. Biol. 1995, 172, 337–342. [Google Scholar] [CrossRef]
- Polevoy, H.; Gutkovich, Y.E.; Michaelov, A.; Volovik, Y.; Elkouby, Y.M.; Frank, D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep. 2019, 20, e45842. [Google Scholar] [CrossRef]
- Green, D.G.; Whitener, A.E.; Mohanty, S.; Mistretta, B.; Gunaratne, P.; Yeh, A.T.; Lekven, A.C. Wnt signaling regulates neural plate patterning in distinct temporal phases with dynamic transcriptional outputs. Dev. Biol. 2020, 462, 152–164. [Google Scholar] [CrossRef]
- Hikasa, H.; Ezan, J.; Itoh, K.; Li, X.; Klymkowsky, M.W.; Sokol, S.Y. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev. Cell 2010, 19, 521–532. [Google Scholar] [CrossRef]
- Kazanskaya, O.; Glinka, A.; del Barco Barrantes, I.; Stannek, P.; Niehrs, C.; Wu, W. R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev. Cell 2004, 7, 354–525. [Google Scholar] [CrossRef]
- Reis, A.H.; Sokol, S.Y. Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification. Sci. Rep. 2021, 11, 13433. [Google Scholar] [CrossRef]
- Haegel, H.; Larue, L.; Ohsugi, M.; Fedorov, L.; Herrenknecht, K.; Kemler, R. Lack of beta-catenin affects mouse development at gastrulation. Development 1995, 121, 3529–3537. [Google Scholar] [CrossRef]
- Huelsken, J.; Vogel, R.; Brinkmann, V.; Erdmann, B.; Birchmeier, C.; Birchmeier, W. Requirement for beta-catenin in anterior-posterior axis formation in mice. J. Cell Biol. 2000, 148, 567–578. [Google Scholar] [CrossRef]
- Marikawa, Y. Wnt/beta-catenin signaling and body plan formation in mouse embryos. Semin. Cell Dev. Biol. 2006, 17, 175–184. [Google Scholar] [CrossRef]
- Heisenberg, C.P.; Tada, M.; Rauch, G.J.; Saúde, L.; Concha, M.L.; Geisler, R.; Geisler, R.; Stemple, D.L.; Smith, J.C.; Wilson, S.W. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000, 405, 76–81. [Google Scholar] [CrossRef]
- Ulrich, F.; Concha, M.L.; Heid, P.J.; Voss, E.; Witzel, S.; Roehl, H.; Tada, M.; Wilson, S.W.; Adams, R.J.; Soll, D.R.; et al. Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development 2003, 130, 5375–5384. [Google Scholar] [CrossRef]
- Tada, M.; Smith, J.C. Xwnt11 is a target of Xenopus Brachyury: Regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 2000, 127, 2227–2238. [Google Scholar] [CrossRef]
- Van Itallie, E.S.; Field, C.M.; Mitchison, T.J.; Kirschner, M.W. Dorsal lip maturation and initial archenteron extension depend on Wnt11 family ligands. Dev. Biol. 2023, 493, 67–79. [Google Scholar] [CrossRef]
- Kraft, B.; Berger, C.D.; Wallkamm, V.; Steinbeisser, H.; Wedlich, D. Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. J. Cell Biol. 2012, 198, 695–709. [Google Scholar] [CrossRef]
- Ulrich, F.; Krieg, M.; Schötz, E.M.; Link, V.; Castanon, I.; Schnabel, V.; Taubenberger, A.; Mueller, D.; Puech, P.H.; Heisenberg, C.P. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 2005, 9, 555–564. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, C.; Tu, T.; Sun, M.; Liu, D.; Lu, D.; Feng, J.; Yang, D.; Liu, F.; Yan, X. Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension. Nat. Commun. 2013, 4, 2803. [Google Scholar] [CrossRef]
- Hung, I.C.; Chen, T.M.; Lin, J.P.; Tai, Y.L.; Shen, T.L.; Lee, S.J. Wnt5b integrates Fak1a to mediate gastrulation cell movements via Rac1 and Cdc42. Open Biol. 2020, 10, 190273. [Google Scholar] [CrossRef]
- Lin, S.; Baye, L.M.; Westfall, T.A.; Slusarski, D.C. Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. J. Cell Biol. 2010, 190, 263–278. [Google Scholar] [CrossRef]
- Kim, S.H.; Yamamoto, A.; Bouwmeester, T.; Agius, E.; Robertis, E.M. The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. Development 1998, 125, 4681–4690. [Google Scholar] [CrossRef]
- Schambony, A.; Wedlich, D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell 2007, 12, 779–792. [Google Scholar] [CrossRef]
- Chu, C.W.; Sokol, S.Y. Wnt proteins can direct planar cell polarity in vertebrate ectoderm. Elife 2016, 5, e16463. [Google Scholar] [CrossRef]
- Andre, P.; Song, H.; Kim, W.; Kispert, A.; Yang, Y. Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation. Development 2015, 142, 1516–1527. [Google Scholar] [CrossRef]
- Hardy, K.M.; Garriock, R.J.; Yatskievych, T.A.; D’Agostino, S.L.; Antin, P.B.; Krieg, P.A. Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation. Dev. Biol. 2008, 320, 391–401. [Google Scholar] [CrossRef]
- Sweetman, D.; Wagstaff, L.; Cooper, O.; Weijer, C.; Münsterberg, A. The migration of paraxial and lateral plate mesoderm cells emerging from the late primitive streak is controlled by different Wnt signals. BMC Dev. Biol. 2008, 8, 63. [Google Scholar] [CrossRef]
- Cheng, X.N.; Shao, M.; Li, J.T.; Wang, Y.F.; Qi, J.; Xu, Z.G.; Shi, D.L. Leucine repeat adaptor protein 1 interacts with Dishevelled to regulate gastrulation cell movements in zebrafish. Nat. Commun. 2017, 8, 1353. [Google Scholar] [CrossRef]
- Djiane, A.; Riou, J.; Umbhauer, M.; Boucaut, J.; Shi, D.L. Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 2000, 127, 3091–3100. [Google Scholar] [CrossRef]
- Čapek, D.; Smutny, M.; Tichy, A.M.; Morri, M.; Janovjak, H.; Heisenberg, C.P. Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration. Elife 2019, 8, e42093. [Google Scholar] [CrossRef] [PubMed]
- Wallingford, J.B.; Rowning, B.A.; Vogeli, K.M.; Rothbächer, U.; Fraser, S.E.; Harland, R.M. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000, 405, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hamblet, N.S.; Mark, S.; Dickinson, M.E.; Brinkman, B.C.; Segil, N.; Fraser, S.E.; Chen, P.; Wallingford, J.B.; Wynshaw-Boris, A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006, 133, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, S.L.; Ray, S.; Li, S.; Hamblet, N.S.; Lijam, N.; Tsang, M.; Greer, J.; Kardos, N.; Wang, J.; Sussman, D.J.; et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet. 2008, 4, e1000259. [Google Scholar] [CrossRef] [PubMed]
- Ngo, J.; Hashimoto, M.; Hamada, H.; Wynshaw-Boris, A. Deletion of the Dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Dev. Biol. 2020, 464, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, J.D.; Miller, J.R.; Shulman, J.M.; Moon, R.T.; Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 1998, 12, 2610–2622. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Barbosa, F.; Kajita, M.; Morel, V.; Wada, H.; Okamoto, H.; Martinez Arias, A.; Fujita, Y.; Wilson, S.W.; Tada, M. Flamingo regulates epiboly and convergence/extension movements through cell cohesive and signalling functions during zebrafish gastrulation. Development 2009, 136, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Kiskowski, M.; Pouille, P.A.; Farge, E.; Solnica-Krezel, L. Cooperation of polarized cell intercalations drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. J. Cell Biol. 2008, 180, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Barbosa, F.; Concha, M.L.; Takeuchi, M.; Ueno, N.; Wilson, S.W.; Tada, M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003, 130, 4037–4046. [Google Scholar] [CrossRef]
- Takeuchi, M.; Nakabayashi, J.; Sakaguchi, T.; Yamamoto, T.S.; Takahashi, H.; Takeda, H.; Ueno, N. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr. Biol. 2003, 13, 674–679. [Google Scholar] [CrossRef]
- Veeman, M.T.; Slusarski, D.C.; Kaykas, A.; Louie, S.H.; Moon, R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003, 13, 680–685. [Google Scholar] [CrossRef]
- Roszko, I.; Sepich, D.S.; Jessen, J.R.; Chandrasekhar, A.; Solnica-Krezel, L. A dynamic intracellular distribution of Vangl2 accompanies cell polarization during zebrafish gastrulation. Development 2015, 142, 2508–2520. [Google Scholar] [CrossRef]
- Darken, R.S.; Scola, A.M.; Rakeman, A.S.; Das, G.; Mlodzik, M.; Wilson, P.A. The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J. 2002, 21, 976–985. [Google Scholar] [CrossRef]
- Jessen, J.R.; Topczewski, J.; Bingham, S.; Sepich, D.S.; Marlow, F.; Chandrasekhar, A.; Solnica-Krezel, L. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nat. Cell Biol. 2002, 4, 610–615. [Google Scholar] [CrossRef]
- Park, M.; Moon, R.T. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat. Cell Biol. 2002, 4, 20–25. [Google Scholar] [CrossRef]
- Voiculescu, O.; Bertocchini, F.; Wolpert, L.; Keller, R.E.; Stern, C.D. The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 2007, 449, 1049–1052. [Google Scholar] [CrossRef]
- Ohkawara, B.; Yamamoto, T.S.; Tada, M.; Ueno, N. Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 2003, 130, 2129–2138. [Google Scholar] [CrossRef]
- Topczewski, J.; Sepich, D.S.; Myers, D.C.; Walker, C.; Amores, A.; Lele, Z.; Hammerschmidt, M.; Postlethwait, J.; Solnica-Krezel, L. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 2001, 1, 251–264. [Google Scholar] [CrossRef]
- Bai, Y.; Tan, X.; Zhang, H.; Liu, C.; Zhao, B.; Li, Y.; Lu, L.; Liu, Y.; Zhou, J. Ror2 receptor mediates Wnt11 ligand signaling and affects convergence and extension movements in zebrafish. J. Biol. Chem. 2014, 289, 20664–20676. [Google Scholar] [CrossRef]
- Hikasa, H.; Shibata, M.; Hiratani, I.; Taira, M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development 2002, 129, 5227–5239. [Google Scholar] [CrossRef]
- Kim, G.H.; Her, J.H.; Han, J.K. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J. Cell Biol. 2008, 182, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Macheda, M.L.; Sun, W.W.; Kugathasan, K.; Hogan, B.M.; Bower, N.I.; Halford, M.M.; Zhang, Y.F.; Jacques, B.E.; Lieschke, G.J.; Dabdoub, A.; et al. The Wnt receptor Ryk plays a role in mammalian planar cell polarity signaling. J. Biol. Chem. 2012, 287, 29312–29323. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Naito, M.; Daulat, A.; Angers, S.; Ciruna, B. Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate development. Development 2013, 140, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Yen, W.W.; Williams, M.; Periasamy, A.; Conaway, M.; Burdsal, C.; Keller, R.; Lu, X.; Sutherland, A. PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 2009, 136, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Borchers, A.G.; Jolicoeur, C.; Rayburn, H.; Baker, J.C.; Tessier-Lavigne, M. PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 2004, 430, 93–98. [Google Scholar] [CrossRef]
- Williams, M.; Yen, W.; Lu, X.; Sutherland, A. Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate. Dev. Cell 2014, 29, 34–46. [Google Scholar] [CrossRef]
- Lei, Y.; Kim, S.E.; Chen, Z.; Cao, X.; Zhu, H.; Yang, W.; Shaw, G.M.; Zheng, Y.; Zhang, T.; Wang, H.Y.; et al. Variants identified in PTK7 associated with neural tube defects. Mol. Genet. Genom. Med. 2019, 7, e00584. [Google Scholar] [CrossRef]
- MacGowan, J.; Cardenas, M.; Williams, M.K. Vangl2 deficient zebrafish exhibit hallmarks of neural tube closure defects. bioRxiv 2023. [Google Scholar] [CrossRef]
- Marlow, F.; Zwartkruis, F.; Malicki, J.; Neuhauss, S.C.; Abbas, L.; Weaver, M.; Driever, W.; Solnica-Krezel, L. Functional interactions of genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primordium in zebrafish. Dev. Biol. 1998, 203, 382–399. [Google Scholar] [CrossRef]
- Piotrowski, T.; Schilling, T.F.; Brand, M.; Jiang, Y.J.; Heisenberg, C.P.; Beuchle, D.; Grandel, H.; van Eeden, F.J.; Furutani-Seiki, M.; Granato, M.; et al. Jaw and branchial arch mutants in zebrafish II: Anterior arches and cartilage differentiation. Development 1996, 123, 345–356. [Google Scholar] [CrossRef]
- Axelrod, J.D. Planar cell polarity signaling in the development of left-right asymmetry. Curr. Opin. Cell Biol. 2020, 62, 61–69. [Google Scholar] [CrossRef]
- Hamada, H.; Tam, P. Diversity of left-right symmetry breaking strategy in animals. F1000Res 2000, 9, F1000. [Google Scholar] [CrossRef]
- Little, R.B.; Norris, D.P. Right, left and cilia: How asymmetry is established. Semin. Cell Dev. Biol. 2021, 110, 11–18. [Google Scholar] [CrossRef]
- Forrest, K.; Barricella, A.C.; Pohar, S.A.; Hinman, A.M.; Amack, J.D. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front. Cell Dev. Biol. 2022, 10, 1035513. [Google Scholar] [CrossRef]
- Grimes, D.T.; Burdine, R.D. Left-right patterning: Breaking symmetry to asymmetric morphogenesis. Trends Genet. 2017, 33, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.T. Making and breaking symmetry in development, growth and disease. Development 2019, 146, dev170985. [Google Scholar] [CrossRef]
- Mercola, M.; Levin, M. Left-right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 2001, 17, 779–805. [Google Scholar] [CrossRef]
- Raya, A.; Izpisúa Belmonte, J.C. Left-right asymmetry in the vertebrate embryo: From early information to higher-level integration. Nat. Rev. Genet. 2006, 7, 283–293. [Google Scholar] [CrossRef]
- Walentek, P.; Schneider, I.; Schweickert, A.; Blum, M. Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development. PLoS ONE 2013, 8, e73646. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, K.; Hashimoto, M.; Ajima, R.; Takaoka, K.; Shinohara, K.; Ikawa, Y.; Nishimura, H.; McMahon, A.P.; Willert, K.; Okada, Y.; et al. A Wnt5 activity asymmetry and intercellular signaling via PCP proteins polarize node cells for left-right symmetry breaking. Dev. Cell 2017, 40, 439–452.e4. [Google Scholar] [CrossRef] [PubMed]
- Antic, D.; Stubbs, J.L.; Suyama, K.; Kintner, C.; Scott, M.P.; Axelrod, J.D. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS ONE 2010, 5, e8999. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Shinohara, K.; Wang, J.; Ikeuchi, S.; Yoshiba, S.; Meno, C.; Nonaka, S.; Takada, S.; Hatta, K.; Wynshaw-Boris, A.; et al. Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 2010, 12, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Sai, X.; Ikawa, Y.; Nishimura, H.; Mizuno, K.; Kajikawa, E.; Katoh, T.A.; Kimura, T.; Shiratori, H.; Takaoka, K.; Hamada, H.; et al. Planar cell polarity-dependent asymmetric organization of microtubules for polarized positioning of the basal body in node cells. Development 2022, 149, dev200315. [Google Scholar] [CrossRef] [PubMed]
- Borovina, A.; Superina, S.; Voskas, D.; Ciruna, B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat. Cell Biol. 2010, 12, 407–412. [Google Scholar] [CrossRef]
- Mahaffey, J.P.; Grego-Bessa, J.; Liem, K.F., Jr.; Anderson, K.V. Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo. Development 2013, 140, 1262–1271. [Google Scholar] [CrossRef]
- Song, H.; Hu, J.; Chen, W.; Elliott, G.; Andre, P.; Gao, B.; Yang, Y. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 2010, 466, 378–382. [Google Scholar] [CrossRef]
- Chu, C.W.; Ossipova, O.; Ioannou, A.; Sokol, S.Y. Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. Sci. Rep. 2016, 6, 24104. [Google Scholar] [CrossRef]
- Hashimoto, M.; Hamada, H. Translation of anterior-posterior polarity into left-right polarity in the mouse embryo. Curr. Opin. Genet. Dev. 2010, 20, 433–437. [Google Scholar] [CrossRef]
- Tanaka, C.; Sakuma, R.; Nakamura, T.; Hamada, H.; Saijoh, Y. Long-range action of Nodal requires interaction with GDF1. Genes Dev. 2007, 21, 3272–3282. [Google Scholar] [CrossRef]
- Marques, S.; Borges, A.C.; Silva, A.C.; Freitas, S.; Cordenonsi, M.; Belo, J.A. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 2004, 18, 2342–2347. [Google Scholar] [CrossRef]
- Maerker, M.; Getwan, M.; Dowdle, M.E.; McSheene, J.C.; Gonzalez, V.; Pelliccia, J.L.; Hamilton, D.S.; Yartseva, V.; Vejnar, C.; Tingler, M.; et al. Bicc1 and Dicer regulate left-right patterning through post-transcriptional control of the Nodal inhibitor Dand5. Nat. Commun. 2021, 12, 5482. [Google Scholar] [CrossRef]
- Minegishi, K.; Rothé, B.; Komatsu, K.R.; Ono, H.; Ikawa, Y.; Nishimura, H.; Katoh, T.A.; Kajikawa, E.; Sai, X.; Miyashita, E.; et al. Fluid flow-induced left-right asymmetric decay of Dand5 mRNA in the mouse embryo requires a Bicc1-Ccr4 RNA degradation complex. Nat. Commun. 2021, 12, 4071. [Google Scholar] [CrossRef]
- Kitajima, K.; Oki, S.; Ohkawa, Y.; Sumi, T.; Meno, C. Wnt signaling regulates left-right axis formation in the node of mouse embryos. Dev. Biol. 2013, 380, 222–232. [Google Scholar] [CrossRef]
- Nakamura, T.; Saito, D.; Kawasumi, A.; Shinohara, K.; Asai, Y.; Takaoka, K.; Dong, F.; Takamatsu, A.; Belo, J.A.; Mochizuki, A.; et al. Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat. Commun. 2012, 3, 1322. [Google Scholar] [CrossRef]
- Derrick, C.J.; Szenker-Ravi, E.; Santos-Ledo, A.; Alqahtani, A.; Yusof, A.; Eley, L.; Coleman, A.H.L.; Tohari, S.; Ng, A.Y.; Venkatesh, B.; et al. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum. Mol. Genet. 2024, 33, 150–169. [Google Scholar] [CrossRef]
- Bellchambers, H.M.; Ware, S.M. Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum. Mol. Genet. 2021, 30, 2402–2415. [Google Scholar] [CrossRef]
- Winata, C.L.; Kondrychyn, I.; Kumar, V.; Srinivasan, K.G.; Orlov, Y.; Ravishankar, A.; Prabhakar, S.; Stanton, L.W.; Korzh, V.; Mathavan, S. Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet. 2013, 9, e1003852. [Google Scholar] [CrossRef]
- Bellchambers, H.M.; Ware, S.M. ZIC3 in heterotaxy. Adv. Exp. Med. Biol. 2018, 1046, 301–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, D.-L. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J. Dev. Biol. 2024, 12, 20. https://doi.org/10.3390/jdb12030020
Shi D-L. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. Journal of Developmental Biology. 2024; 12(3):20. https://doi.org/10.3390/jdb12030020
Chicago/Turabian StyleShi, De-Li. 2024. "Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes" Journal of Developmental Biology 12, no. 3: 20. https://doi.org/10.3390/jdb12030020