Effects of Progressive Resistance Training After Hip Fracture: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Search Strategy
2.4. Data Collection and Synthesis
2.5. Data Extraction
2.6. Assessment of Risk of Bias and Quality of Evidence Rating
3. Results
Author | Sample | Age | Intervention Protocol | Time | Exercises, Series, Repetitions, %1RM | Outcome Measures | Assessment Test |
---|---|---|---|---|---|---|---|
Mangione et al., 2005 [26] | EG = 30 CG = 11 | Age range = 60–72 EG = 79.8 ± 5.6 CG = 77.8 ± 7.3 | Resistance training: bilateral hip extensors; hip abductors and adductors; knee extensors and knee flexors. | Time since fracture = 5–8 months Intervention time = 3 months 2 days/week Session time = 30–40 min | 3 exercises, 3 series, 8 repetition, 80%1RM | Physical disability, depression, cognitive capacity, independence, cardiovascular capacity, gait speed, strength. | SF36, geriatric depression scale, mini-exam Folstein, Barthel indx, 6 min walk test, gait speed in GatiMatII, isometric strength of hip extensors, hip abductors, knee extensors and ankle plantar flexors with dynamomenter |
Host et al., 2007 [29] | EG = 31 CG = 30 Male = 29 Female = 71 | Age range = 79–85 | Phase 1 = improve flexibility, balance, coordination, gait speed, strength. Phase 2 = seated work with isokinetic dynamometer on knee extensors, plantar flexors, knee extensors and leg press. | Time since fracture = 6 months Intervention time = 3 months 1–3 days/week Session time = 45–90 min | 3 exercise, 1–2 series, 6–8 repetition, 85%1RM | Balance, physical disability, cognitive ability, independence, gait speed, strength. | 9-item modified physical performance test |
Sylliaas et al., 2011 [30] | EG = 100 (85 female) CG = 50 (40 female) | Age range ≥ 65 EG = 82.1± 6.5 CG = 82.9 ± 5.8 | 4 exercises: knee flexors, knee extensors, step forward, knee extension. | Time since fracture = 12 months Intervention time = 3 months 2 days in person and 1 in home Session time = 45–60 min | 4 exercise, 3 series, 15–8 repetition, 70–80%1RM | Balance, independence, quality of life, cardiovascular capacity, gait speed, functional capacity, flexibility, strength. | BBS test, NEADL daily life, SF12, 6 min walk test, timed up-and-go test, sit-to-stand test, gait speed from 10 m, 1RM knee flexion and extension |
Portegijs et al., 2014 [27] | EG = 23 (15 female) CG = 22 (16 female) | Age range = 60–85 EG = 73.8 ± 6.6 CG = 74.1 ± 7.2 | Strength exercises: leg press, knee flexors, hip abductor, hip adductor, low plantar flexors. high load and speed. | Time since fracture = 6 months Intervention time = 3 months Session time = 1–1,5 horas | 4–5 exercise, maximum repetitions | Balance, gait speed, functional capacity, strength. | BBS test, 20-item soc, gait speed from 10 m, timed up-and-go test, isometric knee extension, |
Okoro et al., 2016 [31] | EG = 25 (15 female) CG = 24 (10 female) | Age range = 65–76 EG = 65.15 ± 9.06 CG = 66.33 ± 11.02 | Exercises: sitting, standing, blocking steps, climbing stairs, walking, knee extensors. | Time since fracture = 9–12 months Intervention time = 3 months | 5 exercise 1 series, 3–10 repetitions | Cardiovascular capacity, functional capacity, strength. | 6 min walk test, timed up-and-go test, SCPT test, sit-to-stand test, maximal contraction of the operated leg quadriceps, stair climb performance |
Overgaard et al., 2021 [28] | EG = 100 (81 female) CG = 50 | Age range = 77–81 EG = 78.3 ± 7.9 CG = 75.7 ± 8.1 | Functional exercises: standing, sitting, climbing stairs, walking, prt exercises: leg press and knee extensors. | Time since fracture = 18 days Intervention time = 3 months Session time = 60 min | 2 exercise, 3 series, 15–12−10 repetitions, 60–80%RM | Balance, physical disability, independence, quality of life, cardiovascular capacity, gait speed, functional capacity, strength. | SF36, Bathel 20, 6 min walk test, 10 min walk test, timed up-and-go test, maximal voluntary isometric force of knee extension, short physical performance battery |
Soukkio et al., 2022 [32] | EG = 61 (50 female) CG = 60 (41 female) | Age range = 65–81 EG = 83 ± 6 CG = 80 ± 7 | Multiple-rep ankle weights knee flexors, knee extension, hip extension, hip flexion | Time since fracture = 2 weeks Intervention time = 3 months Session time = 60 min | Multiple repetition, 12–17 RPE | Balance, cognitive capacity, independence, gait speed, functional capacity, strength. | Short physical performance test, mini-mental MMSE, IADL daily life test, handgrip strength |
Outcomes | Total Number of Studies | Show Significant Improvements | Do Not Show Significant Improvements |
---|---|---|---|
Strength | 6 | 6 | 0 |
Functional capacity | 7 | 6 | 1 |
Gait speed | 5 | 3 | 2 |
Cardiovascular disease | 4 | 4 | 0 |
Flexibility | 3 | 2 | 1 |
Balance | 4 | 3 | 1 |
Self-reported F.F./physical disability | 1 | 1 | |
Depression | 1 | 0 | 1 |
Independence | 3 | 1 | 2 |
Quality of life | 1 | 0 | 1 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, A.C.; Ebeling, M.; Drefahl, S.; Hedström, M.; Ek, S.; Sandström, G.; Modig, K. The Impact of Hip Fracture on Geriatric Care and Mortality Among Older Swedes: Mapping Care Trajectories and Their Determinants. Am. J. Epidemiol. 2023, 192, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Vaishya, R.; Vaish, A. Falls in Older Adults are Serious. Indian J. Orthop. 2020, 54, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Gonul, R.; Tasar, P.T.; Tuncer, K.; Karasahin, O.; Binici, D.N.; Sevinc, C.; Turgut, M.; Sahin, S. Mortality-Related Risk Factors in Geriatric Patients with Hip Fracture. Ann. Geriatr. Med. Res. 2023, 27, 126–133. [Google Scholar] [CrossRef]
- Dimet-Wiley, A.; Golovko, G.; Watowich, S.J. One-Year Postfracture Mortality Rate in Older Adults With Hip Fractures Relative to Other Lower Extremity Fractures: Retrospective Cohort Study. JMIR Aging 2022, 5, e32683. [Google Scholar] [CrossRef]
- Ho-Le, T.P.; Nguyen, T.V. Hip Fracture and Mortality: A Loss of Life Expectancy Interpretation. J. Bone Miner. Res. 2021, 36, 2457–2458. [Google Scholar] [CrossRef]
- Black, D.M.; Bauer, D.C.; Vittinghof, E.; Lui, L.Y.; Grauer, A.; Marin, F.; Khosla, S.; de Papp, A.; Mitlak, B.; Cauley, J.A.; et al. Treatment-Related Changes in Bone Mineral Density as a Surrogate Biomarker for Fracture Risk Reduction: Meta-Regression Analyses of Individual Patient Data from Multiple Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2020, 8, 672–682. [Google Scholar] [CrossRef]
- Feng, J.N.; Zhang, C.G.; Li, B.H. Global Burden of Hip Fracture: The Global Burden of Disease Study. Osteoporos. Int. 2024, 35, 41–52. [Google Scholar] [CrossRef]
- Magaziner, J.; Hawkes, W.; Hebel, J.R.; Zimmerman, S.I.; Fox, K.M.; Dolan, M.; Felsenthal, G.; Kenzora, J. Recovery from Hip Fracture in Eight Domains of Function. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M498–M507. [Google Scholar] [CrossRef]
- Norton, R.; Butler, M.; Robinson, E.; Lee-Joe, T.; Campbell, A.J. Declines in Physical Functioning Attributable to Hip Fracture Among Older People: A Follow-Up Study of Case-Control Participants. Disabil. Rehabil. 2000, 22, 345–351. [Google Scholar] [CrossRef]
- Visser, M.; Harris, T.B.; Fox, K.M.; Hawkes, W.; Hebel, J.R.; Yu-Yahiro, J.; Michael, R.; Zimmerman, S.I.; Magaziner, J. Change in Muscle Mass and Muscle Strength After a Hip Fracture: Relationship to Mobility Recovery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M434–M440. [Google Scholar] [CrossRef]
- Volpi, E.; Nazemi, R.; Fujita, S. Muscle Tissue Changes with Aging. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.A.; Qaisar, R.; Karim, A.; Ahmad, F.; Franzese, F.; Awad, A.; Al-Masri, A.A.; Alsaeed, M.; Alkahtani, S.A. Predictors of Hip Fracture in 15 European Countries: A Longitudinal Study of 48,533 Geriatric Adults Using SHARE Dataset. Arch. Osteoporos. 2024, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Perez-Rodriguez, P.; Rabes-Rodríguez, L.; Sáez-Nieto, C.; Alarcón, T.A.; Queipo, R.; Otero-Puime, Á.; Montalvo, J.I.G. Handgrip Strength Predicts 1-Year Functional Recovery and Mortality in Hip Fracture Patients. Maturitas 2020, 141, 20–25. [Google Scholar] [CrossRef]
- Chang, C.M.; Lee, C.H.; Shih, C.M.; Wang, S.P.; Chiu, Y.C.; Hsu, C.E. Handgrip Strength: A Reliable Predictor of Postoperative Early Ambulation Capacity for the Elderly with Hip Fracture. BMC Musculoskelet. Disord. 2021, 22, 103. [Google Scholar] [CrossRef]
- Vochteloo, A.J.; Moerman, S.; Tuinebreijer, W.E.; Maier, A.B.; de Vries, M.R.; Bloem, R.M.; Nelissen, R.G.; Pilot, P. More than Half of Hip Fracture Patients Do Not Regain Mobility in the First Postoperative Year. Geriatr. Gerontol. Int. 2013, 13, 334–341. [Google Scholar] [CrossRef]
- Sherrington, C.; Lord, S.R.; Herbert, R.D. A Randomised Trial of Weightbearing Versus Non-Weight-Bearing Exercise for Improving Physical Ability in Inpatients After Hip Fracture. Aust. J. Physiother. 2003, 49, 15–22. [Google Scholar] [CrossRef]
- Kristensen, M.T.; Bandholm, T.; Bencke, J.; Ekdahl, C.; Kehlet, H. Knee Extension Strength, Postural Control and Function Are Related to Fracture Type and Thigh Edema in Patients with Hip Fracture. Clin. Biomech. 2009, 24, 218–224. [Google Scholar] [CrossRef]
- Alajlouni, D.A.; Bliuc, D.; Tran, T.S.; Blank, R.D.; Center, J.R. Muscle Strength and Physical Performance Contribute to and Improve Fracture Risk Prediction in Older People: A Narrative Review. Bone 2023, 172, 116755. [Google Scholar] [CrossRef]
- Overgaard, J.; Kristensen, M.T. Feasibility of Progressive Strength Training Shortly After Hip Fracture Surgery. World J. Orthop. 2013, 4, 248–258. [Google Scholar] [CrossRef]
- Ekegren, C.L.; Beck, B.; Climie, R.E.; Owen, N.; Dunstan, D.W.; Gabbe, B.J. Physical Activity and Sedentary Behavior Subsequent to Serious Orthopedic Injury: A Systematic Review. Arch. Phys. Med. Rehabil. 2018, 99, 164–177.e6. [Google Scholar] [CrossRef]
- Fleig, L.; McAllister, M.M.; Brasher, P.; Cook, W.L.; Guy, P.; Puyat, J.H.; Khan, K.M.; McKay, H.A.; Ashe, M.C. Sedentary Behavior and Physical Activity Patterns in Older Adults After Hip Fracture: A Call to Action. J. Aging Phys. Act. 2016, 24, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Binder, E.F.; Brown, M.; Sinacore, D.R.; Steger-May, K.; Yarasheski, K.E.; Schechtman, K.B. Effects of Extended Outpatient Rehabilitation After Hip Fracture. JAMA 2004, 292, 837. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0; The Cochrane Collaboration: United Kingdom, 2011. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Mangione, K.K.; Craik, R.L.; Tomlinson, S.S.; Palombaro, K.M. Can Elderly Patients Who Have Had a Hip Fracture Perform Moderate- to High-Intensity Exercise at Home? Phys. Ther. 2005, 85, 727–739. [Google Scholar] [CrossRef]
- Portegijs, E.; Read, S.; Pakkala, I.; Kallinen, M.; Heinonen, A.; Rantanen, T.; Alen, M.; Kiviranta, I.; Sihvonen, S.; Sipilä, S. Sense of Coherence: Effect on Adherence and Response to Resistance Training in Older People with Hip Fracture History. J. Aging Phys. Act. 2014, 22, 138–145. [Google Scholar] [CrossRef]
- Overgaard, J.A.; Kallemose, T.; Mangione, K.K.; Kristensen, M.T. Six Versus 12 Weeks of Outpatient Physical Therapy Including Progressive Resistance Training in Cognitively Intact Older Adults After Hip Fracture: A Multicenter Randomized Controlled Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1455–1462. [Google Scholar] [CrossRef]
- Host, H.H.; Sinacore, D.R.; Bohnert, K.L.; Steger-May, K.; Brown, M.; Binder, E.F. Training-Induced Strength and Functional Adaptations After Hip Fracture. Phys. Ther. 2007, 87, 292–303. [Google Scholar] [CrossRef]
- Sylliaas, H.; Brovold, T.; Wyller, T.B.; Bergland, A. Progressive Strength Training in Older Patients After Hip Fracture: A Randomized Controlled Trial. Age Ageing 2011, 40, 221–227. [Google Scholar] [CrossRef]
- Okoro, T.; Whitaker, R.; Gardner, A.; Maddison, P.; Andrew, J.G.; Lemmey, A. Does an Early Home-Based Progressive Resistance Training Program Improve Function Following Total Hip Replacement? Results of a Randomized Controlled Study. BMC Musculoskelet. Disord. 2016, 17, 173. [Google Scholar] [CrossRef]
- Soukkio, P.K.; Suikkanen, S.A.; Kukkonen-Harjula, K.T.; Kautiainen, H.; Hupli, M.T.; Aartolahti, E.M.; Kääriä, S.M.; Pitkälä, K.H.; Sipilä, S. Effects of a 12-Month Home-Based Exercise Program on Functioning After Hip Fracture—Secondary Analyses of an RCT. J. Am. Geriatr. Soc. 2022, 70, 2561–2570. [Google Scholar] [CrossRef] [PubMed]
- Beaupre, L.A.; Binder, E.F.; Cameron, I.D.; Jones, C.A.; Orwig, D.; Sherrington, C.; Magaziner, J. Maximising functional recovery following hip fracture in frail seniors. Best Pract. Res. Clin. Rheumatol. 2013, 27, 771–788. [Google Scholar] [CrossRef] [PubMed]
- González Marcos, E.; González García, E.; González-Santos, J.; González-Bernal, J.J.; Martín-Rodríguez, A.D.P.; Santamaría-Peláez, M. Determinants of lack of recovery from dependency and walking ability six months after hip fracture in a population of people aged 65 years and over. J. Clin. Med. 2022, 11, 4467. [Google Scholar] [CrossRef] [PubMed]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Lee, J.; Stone, A.J. Combined aerobic and resistance training for cardiorespiratory fitness, muscle strength, and walking capacity after stroke: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 104498. [Google Scholar] [CrossRef]
- Papalia, G.F.; Papalia, R.; Diaz Balzani, L.A.; Torre, G.; Zampogna, B.; Vasta, S.; Fossati, C.; Alifano, A.M.; Denaro, V. The Effects of Physical Exercise on Balance and Prevention of Falls in Older People: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fairhall, N.J.; Dyer, S.M.; Mak, J.C.; Diong, J.; Kwok, W.S.; Sherrington, C. Interventions for improving mobility after hip fracture surgery in adults. Cochrane Database Syst. Rev. 2022, 9, CD001704. [Google Scholar]
- Pfeifer, C.E.; Ross, L.M.; Weber, S.R.; Sui, X.; Blair, S.N. Are flexibility and muscle-strengthening activities associated with functional limitation? Sports Med. Health Sci. 2022, 4, 95–100. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yoon, B.-H.; Beom, J.; Ha, Y.-C.; Lim, J.-Y. Effect of lower-limb progressive resistance exercise after hip fracture surgery: A systematic review and meta-analysis of randomized controlled studies. J. Am. Med. Dir. Assoc. 2017, 18, 1096.e19–1096.e26. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Auais, M.A.; Eilayyan, O.; Mayo, N.E. Extended exercise rehabilitation after hip fracture improves patients’ physical function: A systematic review and meta-analysis. Phys. Ther. 2012, 92, 1437–1451. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Grgic, J.; Van Every, D.W.; Plotkin, D.L. Loading recommendations for muscle strength, hypertrophy, and local endurance: A re-examination of the repetition continuum. Sports 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.D.M.; Miramonti, A.A.; Hill, E.C.; Smith, C.M.; Cochrane-Snyman, K.C.; Housh, T.J.; Cramer, J.T. Greater neural adaptations following high- vs. low-load resistance training. Front. Physiol. 2017, 8, 331. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soro-García, P.; González-Gálvez, N. Effects of Progressive Resistance Training After Hip Fracture: A Systematic Review. J. Funct. Morphol. Kinesiol. 2025, 10, 54. https://doi.org/10.3390/jfmk10010054
Soro-García P, González-Gálvez N. Effects of Progressive Resistance Training After Hip Fracture: A Systematic Review. Journal of Functional Morphology and Kinesiology. 2025; 10(1):54. https://doi.org/10.3390/jfmk10010054
Chicago/Turabian StyleSoro-García, Pablo, and Noelia González-Gálvez. 2025. "Effects of Progressive Resistance Training After Hip Fracture: A Systematic Review" Journal of Functional Morphology and Kinesiology 10, no. 1: 54. https://doi.org/10.3390/jfmk10010054
APA StyleSoro-García, P., & González-Gálvez, N. (2025). Effects of Progressive Resistance Training After Hip Fracture: A Systematic Review. Journal of Functional Morphology and Kinesiology, 10(1), 54. https://doi.org/10.3390/jfmk10010054