Comparing the Accuracy of Visual and Computerized Onset Detection Methods on Simulated Electromyography Signals with Varying Signal-to-Noise Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Signal Simulation
2.2. Comparison of Onset Detection Methods
2.3. Graphical User Interface
2.4. Statistical Design
3. Results
3.1. Differences between the Two VD Sessions
3.2. Differences between All the Onset Detection Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Availability and Requirements
References
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Raez, M.B.I.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, T.W.; Housh, T.J.; Johnson, G.O.; Cramer, J.T.; Weir, J.P.; Coburn, J.W.; Malek, M.H. Does the frequency content of the surface mechanomyographic signal reflect motor unit firing rates? A brief review. J. Electromyogr. Kinesiol. 2007, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Catelli, D.S.; Kuriki, H.U.; Polito, L.F.; Azevedo, F.M.; Negrão-Filho, R.F.; Alves, N. Patellofemoral pain syndrome: Electromyography in a frequency domain analysis. J. Phys. Conf. Ser. 2011, 313, 012004. [Google Scholar] [CrossRef]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Catani, F.; Bilotta, T.W.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. 2003, 18, 871–876. [Google Scholar] [CrossRef]
- D’Apuzzo, F.; Minervini, G.; Grassia, V.; Rotolo, R.P.; Perillo, L.; Nucci, L. Mandibular Coronoid Process Hypertrophy: Diagnosis and 20-Year Follow-Up with CBCT, MRI and EMG Evaluations. Appl. Sci. 2021, 11, 4504. [Google Scholar] [CrossRef]
- Fang, C.; He, B.; Wang, Y.; Cao, J.; Gao, S. EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilitation: State of the Art and Challenges. Biosensors 2020, 10, 85. [Google Scholar] [CrossRef]
- Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.; Ahmad, S.A.; Zamzuri, H.; Mazlan, S.A. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Sensors 2016, 16, 1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Ying, D.; Rymer, W.Z.; Zhou, P. Robust Muscle Activity Onset Detection Using an Unsupervised Electromyogram Learning Framework. PLoS ONE 2015, 10, e0127990. [Google Scholar] [CrossRef]
- Merlo, A.; Farina, D.; Merletti, R. A fast and reliable technique for muscle activity detection from surface EMG signals. IEEE Trans. Biomed. Eng. 2003, 50, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Tenan, M.S.; Tweedell, A.J.; Haynes, C.A. Analysis of statistical and standard algorithms for detecting muscle onset with surface electromyography. PLoS ONE 2017, 12, e0177312. [Google Scholar] [CrossRef]
- Hodges, P.W.; Bui, B.H. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electromyogr. Mot. Control Electroencephalogr. Clin. Neurophysiol. 1996, 101, 511–519. [Google Scholar] [CrossRef]
- Solnik, S.; Rider, P.; Steinweg, K.; DeVita, P.; Hortobágyi, T. Teager-Kaiser energy operator signal conditioning improves EMG onset detection. Eur. J. Appl. Physiol. 2010, 110, 489–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Boxtel, G.J.; Geraats, L.H.; Van den Berg-Lenssen, M.M.; Brunia, C.H. Detection of EMG onset in ERP research. Psychophysiology 1993, 30, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; Cholewicki, J.; Reeves, N.P. The effect of background muscle activity on computerized detection of sEMG onset and offset. J. Biomech. 2007, 40, 3521–3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staude, G.; Wolf, W. Objective motor response onset detection in surface myoelectric signals. Med. Eng. Phys. 1999, 21, 449–467. [Google Scholar] [CrossRef]
- Bonato, P.; D’Alessio, T.; Knaflitz, M. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans. Biomed. Eng. 1998, 45, 287–299. [Google Scholar] [CrossRef]
- Bar-On, L.; Kalkman, B.M.; Cenni, F.; Schless, S.-H.; Molenaers, G.; Maganaris, C.N.; Bass, A.; Holmes, G.; Barton, G.J.; O’Brien, T.D.; et al. The Relationship Between Medial Gastrocnemius Lengthening Properties and Stretch Reflexes in Cerebral Palsy. Front. Pediatr. 2018, 6, 259. [Google Scholar] [CrossRef] [Green Version]
- Di Nardo, F.; Strazza, A.; Mengarelli, A.; Cardarelli, S.; Tigrini, A.; Verdini, F.; Nascimbeni, A.; Agostini, V.; Knaflitz, M.; Fioretti, S. EMG-Based Characterization of Walking Asymmetry in Children with Mild Hemiplegic Cerebral Palsy. Biosensors 2019, 9, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staude, G.; Flachenecker, C.; Daumer, M.; Wolf, W. Onset Detection in Surface Electromyographic Signals: A Systematic Comparison of Methods. EURASIP J. Adv. Signal Process. 2001, 2001, 867853. [Google Scholar] [CrossRef] [Green Version]
- Walter, C.B. Temporal quantification of electromyography with reference to motor control research. Hum. Mov. Sci. 1984, 3, 155–162. [Google Scholar] [CrossRef]
- Rosa, I.d.G.; Garcia, M.A.C.; de Souza, M.N. A novel electromyographic signal simulator for muscle contraction studies. Comput. Methods Programs Biomed. 2008, 89, 269–274. [Google Scholar] [CrossRef]
- Conte, L.R.L.; Merletti, R.; Sandri, G.V. Hermite expansions of compact support waveforms: Applications to myoelectric signals. IEEE Trans. Biomed. Eng. 1994, 41, 1147–1159. [Google Scholar] [CrossRef]
- Chowdhury, R.; Reaz, M.; Ali, M.; Bakar, A.; Chellappan, K.; Chang, T. Surface Electromyography Signal Processing and Classification Techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Lobo-Prat, J.; Janssen, M.M.H.P.; Koopman, B.F.J.M.; Stienen, A.H.A.; De Groot, I.J.M. Surface EMG signals in very late-stage of Duchenne muscular dystrophy: A case study. J. NeuroEngineering Rehabil. 2017, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, E.; Catelli, D.S.; Lamontagne, M. Comparing the Accuracy of Visual and Computerized Onset Detection Methods on Simulated Electromyography Signals with Varying Signal-to-Noise Ratios. J. Funct. Morphol. Kinesiol. 2021, 6, 70. https://doi.org/10.3390/jfmk6030070
Kowalski E, Catelli DS, Lamontagne M. Comparing the Accuracy of Visual and Computerized Onset Detection Methods on Simulated Electromyography Signals with Varying Signal-to-Noise Ratios. Journal of Functional Morphology and Kinesiology. 2021; 6(3):70. https://doi.org/10.3390/jfmk6030070
Chicago/Turabian StyleKowalski, Erik, Danilo S. Catelli, and Mario Lamontagne. 2021. "Comparing the Accuracy of Visual and Computerized Onset Detection Methods on Simulated Electromyography Signals with Varying Signal-to-Noise Ratios" Journal of Functional Morphology and Kinesiology 6, no. 3: 70. https://doi.org/10.3390/jfmk6030070