A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel
Abstract
:1. Introduction
2. Current Status of Binder Jetting Technology
3. Binder Jetting Applications
4. Materials
4.1. Stainless Steel 316L Composition and Properties
4.2. Common Defects of SS 316L Components at Elevated Temperatures
4.3. Additively Manufactured SS 316L Parts
5. Binder Jetting Feedstock Properties
5.1. Powders
5.2. Binders
6. Binder Jetting Printing Parameters
6.1. Layer Thickness
6.2. Printing Saturation
6.3. Heater Power Ratio
6.4. Drying Time
7. Binder Jetting Post-processing
7.1. Binder Curing
7.2. Depowdering
7.3. Debinding
7.4. Sintering
- Lattice (volume) diffusion (from grain boundary)
- Grain boundary diffusion (from grain boundary)
- Viscous (plastic) flow (from bulk grain)
- Surface diffusion (from grain surface)
- Lattice diffusion (from grain surface)
- Gas phase transport (from grain surface):
- ○
- Evaporation/Condensation
- ○
- Gas diffusion
7.5. Infiltration
8. Review of Previous Studies on Binder Jetting of SS 316L
8.1. Role of Powder Size and Shape on Binder Jet 316L Parts
8.2. Effect of Sintering Time and Temperature
8.3. Effect of (Sintering) Additives
8.4. Effect of Hot Isostatic Pressing
8.5. Effect of Sintering Atmosphere
8.6. Mechanical Properties
9. Summary
10. Future Direction in Binder Jetting of 316L
Funding
Acknowledgments
Conflicts of Interest
References
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Leu, M.; Nakagawa, T. Progress in Additive Manufacturing and Rapid Prototyping. CIRP Ann. 1998, 47, 525–540. [Google Scholar] [CrossRef]
- Mueller, B. Additive Manufacturing Technologies—Rapid Prototyping to Direct Digital Manufacturing. Assem. Autom. 2012, 32, 151–154. [Google Scholar] [CrossRef]
- Do, T.; Kwon, P.; Shin, C.S. Process development toward full-density stainless steel parts with binder jetting printing. Int. J. Mach. Tools Manuf. 2017, 121, 50–60. [Google Scholar] [CrossRef]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Alcisto, J.; Enriquez, A.; Garcia, H.; Hinkson, S.; Steelman, T.; Silverman, E.; Valdovino, P.; Gigerenzer, H.; Foyos, J.; Ogren, J. Tensile properties and microstructures of laser-formed Ti-6Al-4V. J. Mater. Eng. Perform. 2011, 20, 203–212. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Conner, B.P.; Manogharan, G.P.; Martof, A.N.; Rodomsky, L.M.; Rodomsky, C.M.; Jordan, D.C.; Limperos, J.W. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit. Manuf. 2014, 1, 64–76. [Google Scholar] [CrossRef]
- DebRoy, T.; Wei, H.; Zuback, J.; Mukherjee, T.; Elmer, J.; Milewski, J.; Beese, A.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components—Process, structure and properties. Prog. Mater. Sci. 2017, 92, 112–224. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Mostafaei, A.; Stevens, E.L.; Hughes, E.T.; Biery, S.D.; Hilla, C.; Chmielus, M. Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties. Mater. Des. 2016, 108, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Ghaffar, S.H.; Corker, J.; Fan, M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Autom. Constr. 2018, 93, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.F. Investigation of Sintering Shrinkage in Binder Jetting Additive Manufacturing Process. Procedia Manuf. 2017, 10, 779–790. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.F. Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process. Rapid Prototyp. J. 2016, 22, 527–538. [Google Scholar] [CrossRef]
- Stucker, B. Additive manufacturing technologies: Technology introduction and business implications. In Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium; National Academies Press: Washington, DC, USA, 2012; pp. 19–21. [Google Scholar]
- Tan, J.H.; Wong, W.L.E.; Dalgarno, K.W. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit. Manuf. 2017, 18, 228–255. [Google Scholar] [CrossRef]
- Seifi, M.; Salem, A.; Beuth, J.; Harrysson, O.; Lewandowski, J.J. Overview of Materials Qualification Needs for Metal Additive Manufacturing. JOM 2016, 68, 747–764. [Google Scholar] [CrossRef] [Green Version]
- Bourell, D.; Kruth, J.P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.M.; Clare, A. Materials for additive manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Seppala, J.E.; Migler, K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016, 12, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Annoni, M.; Giberti, H.; Strano, M. Feasibility Study of an Extrusion-based Direct Metal Additive Manufacturing Technique. Procedia Manuf. 2016, 5, 916–927. [Google Scholar] [CrossRef] [Green Version]
- Mostafaei, A.; Toman, J.; Stevens, E.L.; Hughes, E.T.; Krimer, Y.L.; Chmielus, M. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders. Acta Mater. 2017, 124, 280–289. [Google Scholar] [CrossRef]
- Prashanth, K.; Shahabi, H.S.; Attar, H.; Srivastava, V.; Ellendt, N.; Uhlenwinkel, V.; Eckert, J.; Scudino, S.; Gokuldoss, P.K. Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Addit. Manuf. 2015, 6, 1–5. [Google Scholar] [CrossRef]
- Schade, C.T.; Murphy, T.F.; Walton, C. Development of atomized powders for additive manufacturing. In Proceedings of the Powder Metallurgy Word Congress, Orlando, FL, USA, 18–22 May 2014. [Google Scholar]
- Badrossamay, M.; Childs, T. Further studies in selective laser melting of stainless and tool steel powders. Int. J. Mach. Tools Manuf. 2007, 47, 779–784. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Binder Jetting. In Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: New York, NY, USA, 2015; pp. 205–218. [Google Scholar]
- Frykholm, R.; Takeda, Y.; Andersson, B.-G.; Carlström, R. Solid state sintered 3-D printing component by using inkjet (binder) method. J. Jpn. Soc. Powder Powder Metall. 2016, 63, 421–426. [Google Scholar] [CrossRef]
- Utela, B.; Storti, D.; Anderson, R.; Ganter, M. A review of process development steps for new material systems in three dimensional printing (3DP). J. Manuf. Process. 2008, 10, 96–104. [Google Scholar] [CrossRef]
- Sachs, E.M.; Haggerty, J.S.; Cima, M.J.; Williams, P.A. Three-Dimensional Printing Techniques. Patents Number CA2031562C, 22 November 1994. [Google Scholar]
- Meteyer, S.; Xu, X.; Perry, N.; Zhao, Y.F. Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes. Procedia CIRP 2014, 15, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Nandwana, P.; Elliott, A.M.; Siddel, D.; Merriman, A.; Peter, W.H.; Babu, S.S. Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges. Curr. Opin. Solid State Mater. Sci. 2017, 21, 207–218. [Google Scholar] [CrossRef]
- Mostafaei, A.; Harsha Vardhan, S.; Neelapu, R.; Kisailus, C.; Nath, L.M.; Jacobs, T.D.B.; Chmielus, M. Characterizing surface finish and fatigue behavior in binder-jet 3D-printed nickel-based superalloy 625. Addit. Manuf. 2018. [Google Scholar] [CrossRef]
- Three Dimensional Printing. Available online: http://www.mit.edu/~tdp/index.html (accessed on 28 June 2000).
- Lv, X.; Ye, F.; Cheng, L.; Fan, S.; Liu, Y. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceram. Int. 2019, 45, 12609–12624. [Google Scholar] [CrossRef]
- Snelling, D.; Williams, C.; Suchicital, C.; Druschitz, A. Fabrication of Cellular Cordierite Preforms via Binder Jetting. Available online: http://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-115-Snelling.pdf (accessed on 9 September 2019).
- Snelling, D.A.; Williams, C.B.; Suchicital, C.T.A.; Druschitz, A.P. Binder jetting advanced ceramics for metal-ceramic composite structures. Int. J. Adv. Manuf. Technol. 2017, 92, 531–545. [Google Scholar] [CrossRef]
- Rambo, C.; Travitzky, N.; Zimmermann, K.; Greil, P. Synthesis of TiC/Ti–Cu composites by pressureless reactive infiltration of TiCu alloy into carbon preforms fabricated by 3D-printing. Mater. Lett. 2005, 59, 1028–1031. [Google Scholar] [CrossRef]
- Sharke, P. Rapid transit to manufacturing. Mech. Eng. Mag. 2001, 123, 63–65. [Google Scholar] [CrossRef]
- Scheithauer, U.; Schwarzer, E.; Richter, H.J.; Moritz, T. Thermoplastic 3D printing—An additive manufacturing method for producing dense ceramics. Int. J. Appl. Ceram. Technol. 2015, 12, 26–31. [Google Scholar] [CrossRef]
- Scheithauer, U.; Slawik, T.; Schwarzer, E.; Richter, H.-J.; Moritz, T.; Michaelis, A. Additive manufacturing of metal-ceramic-composites by thermoplastic 3D-printing (3DTP). J. Ceram. Sci. Technol. 2015, 6, 125–131. [Google Scholar]
- Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128. [Google Scholar] [CrossRef]
- Plaut, R.L.; Herrera, C.; Escriba, D.M.; Rios, P.R.; Padilha, A.F. A Short review on wrought austenitic stainless steels at high temperatures: Processing, microstructure, properties and performance. Mater. Res. 2007, 10, 453–460. [Google Scholar] [CrossRef]
- Matula, M.; Hyspecka, L.; Svoboda, M.; Vodarek, V.; Dagbert, C.; Galland, J.; Stonawska, Z.; Tuma, L. Intergranular corrosion of AISI 316L steel. Mater. Charact. 2001, 46, 203–210. [Google Scholar] [CrossRef]
- Simchi, A.; Rota, A.; Imgrund, P. An investigation on the sintering behavior of 316L and 17-4PH stainless steel powders for graded composites. Mater. Sci. Eng. A 2006, 424, 282–289. [Google Scholar] [CrossRef]
- Choi, J.-P.; Lee, G.-Y.; Song, J.-I.; Lee, W.-S.; Lee, J.-S. Sintering behavior of 316L stainless steel micro–nanopowder compact fabricated by powder injection molding. Powder Technol. 2015, 279, 196–202. [Google Scholar] [CrossRef]
- Bautista, A.; Velasco, F.J.; Abenojar, J.; Bautista, M.A. Oxidation resistance of sintered stainless steels: Effect of yttria additions. Corros. Sci. 2003, 45, 1343–1354. [Google Scholar] [CrossRef]
- Otero, E.; Pardo, A.; Utrilla, M.; Saenz, E.; Álvarez, J. Corrosion behaviour of aisi 304l and 316l stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid. Corros. Sci. 1998, 40, 1421–1434. [Google Scholar] [CrossRef]
- Rao, V.S.; Singhal, L.K. Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid. J. Mater. Sci. 2009, 44, 2327–2333. [Google Scholar]
- El kebir, O.A.; Szummer, A. Comparison of hydrogen embrittlement of stainless steels and nickel-base alloys. Int. J. Hydrogen Energy 2002, 27, 793–800. [Google Scholar] [CrossRef]
- Terada, M.; Escriba, D.; Costa, I.; Materna-Morris, E.; Padilha, A.F. Investigation on the intergranular corrosion resistance of the AISI 316L(N) stainless steel after long time creep testing at 600 °C. Mater. Charact. 2008, 59, 663–668. [Google Scholar] [CrossRef]
- Wasnik, D. Precipitation stages in a 316L austenitic stainless steel. Scr. Mater. 2003, 49, 135–141. [Google Scholar] [CrossRef]
- Herms, E.; Olive, J.; Puiggali, M. Hydrogen embrittlement of 316L type stainless steel. Mater. Sci. Eng. A 1999, 272, 279–283. [Google Scholar] [CrossRef]
- Yamabe, J.; Takakuwa, O.; Matsunaga, H.; Itoga, H.; Matsuoka, S. Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen. Int. J. Hydrogen Energy 2017, 42, 13289–13299. [Google Scholar] [CrossRef]
- Ghayoor, M.L.; He, K.; Chang, Y.; Paul, C.; Brian, K.; Pasebani, S. Microstructural Analysis of Additively Manufactured 304L Stainless Steel Oxide Dispersion Strengthened Alloy. Microsc. Microanal. 2019, 25, 2594–2595. [Google Scholar] [CrossRef] [Green Version]
- Rego, K.; Yeom, J.; Kwon, P. Additively Manufactured Full-Density Stainless Steel 316L with Binder Jet Printing. In Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference, College Station, TX, USA, 18–22 June 2018. [Google Scholar] [CrossRef]
- Verlee, B.; Dormal, T.; Lecomte-Beckers, J. Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Met. 2012, 55, 260–267. [Google Scholar] [CrossRef]
- Schäfer, L. Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel. J. Nucl. Mater. 1998, 258, 1336–1339. [Google Scholar] [CrossRef]
- Ziegelmeier, S.; Wöllecke, F.; Tuck, C.; Goodridge, R.; Hague, R. Characterizing the bulk & flow behaviour of LS polymer powders. In Proceedings of the Twenty Fourth Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12–14 August 2019. [Google Scholar]
- Suwanprateeb, J.; Sanngam, R.; Panyathanmaporn, T. Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Mater. Sci. Eng. C 2010, 30, 610–617. [Google Scholar] [CrossRef]
- Butscher, A.; Bohner, M.; Roth, C.; Ernstberger, A.; Heuberger, R.; Doebelin, N.; Von Rohr, P.R.; Müller, R. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater. 2012, 8, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Buchanan, F.; Mitchell, C.; Dunne, N. Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater. Sci. Eng. C 2014, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sachs, E.M.; Cima, M.J.; Caradonna, M.A.; Grau, J.; Serdy, J.G.; Saxton, P.C.; Uhland, S.A.; Moon, J. Jetting Layers of Powder and the Formation of fine Powder Beds Thereby. Patent Number CA2293638C, 24 August 2010. [Google Scholar]
- German, R.M. Powder Metallurgy and Particulate Materials Processing: The Processes, Materials, Products, Properties, and Applications; Metal Powder Industries Federation: Princeton, NJ, USA, 2005. [Google Scholar]
- Castellanos, A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 2005, 54, 263–376. [Google Scholar] [CrossRef]
- Zheng, J.; Carlson, W.B.; Reed, J.S. The packing density of binary powder mixtures. J. Eur. Ceram. Soc. 1995, 15, 479–483. [Google Scholar] [CrossRef]
- Pasebani, S.; Ghayoor, M.; Badwe, S.; Irrinki, H.; Atre, S.V. Effects of atomizing media and post processing on mechanical properties of 17-4 PH stainless steel manufactured via selective laser melting. Addit. Manuf. 2018, 22, 127–137. [Google Scholar] [CrossRef]
- Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W. Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys. Prototyp. 2017, 12, 3–29. [Google Scholar] [CrossRef]
- Ghayoor, M.; Badwe, S.B.; Irrinki, H.; Atre, S.V.; Pasebani, S. Water Atomized 17-4 PH Stainless Steel Powder as a Cheaper Alternative Powder Feedstock for Selective Laser Melting. Mater. Sci. Forum 2018, 941, 698–703. [Google Scholar] [CrossRef]
- Mirzababaei, S.; Filip, P. Impact of humidity on wear of automotive friction materials. Wear 2017, 376, 717–726. [Google Scholar] [CrossRef]
- Sherman, B.C. Stable Solid Pharmaceutical Compositions Containing Enalapril Maleate. Patent Number CA2128199C, 4 February 1997. [Google Scholar]
- Ederer, L. The Effect of Zinc Stearate on the Compaction and Sintering Characteristics of a Ti-6% A1-4% V Hydride-Dehydride Powder; McGill University Libraries: Burnaby, BC, Canada, 1999. [Google Scholar]
- Li, R.; Shi, Y.; Wang, Z.; Wang, L.; Liu, J.; Jiang, W. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl. Surf. Sci. 2010, 256, 4350–4356. [Google Scholar] [CrossRef]
- Bredt, J.F.; Anderson, T.C.; Russell, D.B. Three Dimensional Printing Materials System. Patent Number JP2017210620A, 5 September 2018. [Google Scholar]
- Mirzababaei, S. Impact of Humidity on Wear and Creep Groan of Automotive Brake Friction Materials; Southern Illinois University at Carbondale: Carbondale, IL, USA, 2016. [Google Scholar]
- Ziaee, M.; Crane, N.B. Binder jetting: A review of process, materials, and methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Cima, M.; Oliveira, M.; Wang, H.; Sachs, E.; Holman, R. Slurry-based 3DP and fine ceramic components. In Proceedings of the 12th Solid Freeform Fabrication Symposium, Austin, TX, USA, 6–8 August 2001; pp. 216–223. [Google Scholar]
- Seluga, K.J. Layer to Layer Registration of a Slurry-Based 3D Printing Machine; Massachusetts Institute of Technology: Cambridge, MA, USA, 2000. [Google Scholar]
- Juan, H.L. Effect of Temperature Ratio (ts/tm) and Time on the Sintering Behavior of Metallic 316l Stainless Steel Coupons Coupons Produced Using Jet-Binder Technology. Master’s Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2017. [Google Scholar]
- Moon, J.; Grau, J.E.; Knezevic, V.; Cima, M.J.; Sachs, E.M. Ink-jet printing of binders for ceramic components. J. Am. Ceram. Soc. 2002, 85, 755–762. [Google Scholar] [CrossRef]
- Liu, J.; Rynerson, M. Method for Article Fabrication Using Carbohydrate Binder. U.S. Patent US6585930B2, 1 July 2003. [Google Scholar]
- King, K.M. Inkjet printing of technical textiles. In Advances in the Dyeing and Finishing of Technical Textiles; Elsevier: Amsterdam, The Netherlands, 2013; pp. 236–257. [Google Scholar]
- Shirazi, S.F.S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H.S.C.; Kadri, N.A.; Abu Osman, N.A. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 2015, 16, 33502. [Google Scholar] [CrossRef] [PubMed]
- Farzadi, A.; Solati-Hashjin, M.; Asadi-Eydivand, M.; Abu Osman, N.A. Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering. PLoS ONE 2014, 9, e108252. [Google Scholar] [CrossRef] [PubMed]
- Butscher, A.; Bohner, M.; Doebelin, N.; Galea, L.; Loeffel, O.; Müller, R. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater. 2013, 9, 5369–5378. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Reynolds, W.T. 3DP process for fine mesh structure printing. Powder Technol. 2008, 187, 11–18. [Google Scholar] [CrossRef]
- Bredt, J.F.; Clark, S.; Gilchrist, G. Three Dimensional Printing Material System and Method. U.S. Patent US7087109B2, 8 August 2006. [Google Scholar]
- Zhou, Z.; Mitchell, C.A.; Buchanan, F.J.; Dunne, N.J. Effects of heat treatment on the mechanical and degradation properties of 3D-printed calcium-sulphate-based scaffolds. ISRN Biomater. 2012, 2013, 750720. [Google Scholar] [CrossRef]
- Dourandish, M.; Godlinski, D.; Simchi, A. 3D printing of biocompatible PM-materials. Mater. Sci. Forum 2007, 534–536, 453–456. [Google Scholar] [CrossRef]
- Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 2013, 16, 496–504. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Y.; Hoff, T.; Garon, M.; Zhao, F.Y. The Verification of the Mechanical Properties of Binder Jetting Manufactured Parts by Instrumented Indentation Testing. Procedia Manuf. 2015, 1, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Williams, C.B. Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor. Mater. Des. 2018, 147, 146–156. [Google Scholar] [CrossRef]
- German, R.M. Liquid Phase Sintering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kang, S.-J.L. Sintering: Densification, Grain Growth and Microstructure; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Zovas, P.E.; German, R.M.; Hwang, K.S.; Li, C.J. Activated and Liquid-Phase Sintering—Progress and Problems. JOM 1983, 35, 28–33. [Google Scholar] [CrossRef]
- Kim, B.-N.; Suzuki, T.S.; Morita, K.; Yoshida, H.; Li, J.-G.; Matsubara, H. Theoretical analysis of experimental densification kinetics in final sintering stage of nano-sized zirconia. J. Eur. Ceram. Soc. 2019, 39, 1359–1365. [Google Scholar] [CrossRef]
- Rahaman, M.N. 2—Kinetics and mechanisms of densification. In Sintering of Advanced Materials; Fang, Z.Z., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 33–64. [Google Scholar] [CrossRef]
- Mangonon, P.L.; Mangonon, P.L. The Principles of Materials Selection for Engineering Design; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Nabarro, F. Steady-state diffusional creep. Philos. Mag. 1967, 16, 231–237. [Google Scholar] [CrossRef]
- Courtney, T.H. Mechanical Behavior of Materials; Waveland Press: Long Grove, IL, USA, 2005. [Google Scholar]
- Coble, R.L. A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. J. Appl. Phys. 1963, 34, 1679. [Google Scholar] [CrossRef]
- Herring, C. Effect of Change of Scale on Sintering Phenomena. J. Appl. Phys. 1950, 21, 301–303. [Google Scholar] [CrossRef]
- Kang, S.-J.L.; Jung, Y.-I. Sintering kinetics at final stage sintering: Model calculation and map construction. Acta Mater. 2004, 52, 4573–4578. [Google Scholar] [CrossRef]
- Zhao, J.; Harmer, M.P. Sintering kinetics for a model final-stage microstructure: A study of Al2O3. Philos. Mag. Lett. 1991, 63, 7–14. [Google Scholar] [CrossRef]
- Baker, P.R. Three Dimensional Printing with Fine Metal Powders; Massachusetts Institute of Technology: Cambridge, MA, USA, 1997. [Google Scholar]
- Cordero, Z.C.; Siddel, D.H.; Peter, W.H.; Elliott, A.M. Strengthening of ferrous binder jet 3D printed components through bronze infiltration. Addit. Manuf. 2017, 15, 87–92. [Google Scholar] [CrossRef]
- Ziaee, M.; Tridas, E.M.; Crane, N.B. Binder-jet printing of fine stainless steel powder with varied final density. JOM 2017, 69, 592–596. [Google Scholar] [CrossRef]
- Shrestha, S.; Manogharan, G. Optimization of Binder Jetting Using Taguchi Method. JOM 2017, 69, 491–497. [Google Scholar] [CrossRef]
- Johnston, S.; Frame, D.; Anderson, R.; Storti, D. Strain Analysis of Initial Stage Sintering of 316L SS Three Dimensionally Printed (3DP™) Components. Available online: http://sffsymposium.engr.utexas.edu/Manuscripts/2004/2004-13-Johnston.pdf (accessed on 9 September 2019).
- Sohn, H.Y.; Moreland, C. The effect of particle size distribution on packing density. Can. J. Chem. Eng. 1968, 46, 162–167. [Google Scholar] [CrossRef]
- McGeary, R.K. Mechanical Packing of Spherical Particles. J. Am. Ceram. Soc. 1961, 44, 513–522. [Google Scholar] [CrossRef]
- Coe, H.; Pasebani, S. Use of 316L Stainless Steel Powder with Bimodal Size Distribution in Selective Laser Melting. In Proceedings of the Additive Manufacturing Symposia (MS&T 18), Columbus, OH, USA, 14–16 October 2018. [Google Scholar]
- Ashby, M. A first report on sintering diagrams. Acta Met. 1974, 22, 275–289. [Google Scholar] [CrossRef]
- Bose, A.; German, R.M. Sintering atmosphere effects on tensile properties of heavy alloys. Met. Mater. Trans. A 1988, 19, 2467–2476. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.M.; Ashcroft, I.; Tuck, C.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1, 77–86. [Google Scholar] [CrossRef]
- Brett, J.; Seigle, L. Shrinkage of voids in copper. Acta Metall. 1963, 11, 467–474. [Google Scholar] [CrossRef]
- Nastac, M.; Klein, R.L.A.; ExOne, I. Microstructure and mechanical properties comparison of 316L parts produced by different additive manufacturing processes. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 7–9 August 2017. [Google Scholar]
- Senkov, O.N.; Bhat, R.B.; Senkova, S.V.; Schloz, J.D. Microstructure and properties of cast ingots of Al-Zn-Mg-Cu alloys modified with Sc and Zr. Met. Mater. Trans. A 2005, 36, 2115–2126. [Google Scholar] [CrossRef]
- Semenova, I.P.; Valiev, R.Z.; Yakushina, E.B.; Salimgareeva, G.H.; Lowe, T.C. Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J. Mater. Sci. 2008, 43, 7354–7359. [Google Scholar] [CrossRef]
- ASTM B883-19, Standard Specification for Metal Injection Molded (MIM) Materials; ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- Tang, Y.; Zhou, Y.; Hoff, T.; Garon, M.; Zhao, Y.F. Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process. Mater. Sci. Technol. 2016, 32, 648–656. [Google Scholar] [CrossRef]
- Suwanprateeb, J. Improvement in mechanical properties of three-dimensional printing parts made from natural polymers reinforced by acrylate resin for biomedical applications: A double infiltration approach. Polym. Int. 2006, 55, 57–62. [Google Scholar] [CrossRef]
- Clayton, J. Optimising metal powders for additive manufacturing. Met. Powder Rep. 2014, 69, 14–17. [Google Scholar] [CrossRef]
Companies | Field of Using 3D Printing Technology |
---|---|
ExOne | Metal parts and tooling [33] |
Voxeljet | Investment casting [38] |
Soligen Inc. | Ceramic molds for metal casting [33] |
Specific Surface Corporation (CeraNova) | Production of porous ceramic filters [33] |
TDK Corporation | Production of ceramic components for electronic devices [33] |
Integra LifeSciences Holdings Corporation (formerly Therics Inc.) | Production of time-release drug-delivery devices [33] |
3D Systems (formerly Z Corporation) | Rapid prototyping and concept modeling [33] |
Alloys | Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | P | Ni | Mo | S | Fe | |
Cast SS 316L | 0.011 | 0.14 | 0.75 | 17.1 | 0.007 | 12.9 | 2.33 | 0.006 | Balance |
SS 316L P/M | 0.023 | 0.18 | 0.82 | 16.3 | 0.018 | 13.8 | 2.15 | 0.007 | Balance |
Parameters | Impact on Final Density | References | Impact on Shrinkage Rate | References | Impact on Mechanica l Properties | References |
---|---|---|---|---|---|---|
Powder size and shape | √ | [4,55,56,78,106] | √ | [55,106] | √ | [56] |
Sintering profile (including temperature and time, and ramp-up) | √ | [56,78] | √ | [14,108] | √ | [55,56] |
Sintering additives | √ | [55] | √ | [55] | √ | [55] |
Post-processing (hot isostatic pressing (HIP)) | √ | [27] | × 1 | × | ||
Binder | × | × | × | |||
Printing parameters (Orientation, layer thickness) | × | × | √ | [107] |
Powders | Mean Particle Size (µm) [55] | |
---|---|---|
SS 316L | Large (L) | 82 |
Default (D) | 30 | |
Medium (M) | 14 | |
Small (S) | 4 |
Powders | Layer Thickness (µm) | Drying Time (s) | Binder Level (%) |
---|---|---|---|
316L < 22 μm | 100 | 12 | 24 |
25% Nylon + 316L | 100 | 12 | 24 |
33% Nylon + 316L | 100 | 12 | 48 |
Agglomerates (cured at 100 °C) | 50 | 20 | 48 |
Agglomerates (cured at 185 °C) | 50 | 20 | 48 |
Powders | Apparent Density (g/cm3) | Particle Mean Diameter (µm) |
---|---|---|
22 µm | 4.69 | 13 |
31 µm | 4.58 | 17 |
45 µm Ø | 2.77 | 27 |
20–53 µm | 4.38 | 38 |
45–90 µm Ø | 2.32 | 64 |
45–90 µm | 4.44 | 73 |
Powders | Density (%) | Open Porosity (%) | Closed Porosity (%) | Densification (ψ) |
---|---|---|---|---|
±0.1% | ±0.1% | ±0.1% | ||
31 µm | 97.4 | 0.0 | 2.6 | 0.94 |
45 µm Ø | 60.9 | 37.6 | 1.5 | 0.4 |
20–53 µm | 66.3 | 31.7 | 2.0 | 0.26 |
45–90 µm Ø | 46.7 | 52.2 | 1.1 | 0.25 |
45–90 µm | 64.6 | 33.3 | 2.1 | 0.20 |
Factors | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Factor A: Sintering temperature (°C) | 1010 | 1100 | 1190 |
Factor B: Sintering rate (°C/min) | 4 | 12 | 20 |
Factor C: Sintering time (min) | 60 | 90 | 120 |
Optimal Parameters | Sintering Temperature (°C) | Heating Rate (°C/min) | Sintering Time (min) | Percentage Improvement |
---|---|---|---|---|
For dimensional accuracy of x-axis | 1010 | 12 | 60 | 54.66% |
For dimensional accuracy of y-axis | 1010 | 12 | 90 | 32.86% |
For dimensional accuracy of z-axis | 1190 | 12 | 60 | 73.98% |
For considering dimensional accuracy of all three axes | 1100 | 12 | 60 | for x-axis: 45.34% |
for y-axis: 3.29% | ||||
for z-axis: 32.29% |
Powders | Mean Particle Size (µm) [55] | Wt.% | |
---|---|---|---|
Sintering Additives | B | 1 | 0, 0.25, 0.5, 0.75 |
BN | 1 | 0, 0.25, 0.5, 0.75 | |
BC | 0.6 | 0, 0.25, 0.5, 0.75 |
Additives (wt.%) | Sintering Temperature (°C) | Final Relative Density (%) [55] |
---|---|---|
0.75% BC | 1200 | 99.67 |
0.5% B | 1300 | 98.33 |
0.75% B | 1200 | 98.13 |
Samples | Density (g/cm3) | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Hardness (HRB) |
---|---|---|---|---|---|
BJ 316L | 7.67 | 511 | 170 | 58 | 60 |
MIM 316L | 7.6 | 520 | 175 | 50 | 67 |
Samples | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation at Break (%) | Hardness (HRB) | Density (g/cm3) |
---|---|---|---|---|---|
BJ 316L [116] | 517 | 214 | 43 | 66 | 7.7 |
MIM 316L (as-sintered) [119] | 520 | 175 | 50 | 67 | 7.6 |
Powders | Sintering Temperature (°C) | Final Density (%) | Max. Strength (MPa) | Elongation (%) |
---|---|---|---|---|
±0.1% | ±6% | ±5% | ||
31 µm | 1255 | 81.0 | 309 | 21.3 |
1335 | 85.2 | 388 | 35.5 | |
1365 | 90.9 | 437 | 52.1 | |
1395 | 98.0 | 518 | 61.9 | |
20–53 µm | 1415 | 81.8 | 243 | 25.4 |
1432 | 88.2 | 310 | 29.9 |
Young’s Modulus (GPa) [90] | ||||||
---|---|---|---|---|---|---|
Samples | Standard | Instrumented Indentation Testing (IIT) | 3-Point Bending Test | Compression Test | Theoretical Density (g/cm3) | Measured Relative Density (%) |
Conventional 316L SS | 200 [120] | 8 | 100 | |||
BJ Printed Parts | ||||||
Solid | 4.07 | 4.4 | 4.07 | 4.19 | 50 | |
1.0 mm Lattice structure | 1.5 | 1.41 | 1.5 | 2.1 | 25 | |
1.5 mm Lattice structure | 0.446 | 0.46 | 0.446 | 1.1 | 12.5 |
Factors | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Factor A: Binder saturation (%) | 35 | 70 | 100 |
Factor B: Layer thickness (µm) | 80 | 100 | 120 |
Factor C: Roller speed (mm/s) | 6 | 10 | 14 |
Factor D: Feed-to-powder ratio | 1 | 2 | 3 |
Factors | Optimal Level [107] | |
---|---|---|
Factor A | Binder saturation (%) | 70 |
Factor B | Layer thickness (µm) | 100 |
Factor C | Roller speed (mm/s) | 6 |
Factor D | Feed-to-powder ratio | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. Mater. Process. 2019, 3, 82. https://doi.org/10.3390/jmmp3030082
Mirzababaei S, Pasebani S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. Journal of Manufacturing and Materials Processing. 2019; 3(3):82. https://doi.org/10.3390/jmmp3030082
Chicago/Turabian StyleMirzababaei, Saereh, and Somayeh Pasebani. 2019. "A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel" Journal of Manufacturing and Materials Processing 3, no. 3: 82. https://doi.org/10.3390/jmmp3030082