Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves
Abstract
:1. Introduction
2. Finding the Maximum Run-Up Limit
3. Field Scales of Alongshore Mass Transport
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prosser, D.J.; Jordan, T.E.; Nagel, J.L.; Seitz, R.D.; Weller, D.E.; Whigham, D.F. Impacts of Coastal Land Use and Shoreline Armoring on Estuarine Ecosystems. Esturies Coast. 2018, 41, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Lapore-Fauret, Q.; Castelle, B.; Michalet, R.; Marieu, V.; Bujan, S.; Rosebery, D. Morphological and Ecological Responses of a Managed Coastal Sand Dune to Experimental Notches. Sci. Total Environ. 2021, 782, 1–21. [Google Scholar] [CrossRef]
- Silveira, L.F.; Benedet, L.; Signorin, M.; Bonanaa, R. Evaluation of the Relationships between Navigation Channel Dredging and Erosion of Adjacent Beaches in Southern Brazil. Coast. Eng. 2012, 33, 1–15. [Google Scholar] [CrossRef]
- Bemmelen, C.W.T.; Schipper, M.A.; Darnall, J.; Aarninkhof, S.G.J. Beach Scarp Dynamics at Nourished Beach. J. Coast. Eng. 2020, 160, 1–10. [Google Scholar] [CrossRef]
- Liu, G.; Cai, F.; Qi, H.; Zhu, J.; Liu, J. Morphodynamic Evolution and Adaptability of Nourished Beaches. J. Coast. Res. 2019, 4, 737–750. [Google Scholar] [CrossRef]
- Dodd, N.; Blondeaux, P.; Calvete, D.; De Swart, H.E.; Falques, A.; Hulscher, S.J.M.H.; Rozy, G.; Vittori, G. Understanding Coastal Morphodynamics using Stability Methods. J. Coast. Res. 2003, 19, 849–865. [Google Scholar]
- Enriquez, A.R.; Marcos, M.; Falques, A.; Roelvink, D. Assessing Beach and Dune Erosion and Vulnerability Under Sea Level Rise: A Case Study in the Mediterranean Sea. Front. Mar. Sci. 2019, 6, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1932; 738p. [Google Scholar]
- Weber, E.H.; Ghaffari, P. Mass Transport in the Stokes Edge Wave. J. Mar. Res. 2009, 67, 213–224. [Google Scholar] [CrossRef]
- Seo, S.N. Comparison of Edge Wave Normal Modes. J. Korean Soc. Coast. Ocean Eng. 2013, 25, 285–290. [Google Scholar] [CrossRef]
- Geist, E.L. Non-linear Resonant Coupling of Tsunami Edge Waves using Stochastic Earthquake Source Models. Geophys. J. Int. 2016, 204, 878–891. [Google Scholar] [CrossRef] [Green Version]
- Guza, R.T.; Bowen, A.J. Resonant Interaction for Wave Breaking on a Beach. Int. Conf. Coast. Eng. 1977, 1–20. [Google Scholar] [CrossRef]
- Minzoni, A.A.; Whitham, G.B. On the Excitation of Edge Wave on Beaches. J. Fluid Mech. 1979, 79, 273–287. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, A.; Brown, A.C. The Ecology of Sandy Shores; Academic Press: London, UK, 2006; pp. 1–373. [Google Scholar] [CrossRef]
- Kim, H. Three-Dimensional Sediment Transport Model. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 1993; pp. 1–443. [Google Scholar]
- Rocha, M.V.L.; Michallet, H.; Silva, P.A. Improving the Parameterization of Wave Nonlinearities-The Importance of Wave Steepness, Spectral Bandwidth and Beach Slope. Coast. Eng. 2017, 121, 77–89. [Google Scholar] [CrossRef]
- Almar, R.; Nicolae-Lerma, A.; Castelle, B.; Scott, T. On the Influence of Reflection Over a Rhythmic Swash Zone on Surf Zone Dynamics. Ocean Dyn. 2018, 68, 1–30. [Google Scholar] [CrossRef]
- Cho, Y.J. Grand Circulation Process of Beach Cusp and its Seasonal Variation at the Mang-Bang Beach from the Perspective of Trapped Mode Edge Waves as the Driving Mechanism of Beach Cusp Formation. J. Korean Soc. Coast. Ocean Eng. 2019, 31, 265–277. [Google Scholar] [CrossRef]
- Liu, P.L.F.; Yeh, H.; Lin, P.; Chang, K.T.; Cho, Y.S. Generation and Evolution of Edge-Wave Packets. Phys. Fluids 1998, 10, 1635–1659. [Google Scholar] [CrossRef]
- Onorato, M.; Cavaleri, L.; Fouques, S.; Gramstad, O.; Janssen, P.A.E.M.; Monbaliu, J.; Osborne, A.R.; Palpzdoi, C.; Serio, M.; Stanberg, C.T.; et al. Statistical Properties of Mechanically Generated Surface Gravity Waves: A Laboratory Experiment in a Three-Dimensional Wave Basin. J. Fluid Mech. 2009, 627, 235–257. [Google Scholar] [CrossRef]
- Mok, K.M.; Yeh, H. On Mass Transport of Progressive Edge Waves. Phys. Fluids 1999, 11, 2906–2924. [Google Scholar] [CrossRef]
- Cho, Y.J. Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone using LES and One Equation Dynamic Smagorinsky Turbulence Model. J. Korean Soc. Coast. Ocean. Eng. 2020, 32, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Guza, R.T. Excitation of Edge Waves and Their Role in the Formation of Beach Cusps. Ph.D. Thesis, University of California, San Diego, CA, USA, 1974. [Google Scholar]
- Struhlmeier, R. Particle Paths in Stokes’ Edge Wave. J. Nonlinear Math. Phys. 2015, 22, 507–515. [Google Scholar] [CrossRef]
- Whitham, G.B. Nonlinear Effects in Edge Waves. J. Fluid Mech. 1976, 74, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Dubinina, V.A.; Kurkin, A.; Kurkina, O. Nonlinear Dynamics of Edge Waves over a Linearly Sloping Bottom. Atmos. Ocean. Phys. 2005, 41, 242–246. [Google Scholar]
- Johnson, R.S. Water Waves near a Shoreline in a Flow with Vorticity: Two Classical Examples. J. Nonlinear Math. Phys. 2008, 15, 133–156. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.S. On the Nonlinear Critical Layer below a Nonlinear Unsteady Surface Wave. J. Fluid Mech. 1986, 167, 327–351. [Google Scholar] [CrossRef]
- Dore, B.D. Wave-Induced Vorticity in Free-Surface Boundary Layers: Application to Mass Transport in Edge Waves. J. Fluid Mech. 1975, 70, 257–266. [Google Scholar] [CrossRef]
- Eckart, C. Surface Waves on Water of Variable Depth; Wave Report 100; Scripps Institute of Oceanography, University of California: La Jolla, CA, USA, 1951; pp. 1–75. [Google Scholar]
- Ursell, F. Edge Waves on a Sloping Beach. Proc. R. Soc. Lond. Ser. A 1952, 214, 79–97. [Google Scholar] [CrossRef]
Case | * | (deg.) | Remark | |||
---|---|---|---|---|---|---|
1 | 0.579 | 62.8 | 0.100 | 1.43 | 20 | |
2 | 0.579 | 62.8 | 0.100 | 0.71 | 20 | /2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, H.-J.; Kim, H.; Jang, C.; Kim, K.-H.; Kang, T.-S. Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves. J. Mar. Sci. Eng. 2022, 10, 894. https://doi.org/10.3390/jmse10070894
Yoo H-J, Kim H, Jang C, Kim K-H, Kang T-S. Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves. Journal of Marine Science and Engineering. 2022; 10(7):894. https://doi.org/10.3390/jmse10070894
Chicago/Turabian StyleYoo, Ho-Jun, Hyoseob Kim, Changhwan Jang, Ki-Hyun Kim, and Tae-Soon Kang. 2022. "Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves" Journal of Marine Science and Engineering 10, no. 7: 894. https://doi.org/10.3390/jmse10070894
APA StyleYoo, H.-J., Kim, H., Jang, C., Kim, K.-H., & Kang, T.-S. (2022). Maximum Run-Up and Alongshore Mass Transport Due to Edge Waves. Journal of Marine Science and Engineering, 10(7), 894. https://doi.org/10.3390/jmse10070894