Coral Shoals Detection from Optical Satellite Imagery Using Deep Belief Network Algorithm: A Case Study for the Xisha Islands, South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Optical Satellite Imagery
2.2.2. Auxiliary Data
2.2.3. Preprocessing of Satellite Images
2.3. Methods
2.3.1. DBN Classification Model for Coral Shoals
2.3.2. Edge Detection Algorithm GVF-Snake
2.3.3. Optical Remote Sensing Detection Process of Coral Shoals
3. Results
3.1. Selection of Filter Window Size
3.2. Detection Results’ Validation and Comparison of Yinli Shoal
3.2.1. Results Analysis and Validation
3.2.2. Results Comparison
3.3. Detection Results’ Analysis of Coral Shoals in the Xisha Islands
4. Discussion
4.1. Comparison of Edge Detection Results between GVF-Snake and Traditional Operators
4.2. Influence of the Spatial and Spectral Resolution of Remote Sensing Images on the Coral Shoal Detection Results
4.3. Application of the Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.T.; Wang, L.R.; Song, C.J. Geomorphological model of coral reefs in the South China Sea. Acta Oceanol. Sin. 2014, 36, 112–120. [Google Scholar]
- Bellwood, D.R.; Hughes, T.P. Regional-scale assembly rules and biodiversity of coral reefs. Science 2001, 292, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.X.; Yu, K.F.; Zhang, Q.M. Review on coral reefs biodiversity and ecological function. Acta Ecol. Sin. 2006, 26, 186–194. [Google Scholar]
- David, W.S.; Olof, L. The health and future of coral reef systems. Ocean Coast. Manag. 2000, 43, 657–688. [Google Scholar]
- Zhao, H.T.; Wang, L.R. Review on the study of formation mechanism of coral reefs. Trop. Geog. 2016, 36, 1–9. [Google Scholar]
- Smith, S.V. Coral-reef area and contributions of reefs to processes and resources of the World’s Oceans. Nature 1978, 273, 225–226. [Google Scholar] [CrossRef]
- Azmath, J. The status of the coral reefs and the management approaches: The case of the Maldives. Ocean Coast. Manag. 2013, 82, 104–118. [Google Scholar]
- Huang, R.Y.; Yu, K.F.; Wang, Y.H.; Liu, J.L.; Zhang, H.Y. Progress of the study on coral reef remote sensing. J. Remote Sens. 2019, 23, 1091–1112. [Google Scholar] [CrossRef]
- Xu, J.P.; Zhao, D.Z. Review of coral reef ecosystem remote sensing. Acta Ecol. Sin. 2014, 34, 19–25. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.L.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef]
- Roelfsema, C.; Phinn, S.; Jupiter, S.; Comley, J.; Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 2013, 34, 6367–6388. [Google Scholar] [CrossRef]
- Awak, D.S.; Gaol, J.L.; Subhan, B.; Madduppa, H.H.; Arafat, D. Coral reef ecosystem monitoring using remote sensing data: Case study in Owi Island, Biak, Papua. Procedia Environ. Sci. 2016, 33, 600–606. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Capolsini, P.; Andréfouët, S.; Rion, C.; Payri, C. Landsat ETM+, SPOT HRV, IKONOS, ASTER, and airborne MASTER data for coral reef habitat mapping in South Pacific islands. Can. J. Remote Sens. 2003, 29, 187–200. [Google Scholar] [CrossRef]
- Andréfouët, S.; Kramer, P.; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Pérez, R.; Mumby, P.J.; Riegl, B.; Yamano, H.; White, W.H.; et al. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sens. Environ. 2003, 88, 128–143. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat-8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Mascaro, J. Coral reef atoll assessment in the south china sea using planet dove satellites. Remote Sens. Ecol. Conserv. 2017, 3, 57–65. [Google Scholar] [CrossRef]
- Lyons, M.B.; Roelfsema, C.M.; Kennedy, E.V.; Kovacs, E.M.; Borrego-Acevedo, R.; Markey, K.; Roe, M.; Yuwono, D.M.; Harris, D.L.; Phinn, S.R. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 2020, 6, 557–568. [Google Scholar]
- Duvat, V.K.E.; Pillet, V. Shoreline changes in reef islands of the Central Pacific: Takapoto Atoll, Northern Tuamotu, French Polynesia. Geomorphology 2017, 282, 96–118. [Google Scholar] [CrossRef]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Li, X.M.; Ma, Y.; Zhang, J.; Lyu, X.X. Spatial and temporal dynamics of typical islands in the Xishan Islands using high-resolution satellite images. Mar. Sci. Bull. 2020, 39, 717–729. [Google Scholar]
- Aslam, M.; Kench, P.S. Reef island dynamics and mechanisms of change in Huvadhoo Atoll, Republic of Maldives, Indian Ocean. Anthropocene 2017, 18, 57–68. [Google Scholar] [CrossRef]
- Duvat, V.K.E.; Salvat, B.; Salmon, C. Drivers of shoreline change in atoll reef islands of the Tuamotu Archipelago, French Polynesia. Global Planet. Chang. 2017, 158, 134–154. [Google Scholar] [CrossRef]
- Duvat, V.K.E. Human-driven atoll island expansion in the Maldives. Anthropocene 2020, 32, 100265. [Google Scholar] [CrossRef]
- Kench, P.S.; Parnell, K.E.; Brander, R.W. Monsoonally influenced circulation around coral reef islands and seasonal dynamics of reef island shorelines. Mar. Geol. 2009, 266, 91–108. [Google Scholar] [CrossRef]
- Liu, J.L.; Huang, R.Y.; Yu, K.F.; Zou, B. How lime-sand islands in the South China Sea have responded to global warming over the last 30 years: Evidence from satellite remote sensing images. Geomorphology 2020, 371, 107423. [Google Scholar] [CrossRef]
- Webb, A.P.; Kench, P.S. The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the Central Pacific. Global Planet. Chang. 2010, 72, 234–246. [Google Scholar] [CrossRef]
- Zhu, H.T.; Jiang, X.W.; Meng, X.L.; Feng, Q.; Cui, S.X. A quantitative approach to monitoring new sand cay migration in Nansha Islands. Acta Oceanol. Sin. 2016, 35, 102–107. [Google Scholar] [CrossRef]
- Zhou, S.N.; Shi, Q.; Guo, H.Y.; Yang, H.Q.; Yan, H.Q. Evolution of Coral Shingle Cays in the Nansha Islands during 2009–2017. Trop. Geog. 2020, 40, 694–708. [Google Scholar]
- Li, X.M.; Ma, Y.; Zhang, J.; Lyu, X.X. Assessing the stability of coral reef sandbanks in the Xisha Islands using high-resolution satellite images. Mar. Environ. Sci. 2022, 41, 48–58. [Google Scholar]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- Leon, J.; Woodroffe, C.D. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. Int. J. Geogr. Inf. Sci. 2011, 25, 949–969. [Google Scholar] [CrossRef]
- Xu, J.P.; Zhao, J.H.; Li, F.; Wang, L.; Song, D.R.; Wen, S.Y.; Wang, F.; Gao, N. Object-based image analysis for mapping geomorphic zones of coral reefs in the Xisha Islands, China. Acta Oceanol. Sin. 2016, 35, 19–27. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Liu, Y.X.; Hu, C.M.; Xu, B.H. Coral reef geomorphology of the Spratly Islands: A simple method based on time-series of Landsat-8 multi-band inundation maps. ISPRSJ. Photogramm. Remote Sens. 2019, 157, 137–154. [Google Scholar] [CrossRef]
- Dong, J.; Ren, G.B.; Hu, Y.B.; Pang, J.Z.; Ma, Y. Construction and classification of coral reef geomorphic unit system based on high-resolution remote sensing: Using 8-band Worldview-2 image as an example. J. Trop. Oceanogr. 2020, 39, 116–129. [Google Scholar]
- Benfield, S.L.; Guzman, H.M.; Mair, J.M.; Young, J.A.T. Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: A comparison of optical satellite sensors and classification methodologies. Int. J. Remote Sens. 2007, 28, 5047–5070. [Google Scholar] [CrossRef]
- Saul, S.; Purkis, S. Semi-automated object-based classification of coral reef habitat using discrete choice models. Remote Sens. 2015, 7, 15894–15916. [Google Scholar] [CrossRef]
- Li, J.W.; Schill, S.R.; Knapp, D.E.; Asner, G.P. Object-based mapping of coral reef habitats using planet Dove satellites. Remote Sens. 2019, 11, 1445. [Google Scholar] [CrossRef]
- Zhou, M.X.; Liu, Y.X.; Li, M.C.; Sun, C.; Zou, W. Geomorphologic information extraction for multi-objective coral islands from remotely sensed imagery: A case study for Yongle Atoll, South China Sea. Geogr. Res. 2015, 34, 677–690. [Google Scholar]
- Sun, Q.P.; Ma, Y.; Sun, W.F.; Zhang, J.Y. Research on reef remote sensing detection based on GVF snake model: Taken Yinlitan for example. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 717–720. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Liu, J.W.; Liu, Y.; Luo, X.L. Research and development on deep learning. Appl. Res. Comput. 2014, 31, 1921–1930. [Google Scholar]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. A comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042629. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Mnih, V.; Hinton, G.E. Learning to detect roads in high resolution aerial images. In Computer Vision—ECCV 2010, Proceedings of the 2010 European Conference Computer Vision, Piscataway, NJ, USA, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 210–223. [Google Scholar]
- Lv, Q.; Dou, Y.; Niu, X.; Xu, J.; Xia, F. Remote sensing image classification based on DBN model. J. Comput. Res. Dev. 2014, 51, 1911–1918. [Google Scholar]
- Lv, Q.; Dou, Y.; Niu, X.; Xu, J.; Xu, J.; Xia, F. Urban land use and land cover classification using remotely sensed SAR data through deep belief networks. J. Sens. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Xu, L.K.; Liu, X.D.; Xiang, X.C. Recognition and classification for remote sensing image based on depth belief network. Geol. Sci. Technol. Inf. 2017, 36, 244–249. [Google Scholar]
- Navy Hydrographic Survey Bureau of the People’s Liberation Army of China. China Navigation Guidelines: South China Sea Area; China Navigation Book Press: Tianjin, China, 2022. [Google Scholar]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Lu, X.Q.; Yu, H.; Ying, M.; Zhao, B.K.; Zhang, S.; Lin, L.M.; Bai, L.N.; Wan, R.J. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Wu, B.Y. Practical Algorithm for Atmospheric Radiation Transfer; China Meteorological Press: Beijing, China, 1998; pp. 6–10. [Google Scholar]
- Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [Google Scholar] [CrossRef]
- Fischer, A. Training restricted Boltzmann machines. Kunstl. Intell. 2015, 29, 441–444. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Chen, L.C.; Niu, Y.M.; Pan, L.H.; Zhang, X.Q. Research advances on Snake model. Appl. Res. Comput. 2014, 31, 1931–1936. [Google Scholar]
- Xu, C.Y.; Prince, J.L. Gradient Vector Flow: A new external force for Snake. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 66–71. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Sharma, S.; Bahuguna, A. Artificial neural network based coral cover classifiers using Indian Remote Sensing (IRS LISS-III) sensor data: A case study in gulf of Kachcch, India. Int. J. Geoinf. 2009, 5, 55–63. [Google Scholar]
- Gapper, J.J.; EI-Askary, H.; Linstead, E.; Piechota, T. Coral reef change detection in remote Pacific Islands using support vector machine classifiers. Remote Sens. 2019, 11, 1525. [Google Scholar] [CrossRef]
- Chegoonian, A.M.; Mokhtarzade, M.; Zoej, M.J.V. A comprehensive evaluation of classification algorithms for coral reef habitat mapping: Challenges related to quantity, quality, and impurity of training samples. Int. J. Remote Sens. 2017, 38, 4224–4243. [Google Scholar] [CrossRef]
- Ford, M.R.; Kench, P.S. Spatiotemporal variability of typhoon impacts and relaxation intervals on Jaluit Atoll, Marshall Islands. Geology 2016, 44, 159–162. [Google Scholar] [CrossRef]
- Duvat, V.K.E.; Volto, N.; Salmon, C. Impacts of category 5 tropical cyclone Fantala (April 2016) on Farquhar Atoll, Seychelles Islands, Indian Ocean. Geomorphology 2017, 298, 41–62. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N.; Cracknell, A.P. Sharp rise in hurricane and cyclone count during the last century. Theor. Appl. Climatol. 2015, 119, 629–638. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N. Is there any long-term memory effect in the tropical cyclones? Theor. Appl. Climatol. 2013, 114, 643–650. [Google Scholar] [CrossRef]
- Krapivin, V.F.; Soldatov, V.Y.; Varotsos, C.A.; Cracknell, A.P. An adaptive information technology for the operative diagnostics of the tropical cyclones; solar–terrestrial coupling mechanisms. J. Atmos. Sol.-Terr. Phys. 2012, 89, 83–89. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Krapivin, V.F.; Soldatov, V.Y. Monitoring and forecasting of tropical cyclones: A new information-modeling tool to reduce the risk. Int. J. Disaster Risk Reduct. 2019, 36, 101088. [Google Scholar] [CrossRef]
Image | Date | Time (UTC) | Tide Height (cm) | Covered Coral Shoals |
---|---|---|---|---|
Worldview-3 | 10 October 2014 | 02:48:44 | 121 | Yinli Shoal |
SPOT-6 | 5 April 2013 | 02:46:45 | 129 | |
QuickBird | 10 May 2006 | 03:27:25 | 118 | Shanhudong Shoal |
WorldView-2 | 5 January 2011 | 03:26:42 | 50 | |
QuickBird | 13 July 2005 | 03:19:03 | 181 | Yongnan Shoal |
QuickBird | 23 October 2010 | 03:14:37 | 99 | |
GF-1 PMS | 17 May 2015 | 03:36:53 | 163 | Shanhudong Shoal and Yongnan Shoal |
GF-1 PMS | 7 March 2018 | 03:41:57 | 110 | |
GF-1 WFV | 29 May 2015 | 03:30:09 | 134 | All Shoals |
Image | Profile 1 | Profile 2 | Profile 3 | Profile 4 | Profile 5 | Profile 6 | Profile 7 | Profile 8 | Profile 9 | Profile 10 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Worldview-3 | 130 | 3 | 49 | 231 | 21 | 40 | 294 | 17 | 4 | 28 | 81.7 |
SPOT-6 | 56 | 127 | 8 | 102 | 20 | 33 | 235 | 8 | 43 | 12 | 64.4 |
GF-1 | 143 | 67 | 154 | 592 | 222 | 180 | 218 | 298 | 123 | 111 | 210.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, Y.; Zhang, J. Coral Shoals Detection from Optical Satellite Imagery Using Deep Belief Network Algorithm: A Case Study for the Xisha Islands, South China Sea. J. Mar. Sci. Eng. 2024, 12, 922. https://doi.org/10.3390/jmse12060922
Li X, Ma Y, Zhang J. Coral Shoals Detection from Optical Satellite Imagery Using Deep Belief Network Algorithm: A Case Study for the Xisha Islands, South China Sea. Journal of Marine Science and Engineering. 2024; 12(6):922. https://doi.org/10.3390/jmse12060922
Chicago/Turabian StyleLi, Xiaomin, Yi Ma, and Jie Zhang. 2024. "Coral Shoals Detection from Optical Satellite Imagery Using Deep Belief Network Algorithm: A Case Study for the Xisha Islands, South China Sea" Journal of Marine Science and Engineering 12, no. 6: 922. https://doi.org/10.3390/jmse12060922
APA StyleLi, X., Ma, Y., & Zhang, J. (2024). Coral Shoals Detection from Optical Satellite Imagery Using Deep Belief Network Algorithm: A Case Study for the Xisha Islands, South China Sea. Journal of Marine Science and Engineering, 12(6), 922. https://doi.org/10.3390/jmse12060922