SS-YOLO: A Lightweight Deep Learning Model Focused on Side-Scan Sonar Target Detection
Abstract
:1. Introduction
2. Data
2.1. Data Collection
2.2. Data Post-Processing
3. Method
3.1. The Network Structure
3.2. Improved Algorithm
3.2.1. Fast-C2f
3.2.2. Adaptive Scale Spatial Fusion
3.2.3. DetectSA
4. Experiments and Analysis
4.1. Evaluation Criteria
4.2. Experiment Setup
4.3. SSSD Result
4.3.1. Ablation Experiments
4.3.2. Contrast Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Li, Y.; Yue, C.; Xu, G.; Wang, H.; Feng, X. Real-Time Underwater Target Detection for AUV Using Side Scan Sonar Images Based on Deep Learning. Appl. Ocean Res. 2023, 138, 103630. [Google Scholar] [CrossRef]
- Grządziel, A. The Impact of Side-Scan Sonar Resolution and Acoustic Shadow Phenomenon on the Quality of Sonar Imagery and Data Interpretation Capabilities. Remote Sens. 2023, 15, 5599. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Z.; Wang, M.; Ning, B.; Wang, Y.; Zhu, P. Multi-Level Feature Enhancement Network for Object Detection in Sonar Images. J. Vis. Commun. Image Represent. 2024, 100, 104147. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Li, D.; Shen, T. Bottom Detection Method of Side-Scan Sonar Image for AUV Missions. Complexity 2020, 2020, 8890410. [Google Scholar] [CrossRef]
- Abu, A.; Diamant, R. A Statistically-Based Method for the Detection of Underwater Objects in Sonar Imagery. IEEE Sens. J. 2019, 19, 6858–6871. [Google Scholar] [CrossRef]
- Febriawan, H.K.; Helmholz, P.; Parnum, I.M. Support Vector Machine and Decision Tree Based Classification of Side-Scan Sonar Mosaics Using Textural Features. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 27–34. [Google Scholar] [CrossRef]
- Azimi-Sadjadi, M.R.; Klausner, N.; Kopacz, J. Detection of Underwater Targets Using a Subspace-Based Method with Learning. IEEE J. Ocean. Eng. 2017, 42, 869–879. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Xu, H.; Ayub, M.S. Small Target Detection Method Based on Low-Rank Sparse Matrix Factorization for Side-Scan Sonar Images. Remote Sens. 2023, 15, 2054. [Google Scholar] [CrossRef]
- Fakiris, E.; Papatheodorou, G.; Geraga, M.; Ferentinos, G. An Automatic Target Detection Algorithm for Swath Sonar Backscatter Imagery, Using Image Texture and Independent Component Analysis. Remote Sens. 2016, 8, 373. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Chu, Z.; Yang, Y.; Shi, J. Active Learning for Recognition of Shipwreck Target in Side-Scan Sonar Image. Remote Sens. 2019, 11, 243. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Huang, W.; Guo, J.; Zeng, L. Sonar Image Target Detection Based on Adaptive Global Feature Enhancement Network. IEEE Sens. J. 2022, 22, 1509–1530. [Google Scholar] [CrossRef]
- Kong, W.; Hong, J.; Jia, M.; Yao, J.; Cong, W.; Hu, H.; Zhang, H. YOLOv3-DPFIN: A Dual-Path Feature Fusion Neural Network for Robust Real-Time Sonar Target Detection. IEEE Sens. J. 2020, 20, 3745–3756. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Cheng, C.; Hou, X.; Cao, C. Detection of Small Objects in Side-Scan Sonar Images Using an Enhanced YOLOv7-Based Approach. J. Mar. Sci. Eng. 2023, 11, 2155. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, F. Underwater Target Detection by Side-Scan Sonar Based on Yolov7-Attention. In Proceedings of the 2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT), Quzhou, China, 3–5 November 2023; pp. 1536–1542. [Google Scholar]
- Wen, X.; Wang, J.; Cheng, C.; Zhang, F.; Pan, G. Underwater Side-Scan Sonar Target Detection: YOLOv7 Model Combined with Attention Mechanism and Scaling Factor. Remote Sens. 2024, 16, 2492. [Google Scholar] [CrossRef]
- Mittal, P. A Comprehensive Survey of Deep Learning-Based Lightweight Object Detection Models for Edge Devices. Artif Intell Rev 2024, 57, 242. [Google Scholar] [CrossRef]
- Liu, G.; Hu, Y.; Chen, Z.; Guo, J.; Ni, P. Lightweight Object Detection Algorithm for Robots with Improved YOLOv5. Eng. Appl. Artif. Intell. 2023, 123, 106217. [Google Scholar] [CrossRef]
- Huyan, L.; Bai, Y.; Li, Y.; Jiang, D.; Zhang, Y.; Zhou, Q.; Wei, J.; Liu, J.; Zhang, Y.; Cui, T. A Lightweight Object Detection Framework for Remote Sensing Images. Remote Sens. 2021, 13, 683. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Wu, C.; Tao, R. Multi-Scale Spatiotemporal Feature Fusion Network for Video Saliency Prediction. IEEE Trans. Multimed. 2024, 26, 4183–4193. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, L.; Jin, S.; Zhao, J.; Huang, C.; Yu, Y. AUV-Based Side-Scan Sonar Real-Time Method for Underwater-Target Detection. J. Mar. Sci. Eng. 2023, 11, 690. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 17 November 2024).
- Varghese, R.; Sambath, M. YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024; pp. 1–6. [Google Scholar]
- Hao, C.-Y.; Chen, Y.-C.; Chen, T.-T.; Lai, T.-H.; Chou, T.-Y.; Ning, F.-S.; Chen, M.-H. Synthetic Data-Driven Real-Time Detection Transformer Object Detection in Raining Weather Conditions. Appl. Sci. 2024, 14, 4910. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, J.; Zhong, H.; Ning, M.; Liu, D.; Wu, K. Self-Trained Target Detection of Radar and Sonar Images Using Automatic Deep Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- GitHub—Ultralytics/Ultralytics: NEW—YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite. Available online: https://github.com/ultralytics/ultralytics (accessed on 27 September 2024).
- Liu, Z.; Rasika, D.; Abeyrathna, R.M.; Mulya Sampurno, R.; Massaki Nakaguchi, V.; Ahamed, T. Faster-YOLO-AP: A Lightweight Apple Detection Algorithm Based on Improved YOLOv8 with a New Efficient PDWConv in Orchard. Comput. Electron. Agric. 2024, 223, 109118. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Cai, Y.; Chen, L.; Li, Y. YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8. IEEE Trans. Instrum. Meas. 2024, 73, 1–16. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.-H.; Chan, S.-H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks 2023. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023, Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Zhang, L.; Li, P.; Liu, X.; Yu, J.; Hu, G.; Yu, T. Dy-GNet: A Lightweight and Efficient 1DCNN-Based Network for Leakage Aperture Identification. Meas. Sci. Technol. 2024, 35, 056109. [Google Scholar] [CrossRef]
- Park, H.-J.; Kang, J.-W.; Kim, B.-G. ssFPN: Scale Sequence (S2) Feature-Based Feature Pyramid Network for Object Detection. Sensors 2023, 23, 4432. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Pan, Y.; Guo, G.; Zhai, Y.; Liu, G. YOLO-AFPN: Marrying YOLO and AFPN for External Damage Detection of Transmission Lines. IET Gener. Transm. Distrib. 2024, 18, 1935–1946. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, J.; Tang, P.; Gan, J.; Zhang, H. A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference. Remote Sens. 2024, 16, 1752. [Google Scholar] [CrossRef]
- Kang, M.; Ting, C.-M.; Ting, F.F.; Phan, R.C.-W. ASF-YOLO: A Novel YOLO Model with Attentional Scale Sequence Fusion for Cell Instance Segmentation. Image Vis. Comput. 2024, 147, 105057. [Google Scholar] [CrossRef]
- Liu, J.; Fan, X.; Jiang, J.; Liu, R.; Luo, Z. Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 105–119. [Google Scholar] [CrossRef]
- Lindeberg, T. Scale-Space Theory in Computer Vision; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4757-6465-9. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar]
- Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 24 May 2019; pp. 7354–7363. [Google Scholar]
- Cordonnier, J.-B.; Loukas, A.; Jaggi, M. On the Relationship Between Self-Attention and Convolutional Layers. Available online: https://arxiv.org/abs/1911.03584v2 (accessed on 7 September 2024).
- Yu, H.; Wan, C.; Liu, M.; Chen, D.; Xiao, B.; Dai, X. Real-Time Image Segmentation via Hybrid Convolutional-Transformer Architecture Search. arXiv 2024, arXiv:2403.10413. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Jocher, G. YOLOv5 by Ultralytics 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 17 November 2024).
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- GitHub—Ultralytics/Ultralytics: Ultralytics YOLO11 🚀. Available online: https://github.com/ultralytics/ultralytics/tree/main (accessed on 17 November 2024).
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Qu, S.; Cui, C.; Duan, J.; Lu, Y.; Pang, Z. Underwater Small Target Detection under YOLOv8-LA Model. Sci. Rep. 2024, 14, 16108. [Google Scholar] [CrossRef] [PubMed]
Technical Specifications | Parameters |
---|---|
Operating Frequency | 900 kHz |
Maximum Range | 75 m @ 900 kHz |
Horizontal Beam Width | 0.2° @ 900 kHz |
Vertical Beam Width | 50° |
Along Track Resolution | 0.07 m @ 20 m;0.17 m @ 50 m;0.26 m @ 75 m; |
Parameters | Configuration |
---|---|
image size | (960, 960) |
batch size | 16 |
epochs | 200 |
initial learning rate | 0.01 |
final learning rate | 0.1 |
weight decay | 0.0005 |
SGD momentum | 0.937 |
Method | Params | FLOPs | [email protected] | mAP@[0.5, 0.95] |
---|---|---|---|---|
YOLOv8n | 3.15 M | 8.9 G | 0.88 | 0.617 |
YOLOv8n + Fast-C2f | 2.45 M | 7.1 G | 0.874 | 0.634 |
YOLOv8n + Fast-C2f + ASSF | 2.69 M | 7.6 G | 0.898 | 0.642 |
YOLOv8n + Fast-C2f + ASSF + DetectSA | 2.55 M | 6.4 G | 0.924 | 0.647 |
Method | Params | FLOPs | P | R | [email protected] | mAP@[0.5,0.95] |
---|---|---|---|---|---|---|
SSD [41] | 24.98 M | 137.94 G | 0.608 | 0.841 | 0.827 | 0.419 |
Faster R-CNN [42] | 41.22 M | 91.1 G | 0.836 | 0.915 | 0.88 | 0.534 |
YOLOv5s [43] | 7.2 M | 16.5 G | 0.905 | 0.902 | 0.896 | 0.628 |
YOLOv7t [44] | 6.2 M | 13.9 G | 0.896 | 0.787 | 0.868 | 0.560 |
YOLOv8n [45] | 3.15 M | 8.9 G | 0.877 | 0.835 | 0.88 | 0.617 |
YOLOv9s [46] | 7.1 M | 26.4 G | 0.889 | 0.921 | 0.933 | 0.698 |
SS-YOLO | 2.55 M | 6.4 G | 0.821 | 0.857 | 0.924 | 0.647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Li, G.; Wang, S.; Wei, Z.; Ren, H.; Zhang, X.; Pei, Y. SS-YOLO: A Lightweight Deep Learning Model Focused on Side-Scan Sonar Target Detection. J. Mar. Sci. Eng. 2025, 13, 66. https://doi.org/10.3390/jmse13010066
Yang N, Li G, Wang S, Wei Z, Ren H, Zhang X, Pei Y. SS-YOLO: A Lightweight Deep Learning Model Focused on Side-Scan Sonar Target Detection. Journal of Marine Science and Engineering. 2025; 13(1):66. https://doi.org/10.3390/jmse13010066
Chicago/Turabian StyleYang, Na, Guoyu Li, Shengli Wang, Zhengrong Wei, Hu Ren, Xiaobo Zhang, and Yanliang Pei. 2025. "SS-YOLO: A Lightweight Deep Learning Model Focused on Side-Scan Sonar Target Detection" Journal of Marine Science and Engineering 13, no. 1: 66. https://doi.org/10.3390/jmse13010066
APA StyleYang, N., Li, G., Wang, S., Wei, Z., Ren, H., Zhang, X., & Pei, Y. (2025). SS-YOLO: A Lightweight Deep Learning Model Focused on Side-Scan Sonar Target Detection. Journal of Marine Science and Engineering, 13(1), 66. https://doi.org/10.3390/jmse13010066