Sea Clutter Suppression Method Based on Ocean Dynamics Using the WRF Model
Abstract
:1. Introduction
- The WRF meteorological model is introduced into the simulation of ocean parameters within a radar detection area. The parameterization scheme of the WRF model is calibrated using measured hydrological data from the radar detection area, ensuring simulation accuracy. This WRF numerical model simulation addresses the inability to grasp real-time changes in the ocean environment characteristics within the radar detection area.
- Based on the simulated ocean dynamic parameters and integrating various sea clutter spectral computation methods, we develop a sea clutter spectrum estimation method based on ocean dynamic parameters. This enables the use of the WRF numerical model to investigate ocean environment parameters and subsequently estimate the sea clutter Doppler spectrum.
- Utilizing the sea clutter Doppler spectrum parameters obtained from ocean dynamic parameter simulations, we design digital filters that match the spectral characteristics of sea clutter. By controlling the filter parameter changes based on simulated real-time sea clutter characteristics, we achieve adaptive optimal filtering, accurately suppressing clutter in radar echoes. The combination of ocean numerical modeling, ocean dynamics, and matched digital filters provides new insights for the development of sea clutter suppression technologies.
2. Methods
2.1. Simulation of Ocean Dynamics Parameters Based on the WRF Model
2.2. Sea Clutter Spectrum Estimation Based on Ocean Dynamics Parameters
2.3. FIR Filter Design
2.4. The Measured Sea Clutter Dataset
2.4.1. X-Band Radar Dataset
2.4.2. IPIX Radar Dataset
3. Results and Dicussion
3.1. WRF Model Simulation Results
3.2. Simulation Results of Sea Clutter Spectrum
3.3. Algorithmic Complexity
3.4. Analysis of Sea Clutter Suppression Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makhoul, E.; López-Martínez, C.; Broquetas, A. Exploiting Polarimetric TerraSAR-X Data for Sea Clutter Characterization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 358–372. [Google Scholar] [CrossRef]
- Shui, P.L.; Shi, X.F.; Li, X.; Feng, T.; Xia, X.Y.; Han, Y. GRNN-based predictors of UHF-band sea clutter reflectivity at low grazing angle. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Wan, J.; Luo, F.; Zhang, Y.; Xu, X.; Yin, Y. Research on sea clutter model of emulating aircraft motion based on shore-based multichannel radar. Int. J. Remote Sens. 2022, 43, 2227–2243. [Google Scholar] [CrossRef]
- Qingliang, L.; Jinpeng, Z.; Yushi, Z. Review on sea clutter measurement and modeling. Chin. J. Radio Sci. 2023, 38, 559–573. [Google Scholar]
- Gregers-Hansen, V.; Mital, R. An empirical sea clutter model for low grazing angles. In Proceedings of the 2009 IEEE Radar Conference, Pasadena, CA, USA, 4–8 May 2009; pp. 1–5. [Google Scholar]
- Rosenberg, L.; Watts, S. High Grazing Angle Sea-Clutter Literature Review; DSTO, General Document DSTO-GD-0736; Defence Science and Technology Organisation: Edinburgh, Australia, 2013. [Google Scholar]
- Watts, S.; Ward, K.; Tough, R. Modelling the shape parameter of sea clutter. In Proceedings of the 2009 International Radar Conference “Surveillance for a Safer World” (RADAR 2009), Bordeaux, France, 12–16 October 2009; pp. 1–6. [Google Scholar]
- Guidoum, N.; Soltani, F.; Mezache, A. Modeling of high-resolution radar sea clutter using two approximations of the Weibull plus thermal noise distribution. Arab. J. Sci. Eng. 2022, 47, 14957–14967. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, S.; Wang, X.; Zhang, W.; Li, Y. Statistical distribution of polarization ratio for radar sea clutter. Radio Sci. 2017, 52, 981–987. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, D.; Chen, S.; Su, J.; Tao, M.; Guo, Z.; Wang, L. Weak Target Detection Based on Full-Polarization Scattering Features under Sea Clutter Background. Remote Sens. 2024, 16, 2987. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, Z.; Zhang, Y.; Zhang, J.; Xu, X.; Wu, J. Characterization and Modeling of Doppler Spectra for Offshore UHF-Band Sea Clutter at Low Grazing Angles. J. Mar. Sci. Eng. 2023, 11, 1901. [Google Scholar] [CrossRef]
- Hao, D.; Yunlong, D.; Ningbo, L.; Guoqing, W.; Jian, G. Overview and prospects of research on sea clutter property cognition. J. Radars 2016, 5, 499–516. [Google Scholar]
- Lamont-Smith, T. An empirical model of EM scattering from steepening wave profiles derived from numerical computations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1447–1454. [Google Scholar] [CrossRef]
- Lamont-Smith, T.; Waseda, T.; Rheem, C.K. Measurements of the Doppler spectra of breaking waves. IET Radar Sonar Navig. 2007, 1, 149–157. [Google Scholar] [CrossRef]
- Lee, P.; Barter, J.; Lake, B.; Thompson, H. Lineshape analysis of breaking-wave Doppler spectra. IEE Proc.-Radar Sonar Navig. 1998, 145, 135–139. [Google Scholar] [CrossRef]
- Walker, D. Experimentally motivated model for low grazing angle radar Doppler spectra of the sea surface. IEE Proc.-Radar Sonar Navig. 2000, 147, 114–120. [Google Scholar] [CrossRef]
- Walker, D. Doppler modelling of radar sea clutter. IEE Proc.-Radar Sonar Navig. 2001, 148, 73–80. [Google Scholar] [CrossRef]
- Lamont-Smith, T. Investigation of the variability of Doppler spectra with radar frequency and grazing angle. IEE Proc.-Radar Sonar Navig. 2004, 151, 291–298. [Google Scholar] [CrossRef]
- Rosenberg, L. Characterization of high grazing angle X-band sea-clutter Doppler spectra. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 406–417. [Google Scholar] [CrossRef]
- Rosenberg, L. Parametric modeling of sea clutter Doppler spectra. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–9. [Google Scholar] [CrossRef]
- Zhao, P.; Li, X.; Zhang, J.; Zhang, Y.; Zhu, X. Scattering mechanism analysis of sea clutter at UHF band by Doppler spectrum characteristics. In Proceedings of the 32nd URSI GASS, Montreal, QC, Canada, 19–26 August 2017. [Google Scholar]
- Li, X.; Zhang, Y.; Zhang, J. A DNN-Based Method for Sea Clutter Doppler Parameters Prediction. In Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence, Beijing, China, 4–6 December 2021; pp. 302–309. [Google Scholar]
- Hu, J.; Tung, W.W.; Gao, J. Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Trans. Antennas Propag. 2006, 54, 136–143. [Google Scholar] [CrossRef]
- Chen, X.; Guan, J.; He, Y.; Zhang, J. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain. IET Radar Sonar Navig. 2013, 7, 635–651. [Google Scholar] [CrossRef]
- Stankovic, L.; Thayaparan, T.; Dakovic, M. Signal decomposition by using the S-method with application to the analysis of HF radar signals in sea-clutter. IEEE Trans. Signal Process. 2006, 54, 4332–4342. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Gao, Y.; Ma, B. Sea Clutter Suppression Using Smoothed Pseudo-Wigner–Ville Distribution–Singular Value Decomposition during Sea Spikes. Remote Sens. 2023, 15, 5360. [Google Scholar] [CrossRef]
- Ningyuan, S.; Xiaolong, C.; Jian, G.; Xiaoqian, M.; Ningbo, L.; University, N.A. Detection and Classification of Maritime Target with Micro-motion Based on CNNs. J. Radars 2018, 7, 565–574. [Google Scholar]
- Fan, Y.; Li, C.; Li, D.; Li, J.; Su, J.; Tao, M. A Novel Sea Clutter Suppression Method based on Neural Network. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021; pp. 437–440. [Google Scholar]
- Monbaliu, J.; Padilla-Hernandez, R.; Hargreaves, J.C.; Albiach, J.C.C.; Luo, W.; Sclavo, M.; Guenther, H. The spectral wave model, WAM, adapted for applications with high spatial resolution. Coast. Eng. 2000, 41, 41–62. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Lyu, T.; Zhang, H. Regional significant wave height forecast in the East China Sea based on the Self-Attention ConvLSTM with SWAN model. Ocean Eng. 2024, 312, 119064. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A description of the advanced research WRF version 3. NCAR Tech. Note 2008, 475, 10-5065. [Google Scholar]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy 2014, 117, 116–126. [Google Scholar] [CrossRef]
- Banks, R.F.; Tiana-Alsina, J.; Baldasano, J.M.; Rocadenbosch, F.; Papayannis, A.; Solomos, S.; Tzanis, C.G. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 2016, 176, 185–201. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Melas, D.; Ziomas, I. Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece. Renew. Energy 2017, 102, 190–198. [Google Scholar] [CrossRef]
- Prósper, M.A.; Otero-Casal, C.; Fernández, F.C.; Miguez-Macho, G. Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations. Renew. Energy 2019, 135, 674–686. [Google Scholar] [CrossRef]
- Alter, J.J.; Coleman, J.O. Radar digital signal processing. In Radar Handbook, 3rd ed.; Skolnik, M.I., Ed.; McGraw-Hill: New York, NY, USA, 2008; Chapter 25. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Raynal, A.M.; Doerry, A.W. Doppler Characteristics of Sea Clutter; Technical Report; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2010. [Google Scholar]
- Lee, P.; Barter, J.; Beach, K.; Hindman, C.; Lake, B.; Rungaldier, H.; Shelton, J.; Williams, A.; Yee, R.; Yuen, H. X band microwave backscattering from ocean waves. J. Geophys. Res. Ocean. 1995, 100, 2591–2611. [Google Scholar] [CrossRef]
- Ward, K.D.; Watts, S.; Tough, R.J. Sea Clutter: Scattering, the K Distribution and Radar Performance; IET: London, UK, 2006; Volume 20. [Google Scholar]
- Masuko, H.; Okamoto, K.; Shimada, M.; Niwa, S. Measurement of microwave backscattering signatures of the ocean surface using X band and Ka band airborne scatterometers. J. Geophys. Res. Ocean. 1986, 91, 13065–13083. [Google Scholar] [CrossRef]
- Trizna, D. A model for Doppler peak spectral shift for low grazing angle sea scatter. IEEE J. Ocean. Eng. 1985, 10, 368–375. [Google Scholar] [CrossRef]
- Lamont-Smith, T. Azimuth dependence of Doppler spectra of sea clutter at low grazing angle. IET Radar Sonar Navig. 2008, 2, 97–103. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 24 December 2024).
- Yang, S.; Li, D.; Chen, L.; Liu, Z.; Huang, X.Y.; Pan, X. The regularized WSM6 microphysical scheme and its validation in WRF 4D-Var. Adv. Atmos. Sci. 2023, 40, 483–500. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Ningbo, L.; Yunlong, D.; Guoqing, W.; Hao, D.; Yong, H.; Jian, G.; Xiaolong, C.; You, H. Sea-detecting X-band radar and data acquisition program. J. Radars 2019, 8, 656–667. [Google Scholar]
- Lv, M.; Zhou, C. Study on sea clutter suppression methods based on a realistic radar dataset. Remote Sens. 2019, 11, 2721. [Google Scholar] [CrossRef]
Options | Parameter |
---|---|
Geogrid | D01: 172 × 127 (3 km) D02: 151 × 118 (1 km) D03: 229 × 175 (0.3 km) |
IC BC | ERA5 1-h 0.25 deg feedback = 1 |
Domains | dt = 15 s grid_ratio = 3 time_step_ratio = 3 smooth_option = 0 |
Dynamics | hybrid_opt = 2 w_damping = 0 |
Physics | mp_physics: WSM6 cu_physics: Kain-Fritsch (new Eta) (D01, D02), off (D03) ra_lw_physics: RRTMG ra_sw_physics: RRTMG sf_surface_physics: unified Noah land-surface model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wei, Z.; Chen, Y.; Meng, X.; Zhang, H. Sea Clutter Suppression Method Based on Ocean Dynamics Using the WRF Model. J. Mar. Sci. Eng. 2025, 13, 224. https://doi.org/10.3390/jmse13020224
Li G, Wei Z, Chen Y, Meng X, Zhang H. Sea Clutter Suppression Method Based on Ocean Dynamics Using the WRF Model. Journal of Marine Science and Engineering. 2025; 13(2):224. https://doi.org/10.3390/jmse13020224
Chicago/Turabian StyleLi, Guigeng, Zhaoqiang Wei, Yujie Chen, Xiaoxia Meng, and Hao Zhang. 2025. "Sea Clutter Suppression Method Based on Ocean Dynamics Using the WRF Model" Journal of Marine Science and Engineering 13, no. 2: 224. https://doi.org/10.3390/jmse13020224
APA StyleLi, G., Wei, Z., Chen, Y., Meng, X., & Zhang, H. (2025). Sea Clutter Suppression Method Based on Ocean Dynamics Using the WRF Model. Journal of Marine Science and Engineering, 13(2), 224. https://doi.org/10.3390/jmse13020224