An Exception to the Rule? Could Photobiont Identity Be a Better Predictor of Lichen Phenotype than Mycobiont Identity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxon Sampling and Determination
2.2. Selection of Genetic Markers
2.3. DNA Extraction, PCR and Sequencing
2.4. Sequence Alignment and Phylogenetic Analysis
2.5. Variation Partitioning
3. Results
3.1. Mycobiont and Photobiont Diversity
3.2. Variation Partitioning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawksworth, D.L.; Grube, M. Lichens redefined as complex ecosystems. New Phytol. 2020, 227, 1281–1283. [Google Scholar] [CrossRef] [PubMed]
- Mark, K.; Laanisto, L.; Bueno, C.G.; Niinemets, Ü.; Keller, C.; Scheidegger, C. Contrasting co-occurrence patterns of photobiont and Cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. 2020, 227, 1362–1375. [Google Scholar] [CrossRef] [PubMed]
- Grimm, M.; Grube, M.; Schiefelbein, U.; Zühlke, D.; Bernhardt, J.; Riedel, K. The lichens’ microbiota, still a mystery? Front. Microbiol. 2021, 12, 714. [Google Scholar] [CrossRef] [PubMed]
- Honegger, R. Lichen-forming fungi and their photobionts. In Plant Relationships; Deising, H.B., Ed.; The Mycota; Springer: Berlin/Heidelberg, Germany, 2009; pp. 307–333. ISBN 978-3-540-87407-2. [Google Scholar]
- Honegger, R. The lichen symbiosis—What is so spectacular about it? Lichenologist 1998, 30, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Lücking, R.; Leavitt, S.D.; Hawksworth, D.L. Species in lichen-forming fungi: Balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Divers. 2021, 109, 99–154. [Google Scholar] [CrossRef]
- Spribille, T.; Tuovinen, V.; Resl, P.; Vanderpool, D.; Wolinski, H.; Aime, M.C.; Schneider, K.; Stabentheiner, E.; Toome-Heller, M.; Thor, G.; et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 2016, 353, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spribille, T. Relative symbiont input and the lichen symbiotic outcome. Curr. Opin. Plant Biol. 2018, 44, 57–63. [Google Scholar] [CrossRef]
- Moncada, B.; Coca, L.F.; Lücking, R. Neotropical members of Sticta (lichenized Ascomycota: Lobariaceae) forming photosymbiodemes, with the description of seven new species. Bryologist 2013, 116, 169–200. [Google Scholar] [CrossRef]
- Magain, N.; Goffinet, B.; Sérusiaux, E. Further photomorphs in the lichen family Lobariaceae from Reunion (Mascarene archipelago) with notes on the phylogeny of Dendriscocaulon cyanomorphs. Bryologist 2012, 115, 243–254. [Google Scholar] [CrossRef]
- Goffinet, B.; Bayer, R.J. Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized Ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA. Fungal Genet. Biol. 1997, 21, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, N.; Printzen, C.; Lumbsch, H.T. Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Org. Divers. Evol. 2012, 12, 17–37. [Google Scholar] [CrossRef]
- Fryday, A.M.; Schmitt, I.; Pérez-Ortega, S. The genus Endocena (Icmadophilaceae): DNA evidence suggests the same fungus forms different morphologies. Lichenologis 2017, 49, 347–363. [Google Scholar] [CrossRef]
- Mark, K.; Saag, L.; Leavitt, S.D.; Will-Wolf, S.; Nelsen, M.P.; Tõrra, T.; Saag, A.; Randlane, T.; Lumbsch, H.T. Evaluation of traditionally circumscribed species in the lichen-forming genus Usnea, section Usnea (Parmeliaceae, Ascomycota) using a six-locus dataset. Org. Divers. Evol. 2016, 16, 497–524. [Google Scholar] [CrossRef]
- Pino-Bodas, R.; Sanderson, N.; Cannon, P.; Aptroot, A.; Coppins, B.; Orange, A.; Simkin, J. Lecanorales: Cladoniaceae, including the genera Cladonia, Pilophorus and Pycnothelia. Revis. Br. Ir. Lichens 2021, 19, 1–45. [Google Scholar]
- Ahti, T.; Stenroos, S.; Moberg, R. Nordic Lichen Flora, Volume 5: Cladoniaceae; Museum of Evolution, Uppsala University of behalf of Nordic Lichen Society: Göteborg, Sweden, 2013. [Google Scholar]
- Tønsberg, T.; Ahti, T. Cladonia umbricola, a new lichen species from NW Europe and Western North America. Nor. J. Bot. 1980, 27, 307–309. [Google Scholar]
- Orange, A.; James, P.W.; White, F.J. Microchemical Methods for the Identification of Lichens; Twayne Publishers: Woodbridge, CT, USA, 2001. [Google Scholar]
- Pino-Bodas, R.; Martín, M.P.; Burgaz, A.R.; Lumbsch, H.T. Species delimitation in Cladonia (Ascomycota): A challenge to the dna barcoding philosophy. Mol. Ecol. Resour. 2013, 13, 1058–1068. [Google Scholar] [CrossRef]
- Kanz, B.; von Brackel, W.; Cezanne, R.; Eichler, M.; Hohmann, M.-L.; Teuber, D.; Printzen, C. DNA barcodes for the distinction of reindeer lichens: A case study using Cladonia rangiferina and C. stygia. Herzogia 2015, 28, 445–464. [Google Scholar] [CrossRef]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Iriny, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal dna barcodes. Persoonia 2015, 35, 242–263. [Google Scholar] [CrossRef] [Green Version]
- Printzen, C.; Ekman, S. Local population subdivision in the lichen Cladonia subcervicornis as revealed by mitochondrial cytochrome oxidase subunit 1 intron sequences. Mycologia 2003, 95, 399–406. [Google Scholar] [CrossRef]
- Stenroos, S.; Pino-Bodas, R.; Hyvönen, J.; Lumbsch, H.T.; Ahti, T. Phylogeny of the family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 2019, 35, 351–384. [Google Scholar] [CrossRef]
- Yahr, R.; Vilgalys, R.; DePriest, P.T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 2006, 171, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Osyczka, P.; Lenart-Boroń, A.; Boroń, P.; Rola, K. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Mycologia 2021, 113, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Pino-Bodas, R.; Stenroos, S. Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microb. Ecol. 2021, 82, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Yahr, R.; Vilgalys, R.; Depriest, P.T. Strong fungal specificity and selectivity for algal symbionts in florida scrub Cladonia lichens. Mol. Ecol. 2004, 13, 3367–3378. [Google Scholar] [CrossRef] [PubMed]
- Škaloud, P.; Peksa, O. Evolutionary inferences based on ITS RDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol. Phylogenet. Evol. 2010, 54, 36–46. [Google Scholar] [CrossRef]
- Cubero, O.F.; Crespo, A.; Fatehi, J.; Bridge, P.D. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 1999, 216, 243–249. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T. ITS Primers with enhanced specificity for Basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Zoller, S.; Scheidegger, C.; Sperisen, C. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming Ascomycetes. Lichenologist 1999, 31, 511–516. [Google Scholar] [CrossRef]
- Zhou, S.; Stanosz, G.R. Primers for amplification of mtSSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycol. Res. 2001, 105, 1033–1044. [Google Scholar] [CrossRef]
- Kroken, S.; Taylor, J.W. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 2000, 103, 645–660. [Google Scholar] [CrossRef]
- Cocquyt, E.; Verbruggen, H.; Leliaert, F.; De Clerck, O. Evolution and cytological diversification of the green seaweeds (Ulvophyceae). Mol. Biol. Evol. 2010, 27, 2052–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hepperle, D. SeqAssem. A Sequence Analysis Tool, Contig Assembler and Trace Data Visualization Tool for Molecular Sequences. 2004. Available online: http://www.sequentix.de (accessed on 25 November 2021).
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New heuristics and parallel computing. Nat. Meth. 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods); Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Rambaut, A. Figtree, a Graphical Viewer of Phylogenetic Trees; Version 1.4.4; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2018. [Google Scholar]
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Pennell, M.W.; Eastman, J.M.; Slater, G.J.; Brown, J.W.; Uyeda, J.C.; FitzJohn, R.G.; Alfaro, M.E.; Harmon, L.J. Geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 2014, 30, 2216–2218. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Williams, E.; Vennes, C.; Hijmans, M.R.J. Package ‘geosphere’. Spherical Trigonometry 2017. Available online: http://cran.nexr.com/web/packages/geosphere/geosphere.pdf (accessed on 25 November 2021).
- Revell, L.J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Chambers, J.M. SoDA: Functions and examples for “Software for Data Analysis”. R Package Version. 2013. Available online: https://cran.r-project.org/web/packages/SoDA/SoDA.pdf (accessed on 25 November 2021).
- Dixon, P. VEGAN, a package of R functions for community ecology—Dixon—2003—Journal of Vegetation Science—Wiley Online Library. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Borcard, D.; Legendre, P.; Avois-Jacquet, C.; Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 2004, 85, 1826–1832. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Jackson, D.A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 1993, 74, 2204–2214. [Google Scholar] [CrossRef]
- Vančurová, L.; Malíček, J.; Steinová, J.; Škaloud, P. Choosing the right life partner: Ecological drivers of lichen symbiosis. Front. Microbiol. 2021, 12, 769304. [Google Scholar] [CrossRef]
- Škvorová, Z.; Černajová, I.; Steinová, J.; Peksa, O.; Moya, P.; Škaloud, P. Promiscuity in lichens follows clear rules: Partner switching in Cladonia is regulated by climatic factors and soil chemistry. Front. Microbiol. 2022, 12, 781585. [Google Scholar] [CrossRef]
- Kosecka, M.; Guzow-Krzemińska, B.; Černajová, I.; Škaloud, P.; Jabłońska, A.; Kukwa, M. New lineages of photobionts in bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae. Sci. Rep. 2021, 11, 8701. [Google Scholar] [CrossRef]
- Vančurová, L.; Muggia, L.; Peksa, O.; Řídká, T.; Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (Lichenized Ascomycota). Mol. Ecol. 2018, 27, 3016–3033. [Google Scholar] [CrossRef]
- Brodo, I.M.; Ahti, T. Lichens and lichenicolous fungi of the Queen Charlotte Islands, British Columbia, Canada. 2. The Cladoniaceae. Can. J. Bot. 1996, 74, 1147–1180. [Google Scholar] [CrossRef]
- Burgaz, A.R.; Ahti, T.; Pino-Bodas, R. Mediterranean Cladoniaceae; Spanish Lichen Society (SEL): Madrid, Spain, 2020; ISBN 978-84-09-21610-9. [Google Scholar]
- James, P.W.; Cladonia, P. Browne (1756). In The Lichens of Great Britain and Ireland; British Lichen Society: London, UK, 2009; pp. 309–338. [Google Scholar]
- Armaleo, D.; Clerc, P. Lichen Chimeras: DNA analysis suggests that one fungus forms two morphotypes. Exp. Mycol. 1991, 15, 1–10. [Google Scholar] [CrossRef]
- Nylander William Addenda nova ad Lichenographiam Europaeam. Continuatio quadragesima quarta. Flora 1865, 68, 295–301. [Google Scholar]
- Ertz, D.; Guzow-Krzemińska, B.; Thor, G.; Łubek, A.; Kukwa, M. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci. Rep. 2018, 8, 4952. [Google Scholar] [CrossRef]
- De Queiroz, K. The General Lineage Concept of Species and the Defining Properties of the Species Category. In Species: New Interdisciplinary Essays; MIT Press: Cambridge, MA, USA, 1999; pp. 49–89. ISBN 9780262232012. [Google Scholar]
- Leavitt, S.D.; Moreau, C.S.; Lumbsch, H.T. The dynamic discipline of species delimitation: Progress toward effectively recognizing species boundaries in natural populations. In Recent Advances in Lichenology; Springer: New Delhi, India, 2015; pp. 11–44. ISBN 978-81-322-2234-7. [Google Scholar]
- De Queiroz, K. The general lineage concept of species, species criteria, and the process of speciation. In Endless Forms: Species and Speciation; Howard, D.J., Berlocher, S.H., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 57–75. [Google Scholar]
- De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 2007, 56, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Fernández-Brime, S.; Wedin, M.; Locke, M.; Leavitt, S.D.; Lumbsch, H.T. Using multi-locus sequence data for addressing species boundaries in commonly accepted lichen-forming fungal species. Org. Divers. Evol. 2017, 17, 351–363. [Google Scholar] [CrossRef]
- Boluda, C.G.; Rico, V.J.; Divakar, P.K.; Nadyeina, O.; Myllys, L.; McMullin, R.T.; Zamora, J.C.; Scheidegger, C.; Hawksworth, D.L. Evaluating methodologies for species delimitation: The mismatch between phenotypes and genotypes in lichenized fungi (Bryoria sect. Implexae, Parmeliaceae). Pers.-Mol. Phylogeny Evol. Fungi 2019, 42, 75–100. [Google Scholar] [CrossRef] [Green Version]
- Leavitt, S.D.; Lumbsch, H.T.; Stenroos, S.; Clair, L.L.S. Pleistocene speciation in North American lichenized fungi and the impact of alternative species circumscriptions and rates of molecular evolution on divergence estimates. PLoS ONE 2013, 8, e85240. [Google Scholar] [CrossRef] [Green Version]
- Steinová, J.; Stenroos, S.; Grube, M.; Škaloud, P. Genetic diversity and species delimitation of the zeorin-containing red-fruited Cladonia species (Lichenized Ascomycota) assessed with its rdna and β-tubulin data. Lichenologist 2013, 45, 665–684. [Google Scholar] [CrossRef]
- Pino-Bodas, R.; Burgaz, A.R.; Martín, M.P.; Lumbsch, H.T. Phenotypical plasticity and homoplasy complicate species delimitation in the Cladonia gracilis group (Cladoniaceae, Ascomycota). Org. Divers. Evol. 2011, 11, 343–355. [Google Scholar] [CrossRef]
- Pino-Bodas, R.; Burgaz, A.R.; Ahti, T.; Stenroos, S. Taxonomy of Cladonia angustiloba and related species. Lichenologist 2018, 50, 267–282. [Google Scholar] [CrossRef]
- Pino-Bodas, R.; Martin, M.P.; Burgaz, A.R. Cladonia subturgida and C. iberica (Cladoniaceae) form a single, morphologically and chemically polymorphic species. Mycol. Prog. 2012, 11, 269–278. [Google Scholar] [CrossRef]
- Pino-Bodas, R.; Burgaz, A.R.; Martín, M.P.; Ahti, T.; Stenroos, S.; Wedin, M.; Lumbsch, H.T. The phenotypic features used for distinguishing species within the Cladonia furcata complex are highly homoplasious. Lichenologist 2015, 47, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Lagostina, E.; Dal Grande, F.; Andreev, M.; Printzen, C. The use of microsatellite markers for species delimitation in Antarctic Usnea subgenus Neuropogon. Mycologia 2018, 110, 1047–1057. [Google Scholar] [CrossRef]
- Grewe, F.; Lagostina, E.; Wu, H.; Printzen, C.; Lumbsch, H.T. Population genomic analyses of RAD sequences resolves the phylogenetic relationship of the lichen-forming fungal species Usnea antarctica and Usnea aurantiacoatra. MycoKeys 2018, 43, 91–113. [Google Scholar] [CrossRef]
- Seymour, F.A.; Crittenden, P.D.; Wirtz, N.; Øvstedal, D.O.; Dyer, P.S.; Lumbsch, H.T. Phylogenetic and morphological analysis of antarctic lichen-forming Usnea species in the group Neuropogon. Antarct. Sci. 2007, 19, 71–82. [Google Scholar] [CrossRef]
- Stenroos, S.; Ahti, T. The Lichen family Cladoniaceae in Tierra Del Fuego: Problematic or otherwise noteworthy taxa. Ann. Bot. Fenn. 1990, 27, 317–327. [Google Scholar]
- Nelsen, M.P.; Gargas, A. Assessing clonality and chemotype monophyly in Thamnolia (Icmadophilaceae). Bryologist 2009, 112, 42–53. [Google Scholar] [CrossRef]
- Ortiz-Álvarez, R.; de los Ríos, A.; Fernández-Mendoza, F.; Torralba-Burrial, A.; Pérez-Ortega, S. Ecological specialization of two photobiont-specific maritime cyanolichen species of the genus Lichina. PLoS ONE 2015, 10, e0132718. [Google Scholar] [CrossRef] [Green Version]
- Lutsak, T.; Fernández-Mendoza, F.; Kirika, P.; Wondafrash, M.; Printzen, C. Mycobiont-photobiont interactions of the lichen Cetraria aculeata in high alpine regions of East Africa and South America. Symbiosis 2016, 68, 25–37. [Google Scholar] [CrossRef]
- Blázquez, M.; Hernández-Moreno, L.S.; Gasulla, F.; Pérez-Vargas, I.; Pérez-Ortega, S. The role of photobionts as drivers of diversification in an island radiation of lichen-forming fungi. Front. Microbiol. 2021, 12, 784182. [Google Scholar] [CrossRef]
- Hauck, M.; Jürgens, S.-R.; Brinkmann, M.; Herminghaus, S. Surface hydrophobicity causes SO2 tolerance in lichens. Ann. Bot. 2008, 101, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Hamlett, C.A.E.; Shirtcliffe, N.J.; Pyatt, F.B.; Newton, M.I.; McHale, G.; Koch, K. Passive water control at the surface of a superhydrophobic lichen. Planta 2011, 234, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Steinová, J.; Škaloud, P.; Yahr, R.; Bestová, H.; Muggia, L. reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 2019, 134, 226–237. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, F.; Liu, C.; Hao, Z.; Tian, Y.; Zhu, L.; Zhou, Q. distribution patterns of haplotypes for symbionts from Umbilicaria esculenta and U. muehlenbergii reflect the importance of reproductive strategy in shaping population genetic structure. BMC Microbiol. 2015, 15, 212. [Google Scholar] [CrossRef] [Green Version]
- Otálora, M.A.G.; Salvador, C.; Martínez, I.; Aragón, G. Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microb. Ecol. 2012, 65, 517–530. [Google Scholar] [CrossRef]
- Cocquyt, E.; Gile, G.H.; Leliaert, F.; Verbruggen, H.; Keeling, P.J.; De Clerck, O. Complex phylogenetic distribution of a non-canonical genetic code in green algae. BMC Evol. Biol. 2010, 10, 327. [Google Scholar] [CrossRef] [Green Version]
Cladonia bellidiflora | C. polydactyla | C. umbricola | |
---|---|---|---|
Morphology | Podetia yellowish green, 3–8 cm tall, usually ascyphose, little branched. Surface corticate, densely squamulose, never sorediate. Apothecia common, often large. | Podetia slender, pale grey to whitish or greenish grey, 1–3(–5) cm tall, unbranched or with few irregular branches, usually producing narrow scyphi. Surface of podetia sorediate (farinose to granulose), corticate or squamulose near the base. Apothecia infrequent. | Podetia pale greyish green or whitish grey, 1–3 cm tall, simple ascyphose or usually scyphose. Surface smooth, finely sorediate down to base. Apothecia rare. |
Chemistry | Chemotype 1: usnic and squamatic acids (common throughout the world); chemotype 2: usnic and thamnolic acids (rarer: N and S America). | Thamnolic acid (rarely with small amounts of usnic acid). | Chemotype 1: squamatic acid; chemotype 2: thamnolic acid (rarer). In N America also other chemotypes with usnic and barbatic acids. |
Habitat | Tundra, mountain heaths, humid rock outcrops, higher hilltops, stabilized scree. | On rotting wood and bases of trees, also on mossy rocks or soil. | On rotting wood and bases of trees in oceanic spruce forests. Usually in shade. |
Distribution | Europe, Asia, North America, southern South America, New Zealand, subantarctic islands, Antarctica. | Western Europe, Macaronesia. | Western Europe (only Norway, British Isles and Spain), Macaronesia, western North and South America. |
Genetic Marker | No. of Variable Sites | No. of Parsimony Informative Sites | Intraspecific Distance | Interspecific Distance | Inter-/Intraspecific Distance | |
---|---|---|---|---|---|---|
Mycobiont | ITS rDNA | 14 | 7 | 0.0014 | 0.00207 | 1.48 |
cox1 | 5 | 5 | 0.00104 | 0.00133 | 1.28 | |
EF-1α | 2 | 2 | 0.00053 | 0.0016 | 3.04 | |
mtSSU | 3 | 3 | 0.00031 | 0.00107 | 3.41 | |
RPB2 | 4 | 4 | 0.00047 | 0.00226 | 4.77 | |
Photobiont | ITS rDNA | 38 | 23 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinová, J.; Holien, H.; Košuthová, A.; Škaloud, P. An Exception to the Rule? Could Photobiont Identity Be a Better Predictor of Lichen Phenotype than Mycobiont Identity? J. Fungi 2022, 8, 275. https://doi.org/10.3390/jof8030275
Steinová J, Holien H, Košuthová A, Škaloud P. An Exception to the Rule? Could Photobiont Identity Be a Better Predictor of Lichen Phenotype than Mycobiont Identity? Journal of Fungi. 2022; 8(3):275. https://doi.org/10.3390/jof8030275
Chicago/Turabian StyleSteinová, Jana, Håkon Holien, Alica Košuthová, and Pavel Škaloud. 2022. "An Exception to the Rule? Could Photobiont Identity Be a Better Predictor of Lichen Phenotype than Mycobiont Identity?" Journal of Fungi 8, no. 3: 275. https://doi.org/10.3390/jof8030275
APA StyleSteinová, J., Holien, H., Košuthová, A., & Škaloud, P. (2022). An Exception to the Rule? Could Photobiont Identity Be a Better Predictor of Lichen Phenotype than Mycobiont Identity? Journal of Fungi, 8(3), 275. https://doi.org/10.3390/jof8030275