Endoscopic transfacet Decompression for Severe Lumbar Spinal Stenosis: A Technical Note, Illustrative Clinical Series, and Surgeon Survey Regarding Post-Decompression Instability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Inclusion/Exclusion Criteria
- Presence of clinical signs such as lumbar radiculopathy, dysesthesias, and decreased motor function.
- Imaging evidence of severe central, foraminal, or lateral recess stenosis as shown in preoperative magnetic resonance images (MRI) and computed tomography (CT) scans defined as less than 100 mm2 on representative cross-axial sections.
- Unsuccessful non-operative treatments, including physical therapy and transforaminal epidural steroid injections, for a minimum of 12 weeks.
- Age between 35 and 85 years.
- Segmental instability greater than Grade I spondylolisthesis or translational motion exceeding 8 mm on preoperative extension-flexion radiographs.
- Infection.
- Metastatic disease.
2.3. Endoscopic Technique
- Needle Placement: An 18 G (3 ½ inches in length) needle is carefully inserted into the lumbar facet joint complex at the surgical level to initiate the procedure. The targeting needle is ideally positioned in the lower part of the facet joint complex on the posterior–anterior (PA) and lateral view. The posterolateral targeting trajectory is best determined on the oblique view where the surgical facet joint space is best imaged. The needle tip should align with the medial interpedicular line close to the inferior pedicle on the PA view. Subsequently, the 18 G spinal needle’s trocar is removed, and a guide wire is introduced.
- Placement of Working Cannula: A series of cannulated dilators with increasing diameters are deployed over the guide wire to gain access to the facet joint. Additionally, cannulated reamers measuring 7 and 9 mm in diameter or larger may be placed over the guidewire at the surgeon’s discretion to improve docking at the facet joint. The authors prefer to place a beveled working cannula first facing the lateral aspect of the facet joint to initiate the decompression at the SAP.
- Intra-Facet Working Space: Once the working cannula is docked and the facet joint is videoendoscopically visualized, endoscopic power drills are employed to perform the initial foraminoplasty under direct visualization by creating a wide 8–10 mm working space within the facet joint, thereby slowly advancing the decompression into the foramen anteriorly. The authors’ preferred endoscope (asap Endosystems) is a standard foraminoscope with a 4.1 mm inner working channel and an outer 8.9 mm diameter working sleeve. Distortion of normal anatomy in hypertrophic facet joints is common, and one may find the ligamentum flavum when breaching the anterior portion of the facet joint rather than epidural fat or intervertebral disc. This critical step places the working cannula firmly into the joint space while minimizing the manipulation and, thus, the risk of dysesthesia of the exiting or traversing nerve root due to irritation of the dorsal root ganglia. It also establishes the depth of the necessary dissection to accomplish complete decompression and is an important landmark during the transfacet approach (Figure 3). A radiofrequency probe may also be handy to clean soft tissue attachments or to probe the extent of the decompression needed to alleviate neural structures in the foramen and the lateral recess from encroachment.
- SAP Resection: After the initial foraminoplasty and establishment of the anatomical landmarks anteriorly, rostrally, and caudally, the authors’ preferred method is to decompress the lateral aspect of the facet joint complex by removing the SAP either in its entirety or as much as needed to decompress the exiting nerve root and visualize it in its entire course. Removing the SAP first has the advantage of freeing up the working cannula, which, to this point, is relatively tight in the facet joint. After the SAP is removed, the IAP can be more effectively decompressed with power burrs, drills, Kerrison rongeurs, and chisels because the surgeon can point the instruments medially, anteriorly, and posteriorly. After all, obstruction by the SAP is no longer problematic.
- Partial Pediculolectomy: In vertically collapsed lumbar motion segments, an inferior partial pediculectomy and resection of the pars interarticularis may be necessary to achieve the desired lateral and central canal decompression.
- Ring Apophysis Osteophytes: If required, the decompression of the traversing nerve root can be completed by drilling down the inferior ring apophysis and addressing any central disc bulge below the traversing nerve root and the central dural sac. In cases of a concurrent herniated disc, forceps and pituitary rongeurs are used to remove any extruded disc material. More often than not, the authors find contained herniations at this stage of the operation, which can be removed safely through a small annular window employing their hybridized outside-in/inside-out technique. For this step, the working cannular should be introduced into the disc space, which in geriatric patients is often hollow. Epidural bleeding can be controlled using a radiofrequency probe under saline irrigation.
- Ligamentum Flavum Resection: The IAP resection exposes the ligamentum flavum, covering the central and lateral portions of the dural sac. Compared to the interlaminar approach, the transfacet approach facilitates the removal of the ligamentum flavum. It begins the decompression lateral to the ligamentum flavum rather than medial to it as dictated by the interlaminar window. Therefore, it is inherently safer as the remaining most medial portion of the IAP after having egg-shelled the decompression to the ligamentum flavum protects the neural elements throughout most of the bony decompression until it is removed during its final steps.
- Over-the-top and Contralateral Decompression: Once the dural sac is decompressed and exposed on the approach side, the working cannula can be directed across the midline by undercutting the spinous process and removing bone and hypertrophied ligamentum flavum on the contralateral side. Alternatively, the exact transfacet decompression could be performed on the opposite side, creating a floating spinous process.
2.4. Surgeon Survey
2.5. Statistical Analysis
3. Results
3.1. Clinical Series
3.2. Case Example 1
3.3. Case Example 2
3.4. Case Example 3
3.5. Surgeon Survey
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perez-Roman, R.J.; Gaztanaga, W.; Lu, V.M.; Wang, M.Y. Endoscopic decompression for the treatment of lumbar spinal stenosis: An updated systematic review and meta-analysis. J. Neurosurg. Spine 2022, 36, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Lewandrowski, K.U.; Telfeian, A.E.; Hellinger, S.; León, J.F.; de Carvalho, P.S.; Ramos, M.R.; Kim, H.S.; Hanson, D.W.; Salari, N.; Yeung, A. Difficulties, Challenges, and the Learning Curve of Avoiding Complications in Lumbar Endoscopic Spine Surgery. Int. J. Spine Surg. 2021, 15, S21–S37. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Yeung, A.T.; Wang, M.Y. Challenges in Spinal Endoscopy. World Neurosurg. 2022, 160, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, R.; Morgenstern, C.; Yeung, A.T. The learning curve in foraminal endoscopic discectomy: Experience needed to achieve a 90% success rate. SAS J. 2007, 1, 100–107. [Google Scholar] [CrossRef]
- Wang, B.; Lu, G.; Patel, A.A.; Ren, P.; Cheng, I. An evaluation of the learning curve for a complex surgical technique: The full endoscopic interlaminar approach for lumbar disc herniations. Spine J. 2011, 11, 122–130. [Google Scholar] [CrossRef]
- Hsu, H.T.; Chang, S.J.; Yang, S.S.; Chai, C.L. Learning curve of full-endoscopic lumbar discectomy. Eur. Spine J. 2013, 22, 727–733. [Google Scholar] [CrossRef]
- Wang, H.; Huang, B.; Li, C.; Zhang, Z.; Wang, J.; Zheng, W.; Zhou, Y. Learning curve for percutaneous endoscopic lumbar discectomy depending on the surgeon’s training level of minimally invasive spine surgery. Clin. Neurol. Neurosurg. 2013, 115, 1987–1991. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, H.J.; Kim, G.U.; Choi, M.H.; Chang, B.S.; Lee, C.K.; Yeom, J.S. Learning Curve for Lumbar Decompressive Laminectomy in Biportal Endoscopic Spinal Surgery Using the Cumulative Summation Test for Learning Curve. World Neurosurg. 2019, 122, e1007–e1013. [Google Scholar] [CrossRef]
- Chen, K.T.; Song, M.S.; Kim, J.S. How I do it? Interlaminar contralateral endoscopic lumbar foraminotomy assisted with the O-arm navigation. Acta Neurochir. 2020, 162, 121–125. [Google Scholar] [CrossRef]
- Ransom, N.A.; Gollogly, S.; Lewandrowski, K.U.; Yeung, A. Navigating the learning curve of spinal endoscopy as an established traditionally trained spine surgeon. J. Spine Surg. 2020, 6, S197–S207. [Google Scholar] [CrossRef]
- Son, S.; Ahn, Y.; Lee, S.G.; Kim, W.K. Learning curve of percutaneous endoscopic interlaminar lumbar discectomy versus open lumbar microdiscectomy at the L5-S1 level. PLoS ONE 2020, 15, e0236296. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Harikar, M.M.; Venkataram, T.; Chavda, V.; Montemurro, N.; Assefi, M.; Hussain, N.; Yamamoto, V.; Kateb, B.; Lewandrowski, K.U.; et al. Is Minimally Invasive Spinal Surgery (MISS) Superior to Endoscopic Spine Surgery in Post-operative Radiological Outcome for Lumbar Spine Degenerative Disease? A Systematic Review. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2024, 85, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Choi, M.; Ryu, D.S.; Choi, I.; Kim, C.H.; Kim, H.S.; Sohn, M.J. Efficacy and Safety of Full-endoscopic Decompression via Interlaminar Approach for Central or Lateral Recess Spinal Stenosis of the Lumbar Spine: A Meta-analysis. Spine 2018, 43, 1756–1764. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Yoon, K.J.; Ha, S.S. Comparative Analysis between Three Different Lumbar Decompression Techniques (Microscopic, Tubular, and Endoscopic) in Lumbar Canal and Lateral Recess Stenosis: Preliminary Report. BioMed Res. Int. 2019, 2019, 6078469. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Huang, P.; Zheng, G.; Liao, W.; Zhang, X.; Wang, Y. Using a percutaneous spinal endoscopy unilateral posterior interlaminar approach to perform bilateral decompression for patients with lumbar lateral recess stenosis. Asian J. Surg. 2019, 43, 593–602. [Google Scholar] [CrossRef]
- Chen, K.T.; Choi, K.C.; Song, M.S.; Jabri, H.; Lokanath, Y.K.; Kim, J.S. Hybrid Interlaminar Endoscopic Lumbar Decompression in Disc Herniation Combined With Spinal Stenosis. Oper. Neurosurg. 2021, 20, E168–E174. [Google Scholar] [CrossRef]
- Carr, D.A.; Abecassis, I.J.; Hofstetter, C.P. Full endoscopic unilateral laminotomy for bilateral decompression of the cervical spine: Surgical technique and early experience. J. Spine Surg. 2020, 6, 447–456. [Google Scholar] [CrossRef]
- Wu, P.H.; Kim, H.S.; Lee, Y.J.; Kim, D.H.; Lee, J.H.; Jeon, J.B.; Raorane, H.D.; Jang, I.T. Uniportal Full Endoscopic Posterolateral Transforaminal Lumbar Interbody Fusion with Endoscopic Disc Drilling Preparation Technique for Symptomatic Foraminal Stenosis Secondary to Severe Collapsed Disc Space: A Clinical and Computer Tomographic Study with Technical Note. Brain Sci. 2020, 10, 373. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, D.J.; Park, E.J.J.; Lee, H.J.; Hwang, J.H.; Kim, M.C.; Oh, J.S. Biportal Endoscopic Spinal Surgery for Lumbar Spinal Stenosis. Asian Spine J. 2019, 13, 334–342. [Google Scholar] [CrossRef]
- Pao, J.L.; Lin, S.M.; Chen, W.C.; Chang, C.H. Unilateral biportal endoscopic decompression for degenerative lumbar canal stenosis. J. Spine Surg. 2020, 6, 438–446. [Google Scholar] [CrossRef]
- Kim, J.E.; Choi, D.J. Unilateral biportal endoscopic decompression by 30 degrees endoscopy in lumbar spinal stenosis: Technical note and preliminary report. J. Orthop. 2018, 15, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kang, S.S.; Hong, Y.H.; Park, S.W.; Lee, S.C. Clinical comparison of unilateral biportal endoscopic technique versus open microdiscectomy for single-level lumbar discectomy: A multicenter, retrospective analysis. J. Orthop. Surg. Res. 2018, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.X.; Huang, P.; Kotheeranurak, V.; Park, C.W.; Heo, D.H.; Park, C.K.; Park, J.Y.; Kim, J.S. A Systematic Review of Unilateral Biportal Endoscopic Spinal Surgery: Preliminary Clinical Results and Complications. World Neurosurg. 2019, 125, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Wang, B.; Ke, W.; Wu, X.; Zhang, Y.; Li, S.; Yang, S.; Yang, C. Comparison of lumbar endoscopic unilateral laminotomy bilateral decompression and minimally invasive surgery transforaminal lumbar interbody fusion for one-level lumbar spinal stenosis. BMC Musculoskelet. Disord. 2020, 21, 785. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.R.; Park, J.Y. The Technical Feasibility of Unilateral Biportal Endoscopic Decompression for The Unpredicted Complication Following Minimally Invasive Transforaminal Lumbar Interbody Fusion: Case Report. Neurospine 2020, 17, S154–S159. [Google Scholar] [CrossRef]
- Sharma, S.B.; Lin, G.X.; Jabri, H.; Siddappa, N.D.; Kim, J.S. Biportal Endoscopic Excision of Facetal Cyst in the Far Lateral Region of L5S1: 2-Dimensional Operative Video. Oper. Neurosurg. 2020, 18, E233. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Dowling, A.; Calderaro, A.L.; Dos Santos, T.S.; Bergamaschi, J.P.M.; Leon, J.F.R.; Yeung, A. Dysethesia due to irritation of the dorsal root ganglion following lumbar transforaminal endoscopy: Analysis of frequency and contributing factors. Clin. Neurol. Neurosurg. 2020, 197, 106073. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Hellinger, S.; De Carvalho, P.S.T.; Freitas Ramos, M.R.; Soriano-SáNchez, J.A.; Xifeng, Z.; Calderaro, A.L.; Dos Santos, T.S.; Ramírez León, J.F.; de Lima, E.S.M.S.; et al. Dural Tears During Lumbar Spinal Endoscopy: Surgeon Skill, Training, Incidence, Risk Factors, and Management. Int. J. Spine Surg. 2021, 15, 280–294. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, H.; Wang, X.; Liu, Z.; Liu, W.; Luo, J. Complications of Unilateral Biportal Endoscopic Spinal Surgery for Lumbar Spinal Stenosis: A Meta-Analysis and Systematic Review. World Neurosurg. 2023, 170, e371–e379. [Google Scholar] [CrossRef]
- Wang, B.; He, P.; Liu, X.; Wu, Z.; Xu, B. Complications of Unilateral Biportal Endoscopic Spinal Surgery for Lumbar Spinal Stenosis: A Systematic Review of the Literature and Meta-analysis of Single-arm Studies. Orthop. Surg. 2023, 15, 3–15. [Google Scholar] [CrossRef]
- Ahn, D.K.; Lee, J.S.; Shin, W.S.; Kim, S.; Jung, J. post-operative spinal epidural hematoma in a biportal endoscopic spine surgery. Medicine 2021, 100, e24685. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.X.; Liang, G.Y.; Liu, H.F.; Zheng, X.Q.; Xiao, D.; Huang, Y.X.; Chen, C.; Yu, T.; Yin, D.; Chang, Y.B. [Characteristics and risk factors of spinal epidural hematoma after unilateral biportal endoscopic lumbar interbody fusion]. Zhonghua Yi Xue Za Zhi 2022, 102, 3267–3273. [Google Scholar] [CrossRef] [PubMed]
- Kamson, S.; Trescot, A.M.; Sampson, P.D.; Zhang, Y. Full-Endoscopic Assisted Lumbar Decompressive Surgery Performed in an Outpatient, Ambulatory Facility: Report of 5 Years of Complications and Risk Factors. Pain Physician 2017, 20, E221–E231. [Google Scholar] [CrossRef]
- Cha, E.D.K.; Lynch, C.P.; Hrynewycz, N.M.; Geoghegan, C.E.; Mohan, S.; Jadczak, C.N.; Parrish, J.M.; Jenkins, N.W.; Singh, K. Spine Surgery Complications in the Ambulatory Surgical Center Setting: Systematic Review. Clin. Spine Surg. 2022, 35, 118–126. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, H.Y.; Lee, S.H.; Lee, J.H. Dural tears in percutaneous endoscopic lumbar discectomy. Eur. Spine J. 2011, 20, 58–64. [Google Scholar] [CrossRef]
- Muller, S.J.; Burkhardt, B.W.; Oertel, J.M. Management of Dural Tears in Endoscopic Lumbar Spinal Surgery: A Review of the Literature. World Neurosurg. 2018, 119, 494–499. [Google Scholar] [CrossRef]
- Nam, H.G.W.; Kim, H.S.; Park, J.S.; Lee, D.K.; Park, C.K.; Lim, K.T. Double-Layer TachoSil Packing for Management of Incidental Durotomy During Percutaneous Stenoscopic Lumbar Decompression. World Neurosurg. 2018, 120, 448–456. [Google Scholar] [CrossRef]
- Shin, J.K.; Youn, M.S.; Seong, Y.J.; Goh, T.S.; Lee, J.S. Iatrogenic dural tear in endoscopic lumbar spinal surgery: Full endoscopic dural suture repair (Youn’s technique). Eur. Spine J. 2018, 27, 544–548. [Google Scholar] [CrossRef]
- Ito, Z.; Shibayama, M.; Nakamura, S.; Yamada, M.; Kawai, M.; Takeuchi, M.; Yoshimatsu, H.; Kuraishi, K.; Hoshi, N.; Miura, Y.; et al. Clinical Comparison of Unilateral Biportal Endoscopic Laminectomy versus Microendoscopic Laminectomy for Single-Level Laminectomy: A Single-Center, Retrospective Analysis. World Neurosurg. 2021, 148, e581–e588. [Google Scholar] [CrossRef]
- Wu, P.H.; Chin, B.Z.J.; Lee, P.; Woon, C.Y.; Kim, H.S.; George, R.; Lin, S.; Tan, Y.G. Ambulatory uniportal versus biportal endoscopic unilateral laminotomy with bilateral decompression for lumbar spinal stenosis-cohort study using a prospective registry. Eur. Spine J. 2023, 32, 2726–2735. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Yeung, A. Lumbar Endoscopic Bony and Soft Tissue Decompression With the Hybridized Inside-Out Approach: A Review And Technical Note. Neurospine 2020, 17, S34–S43. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.; Lewandrowski, K.U. Early and staged endoscopic management of common pain generators in the spine. J. Spine Surg. 2020, 6, S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Lewandrowski, K.U.; Abraham, I.; Ramírez León, J.F.; Telfeian, A.E.; Lorio, M.P.; Hellinger, S.; Knight, M.; De Carvalho, P.S.T.; Ramos, M.R.F.; Dowling, Á.; et al. A Proposed Personalized Spine Care Protocol (SpineScreen) to Treat Visualized Pain Generators: An Illustrative Study Comparing Clinical Outcomes and post-operative Reoperations between Targeted Endoscopic Lumbar Decompression Surgery, Minimally Invasive TLIF and Open Laminectomy. J. Pers. Med. 2022, 12, 1065. [Google Scholar] [CrossRef]
- Lewandrowski, K.U.; Yeung, A.; Lorio, M.P.; Yang, H.; Ramírez León, J.F.; Sánchez, J.A.S.; Fiorelli, R.K.A.; Lim, K.T.; Moyano, J.; Dowling, Á.; et al. Personalized Interventional Surgery of the Lumbar Spine: A Perspective on Minimally Invasive and Neuroendoscopic Decompression for Spinal Stenosis. J. Pers. Med. 2023, 13, 710. [Google Scholar] [CrossRef]
- Lewandrowski, K.U. Successful outcome after outpatient transforaminal decompression for lumbar foraminal and lateral recess stenosis: The positive predictive value of diagnostic epidural steroid injection. Clin. Neurol. Neurosurg. 2018, 173, 38–45. [Google Scholar] [CrossRef]
- Yeung, A.T.; Yeung, C.A. Advances in endoscopic disc and spine surgery: Foraminal approach. Surg. Technol. Int. 2003, 11, 255–263. [Google Scholar]
- Yeung, A.; Roberts, A.; Zhu, L.; Qi, L.; Zhang, J.; Lewandrowski, K.U. Treatment of Soft Tissue and Bony Spinal Stenosis by a Visualized Endoscopic Transforaminal Technique Under Local Anesthesia. Neurospine 2019, 16, 52–62. [Google Scholar] [CrossRef]
- Tieber, F.; Lewandrowski, K.U. Technology advancements in spinal endoscopy for staged management of painful spine conditions. J. Spine Surg. 2020, 6, S19–S28. [Google Scholar] [CrossRef]
- Boone, W.J. Rasch analysis for instrument development: Why, when, and how? CBE—Life Sci. Educ. 2016, 15, rm4. [Google Scholar] [CrossRef]
- Stelmack, J.; Szlyk, J.P.; Stelmack, T.; Babcock-Parziale, J.; Demers-Turco, P.; Williams, R.T.; Massof, R.W. Use of Rasch person-item map in exploratory data analysis: A clinical perspective. J. Rehabil. Res. Dev. 2004, 41, 233–241. [Google Scholar] [CrossRef]
- Azizan, N.H.; Mahmud, Z.; Rambli, A. Rasch rating scale item estimates using maximum likelihood approach: Effects of sample size on the accuracy and bias of the estimates. Int. J. Adv. Sci. Technol. 2020, 29, 2526–2531. [Google Scholar]
- Hofstetter, C.P.; Ahn, Y.; Choi, G.; Gibson, J.N.A.; Ruetten, S.; Zhou, Y.; Li, Z.Z.; Siepe, C.J.; Wagner, R.; Lee, J.H.; et al. AOSpine Consensus Paper on Nomenclature for Working-Channel Endoscopic Spinal Procedures. Glob. Spine J. 2020, 10, 111s–121s. [Google Scholar] [CrossRef] [PubMed]
- Balogun, J.A.; Daniel, A.; Idowu, O.K. Navigating the learning curve with large and giant tumors: Initial experience with endoscopic endonasal transphenoidal resection of PitNETs. J. Clin. Neurosci. 2023, 112, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Perfetti, D.C.; Rogers-LaVanne, M.P.; Satin, A.M.; Yap, N.; Khan, I.; Kim, P.; Hofstetter, C.P.; Derman, P.B. Learning curve for endoscopic posterior cervical foraminotomy. Eur. Spine J. 2023, 32, 2670–2678. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, Y.; Wu, X.; Gao, Y.; Li, S.; Wang, K.; Yang, S.; Yang, C. Full-Endoscopic Visualized Foraminoplasty and Discectomy Under General Anesthesia in the Treatment of L4-L5 and L5-S1 Disc Herniation. Spine 2019, 44, E984–E991. [Google Scholar] [CrossRef]
- Lewandrowski, K.U. Incidence, Management, and Cost of Complications After Transforaminal Endoscopic Decompression Surgery for Lumbar Foraminal and Lateral Recess Stenosis: A Value Proposition for Outpatient Ambulatory Surgery. Int. J. Spine Surg. 2019, 13, 53–67. [Google Scholar] [CrossRef]
- Haufe, S.M.; Mork, A.R. Effects of unilateral endoscopic facetectomy on spinal stability. Clin. Spine Surg. 2007, 20, 146–148. [Google Scholar] [CrossRef]
- Youn, M.S.; Shin, J.K.; Goh, T.S.; Lee, J.S. Clinical and radiological outcomes of endoscopic partial facetectomy for degenerative lumbar foraminal stenosis. Acta Neurochir. 2017, 159, 1129–1135. [Google Scholar] [CrossRef]
Demographics and Follow-Up | N | Minimum | Maximum | Mean |
---|---|---|---|---|
Age [Years] | 65 | 38.00 | 84.00 | 65.7846 |
post-operative Follow-up [Months] | 65 | 24.00 | 39.00 | 31.4462 |
Valid N (listwise) | 65 | |||
Gender | N | Percent | Valid Percent | Cumulative Percent |
F | 29 | 44.6 | 44.6 | 44.6 |
M | 36 | 55.4 | 55.4 | 100.0 |
Total | 65 | 100.0 | 100.0 |
Modified Macnab Outcome | Frequency | Percent | Valid Percent | Cumulative Percent |
---|---|---|---|---|
Excellent | 20 | 30.8 | 30.8 | 30.8 |
Good | 37 | 56.9 | 56.9 | 87.7 |
Fair | 5 | 7.7 | 7.7 | 95.4 |
Poor | 3 | 4.6 | 4.6 | 100.0 |
Total | 65 | 100.0 | 100.0 |
Paired Samples Statistics | Mean | N | Std. Deviation | Std. Error Mean | |||||
---|---|---|---|---|---|---|---|---|---|
Pair 1 | Preoperative VAS Score | 7.5385 | 65 | 1.67777 | 0.20810 | ||||
post-operative VAS Score | 2.2000 | 65 | 1.44914 | 0.17974 | |||||
Paired Differences | t | df | Significance | ||||||
Mean | Std. Deviation | Std. Error Mean | 95% Confidence Interval of the Difference | One-Sided p | Two-Sided p | ||||
Lower | Upper | ||||||||
Preop VAS Score − Postop VAS Score | 5.33846 | 2.03314 | 0.25218 | 4.83467 | 5.84225 | 21.169 | 64 | <0.001 | <0.001 |
Paired Samples Effect Sizes | |||||||||
Standardizer a | Point Estimate | 95% Confidence Interval | |||||||
Lower | Upper | ||||||||
Preop VAS Score − Postop VAS Score | Cohen’s d | 2.03314 | 2.626 | 2.108 | 3.138 | ||||
Hedges’ correction | 2.04515 | 2.610 | 2.096 | 3.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandrowski, K.-U.; Dowling, Á.; Kim, C.; Kwon, B.; Ongulade, J.; Ito, K.; de Carvalho, P.S.T.; Lorio, M.P. Endoscopic transfacet Decompression for Severe Lumbar Spinal Stenosis: A Technical Note, Illustrative Clinical Series, and Surgeon Survey Regarding Post-Decompression Instability. J. Pers. Med. 2025, 15, 53. https://doi.org/10.3390/jpm15020053
Lewandrowski K-U, Dowling Á, Kim C, Kwon B, Ongulade J, Ito K, de Carvalho PST, Lorio MP. Endoscopic transfacet Decompression for Severe Lumbar Spinal Stenosis: A Technical Note, Illustrative Clinical Series, and Surgeon Survey Regarding Post-Decompression Instability. Journal of Personalized Medicine. 2025; 15(2):53. https://doi.org/10.3390/jpm15020053
Chicago/Turabian StyleLewandrowski, Kai-Uwe, Álvaro Dowling, Choll Kim, Brian Kwon, John Ongulade, Kenyu Ito, Paulo Sergio Terxeira de Carvalho, and Morgan P. Lorio. 2025. "Endoscopic transfacet Decompression for Severe Lumbar Spinal Stenosis: A Technical Note, Illustrative Clinical Series, and Surgeon Survey Regarding Post-Decompression Instability" Journal of Personalized Medicine 15, no. 2: 53. https://doi.org/10.3390/jpm15020053
APA StyleLewandrowski, K.-U., Dowling, Á., Kim, C., Kwon, B., Ongulade, J., Ito, K., de Carvalho, P. S. T., & Lorio, M. P. (2025). Endoscopic transfacet Decompression for Severe Lumbar Spinal Stenosis: A Technical Note, Illustrative Clinical Series, and Surgeon Survey Regarding Post-Decompression Instability. Journal of Personalized Medicine, 15(2), 53. https://doi.org/10.3390/jpm15020053